1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
-------------------------------
Empty triangulation
-------------------------------
Size of the skeleton:
Tetrahedra: 0
Faces: 0
Edges: 0
Vertices: 0
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 components
0 boundary components
0 tetrahedra
0 faces
0 edges
0 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group: 0
Generators: (none)
Relations:
(none)
H1: 0
H1Bdry: 0
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
0-efficient: True
Splitting surface: False
3-sphere: False
Double cover:
Checksum = c1a7e74b4ddfeb576b210ebd21f1f4cc
Ideal to finite:
Result = False
Checksum = c1a7e74b4ddfeb576b210ebd21f1f4cc
Finite to ideal:
Result = False
Checksum = c1a7e74b4ddfeb576b210ebd21f1f4cc
Barycentric subdivision:
Checksum = c1a7e74b4ddfeb576b210ebd21f1f4cc
Dehydration: aaa
-------------------------------
3-sphere
-------------------------------
Size of the skeleton:
Tetrahedra: 1
Faces: 2
Edges: 2
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 0 (013) 0 (012) 0 (312) 0 (230)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 1 1 1 1
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 0 1 1
1 components
0 boundary components
1 tetrahedra
2 faces
2 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group: 0
Generators: (none)
Relations:
(none)
H1: 0
H1Bdry: 0
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
TV(5, 3): 0.36180
0-efficient: True
Splitting surface: False
3-sphere: True
Double cover:
Checksum = 2f7895e707a28e5375ed56c64147367b
Ideal to finite:
Result = False
Checksum = 09623473001ae40a0e6ac8e55b69d868
Finite to ideal:
Result = False
Checksum = 09623473001ae40a0e6ac8e55b69d868
Barycentric subdivision:
Checksum = 403a9d90045773c05200837ee6658e48
Dehydration: baaaafr
-------------------------------
S2 x S1
-------------------------------
Size of the skeleton:
Tetrahedra: 2
Faces: 4
Edges: 3
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 0 (301) 0 (120) 1 (201) 1 (301)
1 | 0 (230) 0 (231) 1 (312) 1 (230)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 0 0 1 2
1 | 2 1 0 0 1 0
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 0 1 2
1 | 1 2 3 3
1 components
0 boundary components
2 tetrahedra
4 faces
3 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group: Z
Generators: g0
Relations:
(none)
H1: Z
H1Bdry: 0
H1Rel: Z
H2: Z
H2Z2: 1 Z_2
TV(5, 3): 1.00000
0-efficient: False
Splitting surface: True
3-sphere: False
Double cover:
Checksum = d852703aa595aeb07c7f11635083faca
Ideal to finite:
Result = False
Checksum = 77cc47ea6dc11dfd963066ff1d44cfc2
Finite to ideal:
Result = False
Checksum = 77cc47ea6dc11dfd963066ff1d44cfc2
Barycentric subdivision:
Checksum = 53e5309e181c77a532511ef9f3f1c433
Dehydration: cabbabxff
-------------------------------
RP2 x S1
-------------------------------
Size of the skeleton:
Tetrahedra: 3
Faces: 6
Edges: 4
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 2 (230) 1 (120) 2 (201) 1 (123)
1 | 0 (301) 2 (013) 2 (312) 0 (123)
2 | 0 (230) 1 (013) 0 (201) 1 (230)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 0 3 2
1 | 2 3 0 0 3 2
2 | 2 1 0 2 3 0
