1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2009, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#ifndef __NMPI_H
#ifndef __DOXYGEN
#define __NMPI_H
#endif
/*! \file nlargeinteger.h
* \brief Deals with arbitrary precision integers.
*/
#include <gmp.h>
#include <iostream>
#include <string>
/**
* \hideinitializer
*
* An internal copy of the GMP signed comparison optimisations.
* This macro should not be used outside this class.
*
* By making our own copy of such optimisation macros we can use
* C++-style casts instead of C-style casts and avoid noisy compiler
* warnings. I'd love a better way of doing this.
*/
#ifdef __GNUC__
#define mpz_cmp_si_cpp(z, si) \
(__builtin_constant_p(si) && (si) == 0 ? mpz_sgn(z) : \
__builtin_constant_p(si) && (si) > 0 ? _mpz_cmp_ui(z, \
static_cast<unsigned long>(si)) : \
_mpz_cmp_si(z, si))
#else
#define mpz_cmp_si_cpp(z, si) _mpz_cmp_si(z, si)
#endif
namespace regina {
/**
* \weakgroup maths
* @{
*/
/**
* Represents an arbitrary precision integer.
* Calculations will be exact no matter how large the integers become.
* Current algorithms and representations use the GNU multiple precision
* arithmetic library.
*
* Infinity is catered for. For comparison operations, infinity is
* considered larger than any other integer but equal to itself.
*
* \testpart
*/
class NLargeInteger {
public:
static const NLargeInteger zero;
/**< Globally available zero. */
static const NLargeInteger one;
/**< Globally available one. */
static const NLargeInteger infinity;
/**< Globally available infinity. */
private:
mpz_t data;
/**< Contains the arbitrarily large integer. If this
* NLargeInteger represents infinity, this member variable
* is ignored. */
bool infinite;
/**< Does this NLargeInteger represent infinity? */
public:
/**
* Initialises this integer to zero.
*/
NLargeInteger();
/**
* Initialises this integer to the given value.
*
* @param value the new value of this integer.
*/
NLargeInteger(long value);
/**
* Initialises this integer to the given value.
*
* @param value the new value of this integer.
*/
NLargeInteger(const NLargeInteger& value);
/**
* Initialises this integer to the given value which is
* represented as a string of digits in a given base.
*
* If not specified, the base defaults to 10.
* If the given base is zero, the base will be automatically
* determined. If the given string begins with \c 0x or \c 0X,
* the base will be assumed to be 16. Otherwise, if the string
* begins with \c 0, the base will be assumed to be 8.
* Otherwise it will be taken as base 10.
*
* Whitespace may be present in the given string and will simply
* be ignored.
*
* Error detection is possible by passing a non-null boolean
* pointer as the third parameter to this constructor.
*
* \pre The given base is zero, or is between 2 and 36 inclusive.
* \pre The given string represents a finite integer
* in the given base, with optional whitespace added.
*
* \ifacespython The final parameter \a valid is not present.
*
* @param value the new value of this integer, represented as a string
* of digits in base \a base.
* @param base the base in which \a value is given.
* @param valid if this pointer is not null, the boolean referenced
* will be set to \c true if the entire given string was a valid
* large integer representation and \c false otherwise.
*/
NLargeInteger(const char* value, int base = 10, bool* valid = 0);
/**
* Initialises this integer to the given value which is
* represented as a string of digits in a given base.
*
* If not specified, the base defaults to 10.
* If the given base is zero, the base will be automatically
* determined. If the given string begins with \c 0x or \c 0X,
* the base will be assumed to be 16. Otherwise, if the string
* begins with \c 0, the base will be assumed to be 8.
* Otherwise it will be taken as base 10.
*
* Whitespace may be present in the given string and will simply
* be ignored.
*
* Error detection is possible by passing a non-null boolean
* pointer as the third parameter to this constructor.
*
* \pre The given base is zero, or is between 2 and 36 inclusive.
* \pre The given string represents a finite integer
* in the given base, with optional whitespace added.
*
* \ifacespython The final parameter \a valid is not present.
*
* @param value the new value of this integer, represented as a string
* of digits in base \a base.
* @param base the base in which \a value is given.
* @param valid if this pointer is not null, the boolean referenced
* will be set to \c true if the entire given string was a valid
* large integer representation and \c false otherwise.
*/
NLargeInteger(const std::string& value, int base = 10,
bool* valid = 0);
/**
* Destroys this integer.
