File: euler.test

package info (click to toggle)
regina-normal 4.5-1
  • links: PTS
  • area: main
  • in suites: lenny
  • size: 16,824 kB
  • ctags: 7,862
  • sloc: cpp: 63,296; ansic: 12,913; sh: 10,556; perl: 3,294; makefile: 947; python: 188
file content (96 lines) | stat: -rw-r--r-- 3,226 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2008, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Tests different Euler characteristic calculations.
#
# This file is a single component of Regina's python test suite.  To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public
# License along with this program; if not, write to the Free
# Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
# MA 02110-1301, USA.

def printEuler(t, name):
	print t.getEulerCharTri(), t.getEulerCharManifold(), \
		'---', name

	# Consistency check, while we're here.
	eHom = regina.NHomologicalData(t).getEulerChar()
	if eHom != t.getEulerCharManifold():
		print 'ERROR: NTriangulation::getEulerCharManifold() and'
		print '       NHomologicalData.getEulerChar() disagree!'

print 'Euler characteristics for triangulation vs compact manifold:'

# Empty:
printEuler(regina.NTriangulation(), "Empty triangulation")

# Closed:
printEuler(regina.NExampleTriangulation.lens8_3(), "L(8,3)")
printEuler(regina.NExampleTriangulation.rp2xs1(), "RP2 x S1")

# Bounded:
printEuler(regina.NExampleTriangulation.solidKleinBottle(),
	"Solid Klein bottle")
printEuler(regina.NExampleTriangulation.lst3_4_7(), "LST(3,4,7)")

tri = regina.NTriangulation()
tri.addTetrahedron(regina.NTetrahedron())
printEuler(tri, "Solid ball")

# Ideal:
printEuler(regina.NExampleTriangulation.figureEightKnotComplement(),
	"Figure eight knot complement")
printEuler(regina.NExampleTriangulation.whiteheadLinkComplement(),
	"Whitehead link complement")
printEuler(regina.NExampleTriangulation.gieseking(),
	"Gieseking manifold")
printEuler(regina.NExampleTriangulation.cuspedGenusTwoTorus(),
	"Cusped genus two torus")

# Edge joined to itself:
tri = regina.NTriangulation()
t = regina.NTetrahedron()
t.joinTo(0, t, regina.NPerm(1,0,3,2))
t.joinTo(2, t, regina.NPerm(1,0,3,2))
tri.addTetrahedron(t)
printEuler(tri, "Invalid edge")

# Subdivide to obtain a valid triangulation:
tri.barycentricSubdivision()
printEuler(tri, "Two projective plane cusps")

# Invalid boundary vertex links:
tri = regina.NTriangulation()
t = regina.NTetrahedron()
s = regina.NTetrahedron()
t.joinTo(3, s, regina.NPerm(0,1,2,3))
t.joinTo(2, s, regina.NPerm(0,3,1,2))
tri.addTetrahedron(t)
tri.addTetrahedron(s)
printEuler(tri, "Pinched solid torus")

tri = regina.NTriangulation()
t = regina.NTetrahedron()
s = regina.NTetrahedron()
t.joinTo(3, s, regina.NPerm(0,1,2,3))
t.joinTo(2, s, regina.NPerm(0,2,1,3))
tri.addTetrahedron(t)
tri.addTetrahedron(s)
printEuler(tri, "Pinched solid Klein bottle")