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 1 4 5 3
2 | 2 4 0 5
1 components
0 boundary components
3 tetrahedra
6 faces
4 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: False
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g0 g1^-1 g0 g1^-1
g0 g1 g0^-1 g1^-1
H1: Z + Z_2
H1Bdry: 0
H1Rel: Z + Z_2
H2: Z_2
H2Z2: 2 Z_2
TV(5, 3): 1.00000
0-efficient: True
Splitting surface: True
3-sphere: False
Double cover:
Checksum = 1ff24d9e17c01acdffc964898d3e16b3
Ideal to finite:
Result = False
Checksum = 3c61777c3f6c28c3cec17c645630c186
Finite to ideal:
Result = False
Checksum = 3c61777c3f6c28c3cec17c645630c186
Barycentric subdivision:
Checksum = 6a888c0cf50e95e71eacf28d8db498f2
Dehydration: dadbcccfxfh
-------------------------------
RP3 # RP3
-------------------------------
Size of the skeleton:
Tetrahedra: 4
Faces: 8
Edges: 5
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 0 (231) 1 (230) 3 (123) 0 (201)
1 | 1 (013) 1 (012) 0 (301) 2 (023)
2 | 2 (231) 3 (230) 1 (123) 2 (201)
3 | 3 (013) 3 (012) 2 (301) 0 (023)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
3 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 1 1 1 0
1 | 2 1 1 3 3 0
2 | 0 3 3 3 3 0
3 | 4 3 3 1 1 0
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 0
1 | 3 3 1 4
2 | 5 6 4 5
3 | 7 7 6 2
1 components
0 boundary components
4 tetrahedra
8 faces
5 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g1^3 g0^-1 g1 g0^-1
g1 g0^-1 g1 g0^-1
H1: 2 Z_2
H1Bdry: 0
H1Rel: 2 Z_2
H2: 0
H2Z2: 2 Z_2
TV(5, 3): 0.00000
0-efficient: False
Splitting surface: True
3-sphere: False
Double cover:
Checksum = 102c2bf34173f4bc6de5ee6d458a8668
Ideal to finite:
Result = False
Checksum = ea5975299810a07ec66bd29b43f3ded6
Finite to ideal:
Result = False
Checksum = ea5975299810a07ec66bd29b43f3ded6
Barycentric subdivision:
Checksum = 7de1d152309228a0791adeb6173c9f7f
Dehydration: eaoabcddgrwxg
-------------------------------
L(8,3)
-------------------------------
Size of the skeleton:
Tetrahedra: 2
Faces: 4
Edges: 3
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 0 (130) 0 (201) 1 (012) 1 (130)
1 | 0 (023) 0 (312) 1 (312) 1 (230)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 0 1 1 0 2
1 | 0 1 2 2 1 2
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 0 1 2
1 | 1 2 3 3
1 components
0 boundary components
2 tetrahedra
4 faces
3 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group: Z_8
Generators: g0
Relations:
g0^-8
H1: Z_8
H1Bdry: 0
H1Rel: Z_8
H2: 0
H2Z2: 1 Z_2
TV(5, 3): 0.27639
0-efficient: True
Splitting surface: True
3-sphere: False
Double cover:
Checksum = 13d9515f1fee9b12d3cf31a890eb3a21
Ideal to finite:
Result = False
Checksum = 365925df587e1bee6a71b30ba5644945
Finite to ideal:
Result = False
Checksum = 365925df587e1bee6a71b30ba5644945
Barycentric subdivision:
Checksum = fdd33f9c8dac4a6f49046cc7eab342a0
Dehydration: cabbabakn
-------------------------------
Poincare homology sphere
-------------------------------
Size of the skeleton:
Tetrahedra: 5
Faces: 10
Edges: 6
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 4 (312) 3 (231) 2 (312) 1 (231)
1 | 4 (230) 3 (302) 2 (230) 0 (312)
2 | 4 (301) 3 (130) 1 (302) 0 (230)