*/
virtual ~NLargeInteger();
/**
* Determines if this large integer is infinity.
*
* @return \c true if and only if this large integer is infinity.
*/
bool isInfinite() const;
/**
* Returns the value of this integer as a long.
* If this integer is outside the range of a long, the result is
* unpredictable.
*
* \pre This integer is not infinity.
*
* @return the value of this integer.
*/
long longValue() const;
/**
* Returns the value of this integer as a string in the given
* base. If not specified, the base defaults to 10.
*
* If this integer is infinity, the string returned will be
* \c inf.
*
* \pre The given base is between 2 and 36 inclusive.
*
* @return the value of this integer as a newly allocated
* string.
*/
std::string stringValue(int base = 10) const;
/**
* Sets this integer to the given value.
*
* @param value the new value of this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator =(const NLargeInteger& value);
/**
* Sets this integer to the given value.
*
* @param value the new value of this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator =(long value);
/**
* Sets this integer to the given value which is
* represented as a string of digits in base 10.
*
* Whitespace may be present in the given string and will simply
* be ignored.
*
* \pre The given string represents an integer
* in base 10, with optional whitespace added.
*
* @param value the new value of this integer, represented as a string
* of digits in base 10.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator =(const char* value);
/**
* Sets this integer to the given value which is
* represented as a string of digits in base 10.
*
* Whitespace may be present in the given string and will simply
* be ignored.
*
* \pre The given string represents an integer
* in base 10, with optional whitespace added.
*
* @param value the new value of this integer, represented as a string
* of digits in base 10.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator =(const std::string& value);
/**
* Swaps the values of this and the given integer.
*
* @param other the integer whose value will be swapped with
* this.
*/
void swap(NLargeInteger& other);
/**
* Determines if this is equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this and the given integer are
* equal.
*/
bool operator ==(const NLargeInteger& compareTo) const;
/**
* Determines if this is equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this and the given integer are
* equal.
*/
bool operator ==(long compareTo) const;
/**
* Determines if this is not equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this and the given integer are
* not equal.
*/
bool operator !=(const NLargeInteger& compareTo) const;
/**
* Determines if this is not equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this and the given integer are
* not equal.
*/
bool operator !=(long compareTo) const;
/**
* Determines if this is less than the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is less than the given
* integer.
*/
bool operator <(const NLargeInteger& compareTo) const;
/**
* Determines if this is less than the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is less than the given
* integer.
*/
bool operator <(long compareTo) const;
/**
* Determines if this is greater than the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is greater than the given
* integer.
*/
bool operator >(const NLargeInteger& compareTo) const;
/**
* Determines if this is greater than the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is greater than the given
* integer.
*/
bool operator >(long compareTo) const;
/**
* Determines if this is less than or equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is less than or equal to
* the given integer.
*/
bool operator <=(const NLargeInteger& compareTo) const;
/**
* Determines if this is less than or equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is less than or equal to
* the given integer.
*/
bool operator <=(long compareTo) const;
/**
* Determines if this is greater than or equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is greater than or equal
* to the given integer.
*/
bool operator >=(const NLargeInteger& compareTo) const;
/**
* Determines if this is greater than or equal to the given integer.
*
* @param compareTo the integer with which this will be compared.
* @return \c true if and only if this is greater than or equal
* to the given integer.
*/
bool operator >=(long compareTo) const;
/**
* Adds this to the given integer and returns the result.
* This integer is not changed.
*
* If either term of the sum is infinite, the result will be
* infinity.
*
* @param other the integer to add to this integer.
* @return the sum \a this plus \a other.
*/
NLargeInteger operator +(const NLargeInteger& other) const;
/**
* Subtracts the given integer from this and returns the result.
* This integer is not changed.
*
* If either term of the difference is infinite, the result will be
* infinity.
*
* @param other the integer to subtract from this integer.
* @return the difference \a this minus \a other.
*/
NLargeInteger operator -(const NLargeInteger& other) const;
/**
* Multiplies this by the given integer and returns the
* result.
* This integer is not changed.
*
* If either factor of the product is infinite, the result will be
* infinity.
*
* @param other the integer to multiply by this integer.
* @return the product \a this times \a other.
*/
NLargeInteger operator *(const NLargeInteger& other) const;
/**
* Divides this by the given integer and returns the result.
* The result will be truncated to an integer, i.e. rounded
* towards zero.
