1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
|
# Regina - A Normal Surface Theory Calculator
# Python Test Suite Component
#
# Copyright (c) 2007-2008, Ben Burton
# For further details contact Ben Burton (bab@debian.org).
#
# Provides various tests for marked abelian groups.
#
# This file is a single component of Regina's python test suite. To run
# the python test suite, move to the main python directory in the source
# tree and run "make check".
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License as
# published by the Free Software Foundation; either version 2 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public
# License along with this program; if not, write to the Free
# Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
# MA 02110-1301, USA.
import string
def vecToString(v):
if len(v) == 0:
return '[ ]'
ans = '['
for i in range(len(v)):
ans = ans + ' ' + str(v[i])
return ans + ' ]'
def makeMatrix(rows, cols, values):
m = regina.NMatrixInt(rows, cols)
m.initialise(values)
return m
def makeGroup(rowsM, colsM, valuesM, rowsN, colsN, valuesN):
return regina.NMarkedAbelianGroup(
makeMatrix(rowsM, colsM, valuesM),
makeMatrix(rowsN, colsN, valuesN))
def makeHom(domain, range, rows, cols, values):
return regina.NHomMarkedAbelianGroup(
domain, range, makeMatrix(rows, cols, values))
def groupStats(g):
print "------------------------"
print "New marked abelian group"
print "------------------------"
print
print 'Group:', g
print 'Free generators:'
for i in range(g.getRank()):
print str(i) + ':', vecToString(g.getFreeRep(i))
print 'Torsion generators:'
for i in range(g.getNumberOfInvariantFactors()):
print str(i) + ':', vecToString(g.getTorsionRep(i))
# Nothing else to say.
print
def homStats(h):
print "----------------"
print "New homomorphism"
print "----------------"
print
print 'Domain:', h.getDomain()
print 'Range:', h.getRange()
print 'Kernel:', h.getKernel()
print 'Cokernel:', h.getCokernel()
print 'Image:', h.getImage()
# Nothing else to say.
print
# Z + Z_6:
g1 = makeGroup(1, 5, [1,1,1,1,1],
5, 3, [2,2,6,-2,0,0,0,-1,-3,0,-1,0,0,0,-3])
groupStats(g1)
# 2 Z + 2 Z_2:
g2 = makeGroup(1, 5, [1,1,1,1,1],
5, 2, [2,-6,-2,0,0,2,0,2,0,2])
groupStats(g2)
# Hom: g2 -> g1, kernel Z + Z_2, cokernel Z_5:
homStats(makeHom(g2, g1,
5, 5, [5,5,11,0,7,0,0,1,0,2,0,0,-1,0,-2,0,0,0,0,0,0,0,-6,5,-2]))
# Hom: g2 -> g1, kernel Z + Z_2, cokernel Z_15:
homStats(makeHom(g2, g1,
5, 5, [10,10,38,0,-5,0,0,3,0,0,0,0,-3,0,0,0,0,0,0,0,0,0,-28,10,15]))
# Hom: g2 -> g1, kernel 2 Z + Z_2, cokernel Z:
homStats(makeHom(g2, g1,
5, 5, [-3,0,0,-1,1,-3,0,0,-1,1,3,0,0,1,-1,0,0,0,0,0,3,0,0,1,-1]))
# Some playing with getSNFIsoRep():
print "------------------------------------"
print "Miscellaneous vector representations"
print "------------------------------------"
print
print vecToString(g1.getSNFIsoRep([-6,0,0,0,5]))
print vecToString(g1.getSNFIsoRep([-6,0,0,0,6]))
print vecToString(g1.getSNFIsoRep([-4,2,-2,0,4]))
print vecToString(g1.getSNFIsoRep([-8,-2,2,0,8]))
print vecToString(g1.getSNFIsoRep([0,6,-6,0,0]))
print vecToString(g2.getSNFIsoRep([0,-3,-1,3,0]))
print vecToString(g2.getSNFIsoRep([0,-3,-1,3,1]))
print vecToString(g2.getSNFIsoRep([-3,0,-1,3,1]))
|