3 | 4 (120) 2 (301) 1 (130) 0 (301)
4 | 3 (201) 2 (120) 1 (201) 0 (120)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
3 | 0 0 0 0
4 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 3 4 5
1 | 1 2 0 4 5 3
2 | 4 0 3 5 1 2
3 | 3 5 1 2 4 0
4 | 5 2 4 3 0 1
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 4 5 6 3
2 | 7 8 6 2
3 | 9 8 5 1
4 | 9 7 4 0
1 components
0 boundary components
5 tetrahedra
10 faces
6 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g0^-1 g1 g0 g1 g0^-1 g1^-1
g1 g0^-1 g1 g0 g1^-2 g0
H1: 0
H1Bdry: 0
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
TV(5, 3): 0.05279
0-efficient: True
Splitting surface: False
3-sphere: False
Double cover:
Checksum = c7b1db4c44bde8b90bb0b1b9a3ba0964
Ideal to finite:
Result = False
Checksum = a74b096797659437a04bc115230f7217
Finite to ideal:
Result = False
Checksum = a74b096797659437a04bc115230f7217
Barycentric subdivision:
Checksum = a6959d043a510584cbb149e3269580f0
Dehydration: fapaadecedenbokbo
-------------------------------
Closed orientable hyperbolic 3-manifold
-------------------------------
Size of the skeleton:
Tetrahedra: 9
Faces: 18
Edges: 10
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 8 (021) 2 (023) 8 (320) 6 (132)
1 | 7 (231) 3 (321) 8 (123) 6 (120)
2 | 4 (312) 3 (012) 0 (013) 7 (031)
3 | 2 (013) 5 (213) 5 (301) 1 (310)
4 | 7 (320) 5 (012) 6 (032) 2 (120)
5 | 4 (013) 3 (230) 8 (013) 3 (103)
6 | 1 (312) 7 (012) 4 (032) 0 (132)
7 | 6 (013) 2 (132) 4 (210) 1 (201)
8 | 0 (021) 5 (023) 0 (320) 1 (023)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
3 | 0 0 0 0
4 | 0 0 0 0
5 | 0 0 0 0
6 | 0 0 0 0
7 | 0 0 0 0
8 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 3 4 0
1 | 5 3 6 4 7 1
2 | 8 0 2 9 7 4
3 | 8 2 6 7 6 5
4 | 5 9 1 9 8 0
5 | 5 1 2 8 6 6
6 | 7 1 9 4 3 0
7 | 7 9 9 3 4 5
8 | 1 0 2 3 6 1
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 4 5 6 7
2 | 8 9 1 10
3 | 9 11 12 5
4 | 13 14 15 8
5 | 14 12 16 11
6 | 7 17 15 3
7 | 17 10 13 4
8 | 0 16 2 6
1 components
0 boundary components
9 tetrahedra
18 faces
10 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: True
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g1^-1 g0 g1 g0^4 g1 g0 g1^-1 g0^-1
g0^2 g1 g0^4 g1 g0^4 g1 g0 g1^-1 g0 g1 g0^4 g1 g0^4 g1
H1: 2 Z_5
H1Bdry: 0
H1Rel: 2 Z_5
H2: 0
H2Z2: 0 Z_2
TV(5, 3): 0.50000
3-sphere: False
Double cover:
Checksum = 4ddc4e873944154fe9b1f94dfec8a345
Ideal to finite:
Result = False
Checksum = 19e316c983afbbd29dac724b05e2329d
Finite to ideal:
Result = False
Checksum = 19e316c983afbbd29dac724b05e2329d
Barycentric subdivision:
Checksum = 309749f96dc14b627da6b717053209f9
Dehydration: jphaeaacfgehggiiialhaggjbvw
-------------------------------
Closed non-orientable hyperbolic 3-manifold
-------------------------------
Size of the skeleton:
Tetrahedra: 11
Faces: 22
Edges: 12
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 2 (310) 8 (213) 2 (021) 8 (320)
1 | 9 (103) 2 (213) 3 (302) 5 (012)
2 | 0 (032) 0 (210) 4 (320) 1 (103)
3 | 6 (032) 4 (201) 1 (230) 6 (130)
4 | 3 (130) 10 (320) 2 (320) 10 (103)
5 | 1 (123) 6 (012) 7 (132) 7 (120)
6 | 5 (013) 3 (312) 3 (021) 8 (103)
7 | 5 (312) 8 (012) 9 (021) 5 (032)