* This integer is not changed.
*
* If \a other is known to divide this integer exactly,
* divExact() should be used instead.
*
* Infinity divided by anything will return infinity; anything
* finite divided by infinity will return zero; anything finite
* divided by zero will return infinity.
*
* For a division routine that always rounds down, see divisionAlg().
*
* @param other the integer to divide this by.
* @return the quotient \a this divided by \a other.
*/
NLargeInteger operator /(const NLargeInteger& other) const;
/**
* Divides this by the given integer and returns the result.
* This can only be used when the given integer divides into
* this exactly, and is much faster than ordinary division.
* This integer is not changed.
*
* \pre The given integer divides exactly into
* this integer, i.e. \a this divided by \a other is an
* integer.
* \pre \a other is not zero.
* \pre Neither this nor \a other is infinite.
*
* @param other the integer to divide this by.
* @return the quotient \a this divided by \a other.
*/
NLargeInteger divExact(const NLargeInteger& other) const;
/**
* Determines the remainder when this integer is divided by the
* given integer. If non-zero, the result will have the same sign
* as this integer.
* This integer is not changed.
*
* For a division routine that always returns a non-negative
* remainder, see divisionAlg().
*
* \pre \a other is not zero.
* \pre Neither this nor \a other is infinite.
*
* @param other the integer to divide this by.
* @return the remainder \a this modulo \a other.
*/
NLargeInteger operator %(const NLargeInteger& other) const;
/**
* Uses the division algorithm to obtain a quotient and
* remainder when dividing by the given integer.
*
* Suppose this integer is \a n and we pass the divisor \a d.
* The <em>division algorithm</em> describes the result of
* dividing \a n by \a d; in particular, it expresses
* <tt>n = qd + r</tt>, where \a q is the quotient and
* \a r is the remainder.
*
* The division algorithm is precise about which values of \a q
* and \a r are chosen; in particular it chooses the unique \a r
* in the range <tt>0 <= r < |d|</tt>.
*
* Note that this differs from other division routines in this
* class, in that it always rounds to give a non-negative remainder.
* Thus NLargeInteger(-7).divisionAlg(3) gives quotient -3 and
* remainder 2, whereas (-7)/3 gives quotient -2 and (-7)\%3 gives
* remainder -1.
*
* The two results are passed back to the caller as follows:
* The quotient \a q is passed back as the return value of the
* function, and the remainder \a r is stored in the reference
* argument \a r.
*
* In the special case where the given divisor is 0 (not
* allowed by the usual division algorithm), this routine selects
* quotient 0 and remainder \a n.
*
* \pre Neither this nor the divisor are infinite.
*
* \ifacespython The argument \a r is missing; instead both
* the quotient and remainder are passed back through the return
* value of the function. Specifically, this function returns a
* (\a q, \a r) pair.
*
* @param divisor the divisor \a d.
* @param remainder used to store the remainder \a r when the
* functon returns. The initial value of this argument is ignored.
* @return the quotient \a q.
*
* @author Ryan Budney, B.B.
*/
NLargeInteger divisionAlg(const NLargeInteger& divisor,
NLargeInteger& remainder) const;
/**
* Determines the negative of this integer.
* This integer is not changed.
*
* Negating infinity will return infinity.
*
* @return the negative of this integer.
*/
NLargeInteger operator -() const;
/**
* Adds the given integer to this.
* This integer is changed to reflect the result.
*
* If either term of the sum is infinite, the result will be
* infinity.
*
* @param other the integer to add to this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator +=(const NLargeInteger& other);
/**
* Adds the given integer to this.
* This integer is changed to reflect the result.
*
* If either term of the sum is infinite, the result will be
* infinity.
*
* @param other the integer to add to this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator +=(long other);
/**
* Subtracts the given integer from this.
* This integer is changed to reflect the result.
*
* If either term of the difference is infinite, the result will be
* infinity.
*
* @param other the integer to subtract from this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator -=(const NLargeInteger& other);
/**
* Subtracts the given integer from this.
* This integer is changed to reflect the result.
*
* If either term of the difference is infinite, the result will be
* infinity.
*
* @param other the integer to subtract from this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator -=(long other);
/**
* Multiplies the given integer by this.
* This integer is changed to reflect the result.
*
* If either factor of the product is infinite, the result will be
* infinity.
*
* @param other the integer to multiply with this integer.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator *=(const NLargeInteger& other);
/**
* Divides this by the given integer.
