File: surfaces.cpp

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (203 lines) | stat: -rw-r--r-- 7,962 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2008, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "triangulation/ntriangulation.h"
#include "surfaces/nnormalsurfacelist.h"

namespace regina {

/**
 * When testing 0-efficiency, to prove that a normal 2-sphere must occur
 * at a vertex we use Euler characteristic arguments.  One issue that
 * arises for non-orientable 3-manifolds is whether a non-vertex normal
 * 2-sphere can be decomposed into two-sided projective planes and other
 * surfaces of non-positive Euler characteristic.  On this issue, Jaco
 * writes:
 *
 *  "Remember that in any 3-manifold, regular curves of intersection between
 *   normal surfaces are orientation preserving; thus if you add a two-sided
 *   projective plane to any other surface, the curves of intersection must
 *   be trivial curves on the projective plane - thus the result must be
 *   nonorientable."
 */

/**
 * In general, in quad space the decomposition of a normal surface S is:
 *
 *   k * S + sum of vertex links = sum of vertex normal surfaces
 *
 * If S is a 2-sphere or a disc and every vertex link has non-negative
 * Euler characteristic, it follows that at least one vertex normal surface
 * has positive Euler characteristic.  From the above comments we see
 * that this vertex normal surface must be a 2-sphere, a disc or a
 * 1-sided projective plane (which doubles to a 2-sphere).
 *
 * Thus we can test 0-efficiency in quad space if all vertex links have
 * non-negative Euler characteristic.
 */

/**
 * Splitting surfaces must alas be tested for in standard triangle-quad
 * coordinates.  See the triangulation J_{1|3,-5} (chained triangular
 * solid torus of major type) of S^3 / Q_32 x Z_3 an an example of a
 * triangulation with a splitting surface having chi=-1 that can be
 * decomposed in quad space as the sum of two vertex normal tori minus a
 * vertex link.
 */

bool NTriangulation::isZeroEfficient() {
    if (! zeroEfficient.known()) {
        if (hasTwoSphereBoundaryComponents()) {
            // We have 2-sphere boundary components.
            // No need to look through normal surfaces.
            zeroEfficient = false;
        } else if (isValid() && ! hasNegativeIdealBoundaryComponents()) {
            // We can calculate this using normal surfaces in quad space.
            calculateQuadSurfaceProperties();
        } else {
            // We have to use the slower tri-quad coordinates.
            calculateStandardSurfaceProperties();
        }
    }
    return zeroEfficient.value();
}

bool NTriangulation::hasSplittingSurface() {
    // Splitting surfaces must unfortunately be calculated using
    // tri-quad coordinates.
    if (! splittingSurface.known())
        calculateStandardSurfaceProperties();
    return splittingSurface.value();
}

void NTriangulation::calculateQuadSurfaceProperties() {
    // Create a normal surface list.
    NNormalSurfaceList* surfaces = NNormalSurfaceList::enumerate(this,
        NNormalSurfaceList::QUAD);

    // All we can test here is 0-efficiency.

    // Are we allowed to calculate 0-efficiency using quad coordinates?
    if ((! isValid()) || hasNegativeIdealBoundaryComponents())
        return;

    // Run through all vertex surfaces.
    unsigned long nSurfaces = surfaces->getNumberOfSurfaces();
    const NNormalSurface* s;
    NLargeInteger chi;
    for (unsigned long i = 0; i < nSurfaces; i++) {
        s = surfaces->getSurface(i);

        if (! zeroEfficient.known()) {
            // Note that all vertex surfaces in quad space are
            // connected and non-vertex-linking.

            if (s->isCompact()) {
                chi = s->getEulerCharacteristic();
                if (s->hasRealBoundary()) {
                    // Hunt for discs.
                    if (chi == 1)
                        zeroEfficient = false;
                } else {
                    // Hunt for spheres.
                    if (chi == 2)
                        zeroEfficient = false;
                    else if (chi == 1 && s->isTwoSided().isFalse())
                        zeroEfficient = false;
                }
            }
        }

        // See if there is no use running through the rest of the list.
        if (zeroEfficient.known())
            break;
    }

    // Done!
    if (! zeroEfficient.known())
        zeroEfficient = true;

    // Clean up.
    surfaces->makeOrphan();
    delete surfaces;
}

void NTriangulation::calculateStandardSurfaceProperties() {
    // Create a normal surface list.
    NNormalSurfaceList* surfaces = NNormalSurfaceList::enumerate(this,
        NNormalSurfaceList::STANDARD);

    // Run through all vertex surfaces.
    unsigned long nSurfaces = surfaces->getNumberOfSurfaces();
    const NNormalSurface* s;
    NLargeInteger chi;
    for (unsigned long i = 0; i < nSurfaces; i++) {
        s = surfaces->getSurface(i);

        if (! splittingSurface.known())
            if (s->isSplitting())
                splittingSurface = true;

        if (! zeroEfficient.known())
            if (! s->isVertexLinking()) {
                // No need to test for connectedness since these are
                // vertex normal surfaces.
                // No need to test for compactness since we're using
                // standard tri-quad coordinates.
                chi = s->getEulerCharacteristic();
                if (s->hasRealBoundary()) {
                    // Hunt for discs.
                    if (chi == 1)
                        zeroEfficient = false;
                } else {
                    // Hunt for spheres.
                    if (chi == 2)
                        zeroEfficient = false;
                    else if (chi == 1 && s->isTwoSided().isFalse())
                        zeroEfficient = false;
                }
            }

        // See if there is no use running through the rest of the list.
        if (zeroEfficient.known() && splittingSurface.known())
            break;
    }

    // Done!
    if (! zeroEfficient.known())
        zeroEfficient = true;
    if (! splittingSurface.known())
        splittingSurface = false;

    // Clean up.
    surfaces->makeOrphan();
    delete surfaces;
}

} // namespace regina