8 | 7 (013) 6 (213) 0 (321) 0 (103)
9 | 7 (032) 1 (102) 10 (213) 10 (120)
10 | 9 (312) 4 (213) 4 (310) 9 (203)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
3 | 0 0 0 0
4 | 0 0 0 0
5 | 0 0 0 0
6 | 0 0 0 0
7 | 0 0 0 0
8 | 0 0 0 0
9 | 0 0 0 0
10 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 2 3 4
1 | 4 5 6 7 0 8
2 | 2 1 1 4 0 6
3 | 6 8 5 3 7 6
4 | 7 6 1 5 9 1
5 | 7 0 8 8 10 11
6 | 7 8 6 10 3 3
7 | 10 11 4 8 0 11
8 | 10 4 3 0 3 2
9 | 4 11 7 11 5 9
10 | 5 9 1 11 9 7
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 4 5 6 7
2 | 2 0 8 5
3 | 9 10 6 11
4 | 10 12 8 13
5 | 7 14 15 16
6 | 14 11 9 17
7 | 16 18 19 15
8 | 18 17 3 1
9 | 19 4 20 21
10 | 21 13 12 20
1 components
0 boundary components
11 tetrahedra
22 faces
12 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: False
Closed: True
Orientable: False
Connected: True
Fundamental group:
Generators: g0 .. g2
Relations:
g2^-2 g0 g1^-1 g0^-1 g2^2 g0 g1^2 g0^-1 g2 g1^-1 g0^-1
g2^-1 g0 g1^-2 g0^-1 g2^-1 g0 g1 g0^-1 g2^2 g0 g1^2 g0^-1 g2 g1^-2
g2^-2 g0 g1^-2 g0^-1 g2^-1 g0 g1 g0^-1 g2^2 g0 g1^2 g0^-1 g2 g1^-1
H1: Z
H1Bdry: 0
H1Rel: Z
H2: Z_2
H2Z2: 1 Z_2
TV(5, 3): 2.61803
3-sphere: False
Double cover:
Checksum = 386e2eacd3992134c955fd4d10e7fe5c
Ideal to finite:
Result = False
Checksum = a7ec1f51412eb015b5846acf97caa35e
Finite to ideal:
Result = False
Checksum = a7ec1f51412eb015b5846acf97caa35e
Barycentric subdivision:
Checksum = 21e9316754ba830a8b275af2ef9fc128
Dehydration: lpdalaebciijhijjkkkknbxnxrhckje
-------------------------------
Layered solid torus
-------------------------------
Size of the skeleton:
Tetrahedra: 3
Faces: 7
Edges: 5
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | boundary boundary 1 (012) 1 (130)
1 | 0 (023) 0 (312) 2 (013) 2 (120)
2 | 1 (312) 1 (023) 2 (312) 2 (230)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 2 1 3
1 | 1 2 3 3 2 4
2 | 2 4 3 3 4 3
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 2 3 4 5
2 | 5 4 6 6
1 components
1 boundary components
3 tetrahedra
7 faces
5 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: True
Closed: False
Orientable: True
Connected: True
Fundamental group: Z
Generators: g0
Relations:
(none)
H1: Z
H1Bdry: 2 Z
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
0-efficient: False
Splitting surface: True
3-sphere: False
Double cover:
Checksum = a22a31ecaa1076b4d372ad7de1d73b62
Ideal to finite:
Result = False
Checksum = c1ef1d6a96f66f6a35fce3c30185ccb6
Finite to ideal:
Result = True
Checksum = ecf22caff6842258edd3122a4a2c93d6
Barycentric subdivision:
Checksum = f59445c3430b4f560da4ea6baf3a28f5
Dehydration:
-------------------------------
Solid Klein bottle
-------------------------------
Size of the skeleton:
Tetrahedra: 3
Faces: 8
Edges: 7
Vertices: 2
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | boundary 1 (120) boundary 1 (123)
1 | 0 (301) 2 (013) 2 (312) 0 (123)
2 | boundary 1 (013) boundary 1 (230)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 1
1 | 1 0 0 1
2 | 1 0 1 1
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 0 3 4
1 | 2 3 5 0 3 4
2 | 2 6 5 4 3 5
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 1 4 5 3
2 | 6 4 7 5
1 components
