1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <cstdlib>
#include "utilities/nmpi.h"
namespace regina {
const NLargeInteger NLargeInteger::zero;
const NLargeInteger NLargeInteger::one(1);
const NLargeInteger NLargeInteger::infinity(true, true);
std::string NLargeInteger::stringValue(int base) const {
if (infinite)
return "inf";
else {
char* str = mpz_get_str(0, base, data);
std::string ans(str);
free(str);
return ans;
}
}
NLargeInteger NLargeInteger::gcdWithCoeffs(const NLargeInteger& other,
NLargeInteger& u, NLargeInteger& v) const {
NLargeInteger ans;
// Check for zero coefficients.
if ((*this) == 0) {
u = 0L;
if (other == 0) {
v = 0L;
// ans is already zero.
return ans;
}
v = 1;
ans = other;
if (ans < 0) {
v.negate();
ans.negate();
}
return ans;
}
if (other == 0) {
v = 0L;
u = 1;
ans = *this;
if (ans < 0) {
u.negate();
ans.negate();
}
return ans;
}
// Neither argument is zero.
// Run the gcd algorithm.
mpz_gcdext(ans.data, u.data, v.data, data, other.data);
// Ensure the gcd is positive.
if (ans < 0) {
ans.negate();
u.negate();
v.negate();
}
// Get u and v in the correct range.
NLargeInteger addToU(other);
NLargeInteger addToV(*this);
addToU.divByExact(ans);
addToV.divByExact(ans);
if (addToV < 0)
addToV.negate();
else
addToU.negate();
// We can add (addToU, addToV) to u and v.
// We also know that addToV is positive.
// Add enough copies to make v*sign(other) just non-positive.
NLargeInteger copies(v);
if (other > 0) {
// v must be just non-positive.
if (v > 0) {
copies -= 1;
copies /= addToV;
copies.negate();
copies -= 1;
} else {
copies /= addToV;
copies.negate();
}
}
else {
// v must be just non-negative.
if (v < 0) {
copies += 1;
copies /= addToV;
copies.negate();
copies += 1;
} else {
copies /= addToV;
copies.negate();
}
}
addToU *= copies;
addToV *= copies;
u += addToU;
v += addToV;
return ans;
}
std::ostream& operator << (std::ostream& out, const NLargeInteger& large) {
if (large.infinite)
out << "inf";
else {
char* str = mpz_get_str(0, 10, large.data);
out << str;
free(str);
}
return out;
}
NLargeInteger NLargeInteger::divisionAlg(const NLargeInteger& divisor,
NLargeInteger& remainder) const {
if (divisor == zero) {
remainder = *this;
return zero;
}
// Preconditions state that nothing is infinite, and we've dealt with d=0.
// Pass it to GMP.
NLargeInteger quotient;
mpz_fdiv_qr(quotient.data, remainder.data, data, divisor.data );
// The remainder can still be negative (though this will only happen
// if the divisor is also negative). In this case we still have
// more to do.
if (remainder < zero) {
remainder -= divisor;
quotient += 1;
}
return quotient;
}
} // namespace regina
|