1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2008, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "utilities/nrational.h"
#include <cfloat>
namespace regina {
const NRational NRational::zero;
const NRational NRational::one(1);
const NRational NRational::infinity(1, 0);
const NRational NRational::undefined(0, 0);
// These two constants are initialised to their intended values in
// initDoubleBounds().
const NRational NRational::maxDouble(0, 0);
const NRational NRational::minDouble(0, 0);
NRational::NRational(const NLargeInteger& newNum,
const NLargeInteger& newDen) {
mpq_init(data);
if (newDen == 0) {
if (newNum == 0)
flavour = f_undefined;
else
flavour = f_infinity;
} else {
flavour = f_normal;
mpz_set(mpq_numref(data), newNum.data);
mpz_set(mpq_denref(data), newDen.data);
}
}
NRational::NRational(long newNum, unsigned long newDen) {
mpq_init(data);
if (newDen == 0) {
if (newNum == 0)
flavour = f_undefined;
else
flavour = f_infinity;
} else {
flavour = f_normal;
mpq_set_si(data, newNum, newDen);
}
}
NLargeInteger NRational::getNumerator() const {
if (flavour == f_infinity)
return NLargeInteger::one;
else if (flavour == f_undefined)
return NLargeInteger::zero;
NLargeInteger ans;
mpz_set(ans.data, mpq_numref(data));
return ans;
}
NLargeInteger NRational::getDenominator() const {
if (flavour != f_normal)
return NLargeInteger::zero;
NLargeInteger ans;
mpz_set(ans.data, mpq_denref(data));
return ans;
}
NRational NRational::operator *(const NRational& r) const {
if (flavour == f_undefined || r.flavour == f_undefined)
return undefined;
if (flavour == f_infinity) {
if (r == zero)
return undefined;
return infinity;
}
if (r.flavour == f_infinity) {
if (*this == zero)
return undefined;
return infinity;
}
NRational ans;
mpq_mul(ans.data, data, r.data);
return ans;
}
NRational NRational::operator /(const NRational& r) const {
if (flavour == f_undefined || r.flavour == f_undefined)
return undefined;
if (flavour == f_infinity) {
if (r.flavour == f_infinity)
return undefined;
return infinity;
}
if (r.flavour == f_infinity)
return zero;
if (r == zero) {
if (*this == zero)
return undefined;
return infinity;
}
NRational ans;
mpq_div(ans.data, data, r.data);
return ans;
}
NRational NRational::operator +(const NRational& r) const {
if (flavour == f_undefined || r.flavour == f_undefined)
return undefined;
if (flavour == f_infinity || r.flavour == f_infinity)
return infinity;
NRational ans;
mpq_add(ans.data, data, r.data);
return ans;
}
NRational NRational::operator -(const NRational& r) const {
if (flavour == f_undefined || r.flavour == f_undefined)
return undefined;
if (flavour == f_infinity || r.flavour == f_infinity)
return infinity;
NRational ans;
mpq_sub(ans.data, data, r.data);
return ans;
}
NRational NRational::operator - () const {
if (flavour != f_normal)
return *this;
NRational ans;
mpq_neg(ans.data, data);
return ans;
}
NRational NRational::inverse() const {
if (flavour == f_undefined)
return undefined;
if (flavour == f_infinity)
return zero;
if (*this == zero)
return infinity;
NRational ans;
mpq_inv(ans.data, data);
return ans;
}
NRational NRational::abs() const {
if (flavour != f_normal || mpq_cmp(data, zero.data) >= 0)
return *this;
NRational ans;
mpq_neg(ans.data, data);
return ans;
}
NRational& NRational::operator += (const NRational& other) {
if (flavour == f_undefined || other.flavour == f_undefined)
flavour = f_undefined;
else if (flavour == f_infinity || other.flavour == f_infinity)
flavour = f_infinity;
else
mpq_add(data, data, other.data);
return *this;
}
NRational& NRational::operator -= (const NRational& other) {
if (flavour == f_undefined || other.flavour == f_undefined)
flavour = f_undefined;
else if (flavour == f_infinity || other.flavour == f_infinity)
flavour = f_infinity;
else
mpq_sub(data, data, other.data);
return *this;
}
NRational& NRational::operator *= (const NRational& other) {
if (flavour == f_undefined || other.flavour == f_undefined)