1 boundary components
3 tetrahedra
8 faces
7 edges
2 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 0
Valid: True
Ideal: False
Standard: True
Boundary Faces: True
Closed: False
Orientable: False
Connected: True
Fundamental group: Z
Generators: g0
Relations:
(none)
H1: Z
H1Bdry: Z + Z_2
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
0-efficient: False
Splitting surface: True
3-sphere: False
Double cover:
Checksum = a10b1b332eb22191ed584b3158ba78fb
Ideal to finite:
Result = False
Checksum = a6f41af929758e372729fd08c0755acb
Finite to ideal:
Result = True
Checksum = c63735d8a22c7c321fe7274d04db42f6
Barycentric subdivision:
Checksum = dcd6dd20b0362a37fdefb34be69c9aeb
Dehydration:
-------------------------------
Figure eight knot complement
-------------------------------
Size of the skeleton:
Tetrahedra: 2
Faces: 4
Edges: 2
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 1 (210) 1 (031) 1 (231) 1 (302)
1 | 0 (210) 0 (031) 0 (231) 0 (302)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 0 0 1 1
1 | 0 1 0 0 1 1
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 0 1 3 2
1 components
1 boundary components
2 tetrahedra
4 faces
2 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 1
Valid: True
Ideal: True
Standard: True
Boundary Faces: False
Closed: False
Orientable: True
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g0 g1 g0^-1 g1^-1 g0 g1^-1 g0^-1 g1 g0 g1^-1
H1: Z
H1Bdry: 2 Z
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
0-efficient: True
Splitting surface: False
3-sphere: False
Double cover:
Checksum = 96e2fb429e6e46193746d624396af7a8
Ideal to finite:
Result = True
Checksum = 64800e1f108c6bc3bafdde1709c49383
Finite to ideal:
Result = False
Checksum = 08d641e0fe4ff548dbdfb02031e320fc
Barycentric subdivision:
Checksum = 2058c2901ba23d5ea5b551a57df50c59
Dehydration: cabbbbaei
-------------------------------
Whitehead link complement
-------------------------------
Size of the skeleton:
Tetrahedra: 4
Faces: 8
Edges: 4
Vertices: 2
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 3 (320) 1 (012) 2 (301) 3 (310)
1 | 0 (013) 2 (321) 2 (210) 3 (201)
2 | 1 (320) 0 (230) 3 (123) 1 (310)
3 | 1 (231) 0 (321) 0 (210) 2 (023)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 1 1
1 | 0 0 1 1
2 | 1 1 0 0
3 | 1 1 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 1 1 3
1 | 0 2 2 1 2 3
2 | 3 2 1 2 2 0
3 | 3 1 1 2 1 0
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 1 4 5 6
2 | 5 2 7 4
3 | 6 3 0 7
1 components
2 boundary components
4 tetrahedra
8 faces
4 edges
2 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 2
Valid: True
Ideal: True
Standard: True
Boundary Faces: False
Closed: False
Orientable: True
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g0 g1 g0^-1 g1 g0^2 g1 g0^-1 g1^-1 g0 g1^-1 g0^-2 g1^-1
H1: 2 Z
H1Bdry: 4 Z
H1Rel: Z
H2: Z
H2Z2: 1 Z_2
0-efficient: True
Splitting surface: True
3-sphere: False
Double cover:
Checksum = dce3f2c9ebfdb986b1e59522ce9f3920
Ideal to finite:
Result = True
Checksum = 12af1542c0fd3ec32cbee8267270f2a0
Finite to ideal:
Result = False
Checksum = 2fca5a52a127650c59154702e59f4f8a
Barycentric subdivision:
