1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "triangulation/ntriangulation.h"
#include "surfaces/nnormalsurfacelist.h"
namespace regina {
/**
* When testing 0-efficiency, to prove that a normal 2-sphere must occur
* at a vertex we use Euler characteristic arguments. One issue that
* arises for non-orientable 3-manifolds is whether a non-vertex normal
* 2-sphere can be decomposed into two-sided projective planes and other
* surfaces of non-positive Euler characteristic. On this issue, Jaco
* writes:
*
* "Remember that in any 3-manifold, regular curves of intersection between
* normal surfaces are orientation preserving; thus if you add a two-sided
* projective plane to any other surface, the curves of intersection must
* be trivial curves on the projective plane - thus the result must be
* nonorientable."
*/
/**
* In general, in quad space the decomposition of a normal surface S is:
*
* k * S + sum of vertex links = sum of vertex normal surfaces
*
* If S is a 2-sphere or a disc and every vertex link has non-negative
* Euler characteristic, it follows that at least one vertex normal surface
* has positive Euler characteristic. From the above comments we see
* that this vertex normal surface must be a 2-sphere, a disc or a
* 1-sided projective plane (which doubles to a 2-sphere).
*
* Thus we can test 0-efficiency in quad space if all vertex links have
* non-negative Euler characteristic.
*/
/**
* Splitting surfaces must alas be tested for in standard triangle-quad
* coordinates. See the triangulation J_{1|3,-5} (chained triangular
* solid torus of major type) of S^3 / Q_32 x Z_3 an an example of a
* triangulation with a splitting surface having chi=-1 that can be
* decomposed in quad space as the sum of two vertex normal tori minus a
* vertex link.
*/
bool NTriangulation::isZeroEfficient() {
if (! zeroEfficient.known()) {
if (hasTwoSphereBoundaryComponents()) {
// We have 2-sphere boundary components.
// No need to look through normal surfaces.
zeroEfficient = false;
} else if (isValid() && ! hasNegativeIdealBoundaryComponents()) {
// We can calculate this using normal surfaces in quad space.
calculateQuadSurfaceProperties();
} else {
// We have to use the slower tri-quad coordinates.
calculateStandardSurfaceProperties();
}
}
return zeroEfficient.value();
}
bool NTriangulation::hasSplittingSurface() {
// Splitting surfaces must unfortunately be calculated using
// tri-quad coordinates.
if (! splittingSurface.known())
calculateStandardSurfaceProperties();
return splittingSurface.value();
}
void NTriangulation::calculateQuadSurfaceProperties() {
// Create a normal surface list.
NNormalSurfaceList* surfaces = NNormalSurfaceList::enumerate(this,
NNormalSurfaceList::QUAD);
// All we can test here is 0-efficiency.
// Are we allowed to calculate 0-efficiency using quad coordinates?
if ((! isValid()) || hasNegativeIdealBoundaryComponents())
return;
// Run through all vertex surfaces.
unsigned long nSurfaces = surfaces->getNumberOfSurfaces();
const NNormalSurface* s;
NLargeInteger chi;
for (unsigned long i = 0; i < nSurfaces; i++) {
s = surfaces->getSurface(i);
if (! zeroEfficient.known()) {
// Note that all vertex surfaces in quad space are
// connected and non-vertex-linking.
if (s->isCompact()) {
chi = s->getEulerCharacteristic();
if (s->hasRealBoundary()) {
// Hunt for discs.
if (chi == 1)
zeroEfficient = false;
} else {
// Hunt for spheres.
if (chi == 2)
zeroEfficient = false;
else if (chi == 1 && s->isTwoSided().isFalse())
zeroEfficient = false;
}
}
}
// See if there is no use running through the rest of the list.
if (zeroEfficient.known())
break;
}
// Done!
if (! zeroEfficient.known())
zeroEfficient = true;
// Clean up.
surfaces->makeOrphan();
delete surfaces;
}
void NTriangulation::calculateStandardSurfaceProperties() {
// Create a normal surface list.
NNormalSurfaceList* surfaces = NNormalSurfaceList::enumerate(this,
NNormalSurfaceList::STANDARD);
// Run through all vertex surfaces.
unsigned long nSurfaces = surfaces->getNumberOfSurfaces();
const NNormalSurface* s;
NLargeInteger chi;
for (unsigned long i = 0; i < nSurfaces; i++) {
s = surfaces->getSurface(i);
if (! splittingSurface.known())
if (s->isSplitting())
splittingSurface = true;
if (! zeroEfficient.known())
if (! s->isVertexLinking()) {
// No need to test for connectedness since these are
// vertex normal surfaces.
// No need to test for compactness since we're using
// standard tri-quad coordinates.
chi = s->getEulerCharacteristic();
if (s->hasRealBoundary()) {
// Hunt for discs.
if (chi == 1)
zeroEfficient = false;
} else {
// Hunt for spheres.
if (chi == 2)
zeroEfficient = false;
else if (chi == 1 && s->isTwoSided().isFalse())
zeroEfficient = false;
}
}
// See if there is no use running through the rest of the list.
if (zeroEfficient.known() && splittingSurface.known())
break;
}
// Done!
if (! zeroEfficient.known())
zeroEfficient = true;
if (! splittingSurface.known())
splittingSurface = false;
// Clean up.
surfaces->makeOrphan();
delete surfaces;
}
} // namespace regina
|