1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <cstdlib>
#include "triangulation/ntriangulation.h"
// Affects the number of random 4-4 moves attempted during simplification.
#define COEFF_4_4 3
namespace regina {
bool NTriangulation::intelligentSimplify() {
bool changed;
// Don't automatically fire a change event - we don't know in
// advance if changes will be made or not.
{ // Begin scope for change event block.
ChangeEventBlock block(this, false);
// Reduce to a local minimum.
changed = simplifyToLocalMinimum(true);
// Clone to work with when we might want to roll back changes.
NTriangulation* use;
// Variables used for selecting random 4-4 moves.
std::vector<std::pair<NEdge*, int> > fourFourAvailable;
std::pair<NEdge*, int> fourFourChoice;
unsigned long fourFourAttempts;
unsigned long fourFourCap;
NEdge* edge;
EdgeIterator eit;
int axis;
while (true) {
// --- Random 4-4 moves ---
// Clone the triangulation and start making changes that might or
// might not lead to a simplification.
// If we've already simplified then there's no need to use a
// separate clone since we won't need to undo further changes.
use = (changed ? this : new NTriangulation(*this));
// Make random 4-4 moves.
fourFourAttempts = fourFourCap = 0;
while (true) {
// Calculate the list of available 4-4 moves.
fourFourAvailable.clear();
// Use getEdges() to ensure the skeleton has been calculated.
for (eit = use->getEdges().begin();
eit != use->getEdges().end(); eit++) {
edge = *eit;
for (axis = 0; axis < 2; axis++)
if (use->fourFourMove(edge, axis, true, false))
fourFourAvailable.push_back(
std::make_pair(edge, axis));
}
// Increment fourFourCap if needed.
if (fourFourCap < COEFF_4_4 * fourFourAvailable.size())
fourFourCap = COEFF_4_4 * fourFourAvailable.size();
// Have we tried enough 4-4 moves?
if (fourFourAttempts >= fourFourCap)
break;
// Perform a random 4-4 move on the clone.
fourFourChoice = fourFourAvailable[
static_cast<unsigned>(rand()) % fourFourAvailable.size()];
use->fourFourMove(fourFourChoice.first, fourFourChoice.second,
false, true);
// See if we can simplify now.
if (use->simplifyToLocalMinimum(true)) {
// We have successfully simplified!
// Start all over again.
fourFourAttempts = fourFourCap = 0;
} else
fourFourAttempts++;
}
// Sync the real triangulation with the clone if appropriate.
if (use != this) {
// At this point, changed == false.
if (use->getNumberOfTetrahedra() < getNumberOfTetrahedra()) {
// The 4-4 moves were successful; accept them.
cloneFrom(*use);
changed = true;
}
delete use;
}
// At this point we have decided that 4-4 moves will help us
// no more.
// --- TODO: Open book moves ---
// If we did any book opening stuff, move back to the beginning
// of the loop. Otherwise exit.
break;
}
} // End scope for change event block.
if (changed)
fireChangedEvent();
return changed;
}
bool NTriangulation::simplifyToLocalMinimum(bool perform) {
EdgeIterator eit;
VertexIterator vit;
BoundaryComponentIterator bit;
NEdge* edge;
NBoundaryComponent* bc;
unsigned long nFaces;
unsigned long iFace;
// unsigned long nEdges;
// unsigned long iEdge;
// std::deque<NEdgeEmbedding>::const_iterator embit, embbeginit, embendit;
bool changed = false; // Has anything changed ever (for return value)?
bool changedNow = true; // Did we just change something (for loop control)?
// Don't automatically fire a change event - we don't know in
// advance if changes will be made or not.
{ // Begin scope for change event block.
ChangeEventBlock block(this, false);
while (changedNow) {
changedNow = false;
if (! calculatedSkeleton) {
calculateSkeleton();
}
// Crush a maximal skeleton.
/* Don't crush a maximal skeleton until we know what the
* routine does!
if (vertices.size() > components.size()) {
if (crushMaximalForest()) {
if (! calculatedSkeleton)
calculateSkeleton();
// Keep trying to simplify in this iteration of the loop.
// Thus changedNow will remain false.
changed = true;
}
}
*/
// Look for internal simplifications.
for (eit = edges.begin(); eit != edges.end(); eit++) {
edge = *eit;
if (threeTwoMove(edge, true, perform)) {
changedNow = changed = true;
break;
}
if (twoZeroMove(edge, true, perform)) {
changedNow = changed = true;
break;
}
if (twoOneMove(edge, 0, true, perform)) {
changedNow = changed = true;
break;
}
if (twoOneMove(edge, 1, true, perform)) {
changedNow = changed = true;
break;
}
}
if (changedNow) {
if (perform)
continue;
else
return true;
}
for (vit = vertices.begin(); vit != vertices.end(); vit++) {
if (twoZeroMove(*vit, true, perform)) {
changedNow = changed = true;
break;
}
}
if (changedNow) {
if (perform)
continue;
else
return true;
}
// Look for boundary simplifications.
if (hasBoundaryFaces()) {
for (bit = boundaryComponents.begin();
bit != boundaryComponents.end(); bit++) {
bc = *bit;
// Run through faces of this boundary component looking
// for shell boundary moves.
nFaces = (*bit)->getNumberOfFaces();
for (iFace = 0; iFace < nFaces; iFace++) {
if (shellBoundary((*bit)->getFace(iFace)->
getEmbedding(0).getTetrahedron(),
true, perform)) {
changedNow = changed = true;
break;
}
}
if (changedNow)
break;
/**
* Do NOT do open book moves here since they don't reduce
* the triangulation per se. We'll do this in
* intelligentSimplify() instead.
*/
/*
// Run through edges of this boundary component looking
// for open book moves.
nEdges = (*bit)->getNumberOfEdges();
for (iEdge = 0; iEdge < nEdges; iEdge++) {
embbeginit = (*bit)->getEdge(iEdge)->
getEmbeddings().begin();
embendit = (*bit)->getEdge(iEdge)->
getEmbeddings().end();
for (embit = embbeginit; embit != embendit; embit++)
if (openBook((*embit).getTetrahedron()->getFace(
((*embit).getVertices())[2]),
true, perform)) {
changedNow = true;
changed = true;
break;
}
if (changedNow)
break;
}
if (changedNow)
break;
*/
}
if (changedNow) {
if (perform)
continue;
else
return true;
}
}
}
} // End scope for change event block.
if (changed)
fireChangedEvent();
return changed;
}
} // namespace regina
|