Checksum = 8f74c756bf1222be81833c1e6a587e20
Dehydration: eahbdcddqwwwr
-------------------------------
Gieseking manifold
-------------------------------
Size of the skeleton:
Tetrahedra: 1
Faces: 2
Edges: 1
Vertices: 1
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 0 (031) 0 (021) 0 (213) 0 (203)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 0 0 0 0 0
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 0 1 1
1 components
1 boundary components
1 tetrahedra
2 faces
1 edges
1 vertices
2-sphere boundaries: False
Negative ideal boundaries: False
EC: 1
Valid: True
Ideal: True
Standard: True
Boundary Faces: False
Closed: False
Orientable: False
Connected: True
Fundamental group:
Generators: g0, g1
Relations:
g0^-2 g1 g0 g1^-2
H1: Z
H1Bdry: Z + Z_2
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
0-efficient: True
Splitting surface: False
3-sphere: False
Double cover:
Checksum = c7d244e50cc72e2af6d3336c34cf47f6
Ideal to finite:
Result = True
Checksum = 0c5dc34f8f2280aa37cd0f4aa009fc36
Finite to ideal:
Result = False
Checksum = 8676206277f68c6dfbaf60231699a0ad
Barycentric subdivision:
Checksum = 4d4b1ecc4b6d63622765ce098dca87e1
Dehydration: baaaatl
-------------------------------
Cusped genus two solid torus
-------------------------------
Size of the skeleton:
Tetrahedra: 10
Faces: 20
Edges: 10
Vertices: 2
Tetrahedron gluing:
Tet | glued to: (012) (013) (023) (123)
-----+-------------------------------------------------------
0 | 4 (012) 3 (102) 2 (130) 1 (123)
1 | 2 (012) 9 (012) 7 (012) 0 (123)
2 | 1 (012) 0 (302) 3 (023) 6 (012)
3 | 0 (103) 5 (012) 2 (023) 8 (012)
4 | 0 (012) 5 (103) 6 (023) 6 (013)
5 | 3 (013) 4 (103) 7 (213) 8 (023)
6 | 2 (123) 4 (123) 4 (023) 8 (123)
7 | 1 (023) 9 (123) 9 (023) 5 (203)
8 | 3 (123) 9 (103) 5 (123) 6 (123)
9 | 1 (013) 8 (103) 7 (023) 7 (013)
Vertices:
Tet | vertex: 0 1 2 3
-----+--------------------------
0 | 0 0 0 0
1 | 0 0 0 0
2 | 0 0 0 0
3 | 0 0 0 0
4 | 0 0 0 1
5 | 0 0 0 1
6 | 0 0 0 1
7 | 0 0 0 1
8 | 0 0 0 1
9 | 0 0 0 1
Edges:
Tet | edge: 01 02 03 12 13 23
-----+--------------------------------
0 | 0 1 2 3 4 5
1 | 2 4 6 3 4 5
2 | 2 4 5 3 1 7
3 | 0 4 5 2 8 7
4 | 0 1 9 3 9 9
5 | 0 5 9 8 9 9
6 | 3 1 9 7 9 9
7 | 4 6 9 5 9 9
8 | 2 8 9 7 9 9
9 | 2 6 9 4 9 9
Faces:
Tet | face: 012 013 023 123
-----+------------------------
0 | 0 1 2 3
1 | 4 5 6 3
2 | 4 2 7 8
3 | 1 9 7 10
4 | 0 11 12 13
5 | 9 11 14 15
6 | 8 13 12 16
7 | 6 17 18 14
8 | 10 19 15 16
9 | 5 19 18 17
1 components
1 boundary components
10 tetrahedra
20 faces
10 edges
2 vertices
2-sphere boundaries: False
Negative ideal boundaries: True
EC: 2
Valid: True
Ideal: True
Standard: False
Boundary Faces: False
Closed: False
Orientable: True
Connected: True
Fundamental group: Free (2 generators)
Generators: g0, g1
Relations:
(none)
H1: 2 Z
H1Bdry: 4 Z
H1Rel: 0
H2: 0
H2Z2: 0 Z_2
3-sphere: False
Double cover:
Checksum = 46d5f248b07a98c96b4f08f9df84b874
Ideal to finite:
Result = True
Checksum = efcb1241c7e6fbeabc6633e3ea326ebc
Finite to ideal:
Result = False
Checksum = e3bea259a8e5a0b3814f600e881b2226
Barycentric subdivision:
Checksum = 8c7830a3d1aad0ed641ef19574564f72
Dehydration: kdpahaacdhhjjggiijojuxxjvfojj
|