flavour = f_undefined;
else if (flavour == f_infinity) {
if (other == zero)
flavour = f_undefined;
else
flavour = f_infinity;
} else if (other.flavour == f_infinity) {
if (*this == zero)
flavour = f_undefined;
else
flavour = f_infinity;
} else
mpq_mul(data, data, other.data);
return *this;
}
NRational& NRational::operator /= (const NRational& other) {
if (flavour == f_undefined || other.flavour == f_undefined)
flavour = f_undefined;
else if (flavour == f_infinity) {
if (other.flavour == f_infinity)
flavour = f_undefined;
else
flavour = f_infinity;
} else if (other.flavour == f_infinity)
mpq_set(data, zero.data);
else if (other == zero) {
if (*this == zero)
flavour = f_undefined;
else
flavour = f_infinity;
} else
mpq_div(data, data, other.data);
return *this;
}
void NRational::invert() {
if (flavour == f_undefined)
return;
else if (flavour == f_infinity) {
flavour = f_normal;
mpq_set(data, zero.data);
} else if (*this == zero) {
flavour = f_infinity;
} else
mpq_inv(data, data);
}
bool NRational::operator == (const NRational& compare) const {
if (flavour != compare.flavour)
return false;
if (flavour != f_normal)
return true;
return mpq_equal(data, compare.data);
}
bool NRational::operator < (const NRational& compare) const {
if (flavour == f_infinity || compare.flavour == f_undefined)
return false;
if (flavour == f_undefined || compare.flavour == f_infinity)
return (compare.flavour != flavour);
return (mpq_cmp(data, compare.data) < 0);
}
bool NRational::operator > (const NRational& compare) const {
if (flavour == f_undefined || compare.flavour == f_infinity)
return false;
if (flavour == f_infinity || compare.flavour == f_undefined)
return (compare.flavour != flavour);
return (mpq_cmp(data, compare.data) > 0);
}
std::ostream& operator << (std::ostream& out, const NRational& rat) {
if (rat.flavour == NRational::f_infinity)
out << "Inf";
else if (rat.flavour == NRational::f_undefined)
out << "Undef";
else if (rat.getDenominator() == 1)
out << rat.getNumerator();
else
out << rat.getNumerator() << '/' << rat.getDenominator();
return out;
}
double NRational::doubleApprox(bool* inRange) const {
// Initialise maxDouble and minDouble if this has not already been done.
// Do this even if the current doubleApprox() call is trivial, since we
// promise this initialisation on the very first call to doubleApprox().
if (maxDouble.flavour == f_undefined)
initDoubleBounds();
// Trivial cases.
if (flavour == NRational::f_infinity || flavour == NRational::f_undefined) {
if (inRange)
*inRange = false;
return 0.0;
}
// Treat zero separately so that "abs < minDouble" is meaningful later on.
if (*this == zero) {
if (inRange)
*inRange = true;
return 0.0;
}
// In bounds or out of bounds?
NRational magnitude = this->abs();
if (magnitude < minDouble || magnitude > maxDouble) {
if (inRange)
*inRange = false;
return 0.0;
}
// The rational is in range. Use GMP's native conversion routines,
// since GMP knows best.
if (inRange)
*inRange = true;
return mpq_get_d(data);
}
void NRational::initDoubleBounds() {
// The largest and smallest possible (positive) doubles should be:
// FLT_RADIX ^ DBL_MAX_EXP (minus a small amount)
// FLT_RADIX ^ (DBL_MIN_EXP - 1)
//
// However, I have also seen the following crop up in some places:
// FLT_RADIX ^ (DBL_MAX_EXP + 1) (minus a small amount)
// FLT_RADIX ^ DBL_MIN_EXP
//
// Best to be conservative here and choose the weaker in each case:
// FLT_RADIX ^ DBL_MAX_EXP (minus a small amount)
// FLT_RADIX ^ DBL_MIN_EXP
//
// In fact, we'll be even more conservative and divide by an extra
// factor of FLT_RADIX to account for "minus a small amount".
NLargeInteger maxNum = FLT_RADIX;
maxNum.raiseToPower(DBL_MAX_EXP - 1);
NLargeInteger minNum = FLT_RADIX;
minNum.raiseToPower(- DBL_MIN_EXP);
// Cast away constness so we can actually change these variables.
const_cast<NRational&>(maxDouble) = NRational(maxNum, 1);
const_cast<NRational&>(minDouble) = NRational(1, minNum);
}
} // namespace regina
|