* The result will be truncated to an integer, i.e. rounded
* towards zero.
* This integer is changed to reflect the result.
*
* If \a other is known to divide this integer exactly,
* divByExact() should be used instead.
*
* Infinity divided by anything will return infinity; anything
* finite divided by infinity will return zero; anything finite
* divided by zero will return infinity.
*
* For a division routine that always rounds down, see divisionAlg().
*
* @param other the integer to divide this by.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator /=(const NLargeInteger& other);
/**
* Divides this by the given integer.
* This can only be used when the given integer divides into
* this exactly, and is much faster than ordinary division.
* This integer is changed to reflect the result.
*
* \pre The given integer divides exactly into
* this integer, i.e. \a this divided by \a other is an
* integer.
* \pre \a other is not zero.
* \pre Neither this nor \a other is infinite.
*
* @param other the integer to divide this by.
* @return a reference to this integer with its new value.
*/
NLargeInteger& divByExact(const NLargeInteger& other);
/**
* Reduces this integer modulo the given integer.
* If non-zero, the result will have the same sign as the original
* value of this integer.
* This integer is changed to reflect the result.
*
* For a mod routine that always returns a non-negative
* remainder, see divisionAlg().
*
* \pre \a other is not zero.
* \pre Neither this nor \a other is infinite.
*
* @param other the integer modulo which this integer will be
* reduced.
* @return a reference to this integer with its new value.
*/
NLargeInteger& operator %=(const NLargeInteger& other);
/**
* Negates this integer.
* This integer is changed to reflect the result.
*
* Negating infinity will result in infinity.
*/
void negate();
/**
* Raises this integer to the power of the given exponent.
* This integer is changed to reflect the result.
*
* Note that 0 to the power of 0 will be 1, infinity to the
* power of 0 will be 1, and infinity to the
* power of anything else will be infinity.
*
* \pre The given exponent is non-negative.
*
* @param exp the power to which this integer will be raised.
*/
void raiseToPower(unsigned long exp);
/**
* Determines the absolute value of this integer.
* This integer is not changed.
*
* @return the absolute value of this integer.
*/
NLargeInteger abs() const;
/**
* Determines the greatest common divisor of this and the given
* integer. This integer is not changed.
*
* Note that the result might possibly be negative. As a
* special case, gcd(0,0) is considered to be zero.
*
* \pre Neither this integer nor \a other is infinite.
*
* @param other the integer whose greatest common divisor with
* this will be found.
* @return the greatest common divisor of this and the given
* integer.
*/
NLargeInteger gcd(const NLargeInteger& other) const;
/**
* Determines the lowest common multiple of this and the given
* integer. This integer is not changed.
*
* Note that the result might possibly be negative.
*
* \pre Neither this integer nor \a other is infinite.
*
* @param other the integer whose lowest common multiple with
* this will be found.
* @return the lowest common multiple of this and the given
* integer.
*/
NLargeInteger lcm(const NLargeInteger& other) const;
/**
* Determines the greatest common divisor of this and the given
* integer and finds the smallest coefficients with which these
* integers combine to give their gcd.
*
* Note that the given integers need not be non-negative.
* However, the gcd returned is guaranteed to be non-negative.
*
* If \a d is the gcd of \a this and \a other, the values placed
* into \a u and \a v will be those for which
* <tt>u*this + v*other = d</tt>,
* <tt>-abs(this)/d < v*sign(other) <= 0</tt> and
* <tt>1 <= u*sign(this) <= abs(other)/d</tt>.
* These equations are not satisfied when either of \a this or
* \a other are zero, but in this case \a u and \a v are both
* 0, 1 or -1, using as many zeros as possible.
*
* \pre Neither this integer nor \a other is infinite.
*
* @param other the integer whose greatest common divisor with
* this will be found.
* @param u a variable into which the final coefficient of
* \a this will be placed.
* @param v a variable into which the final coefficient of
* \a other will be placed.
* @return the greatest common divisor of \a this and \a other.
*/
NLargeInteger gcdWithCoeffs(const NLargeInteger& other,
NLargeInteger& u, NLargeInteger& v) const;
/**
* Returns the Legendre symbol (\a a/\a p), where
* \a a is this integer and \a p is an odd prime.
*
* The Legendre symbol is equal to 0 if this integer
* is divisible by \a p, 1 if this integer is congruent
* to a square mod \a p (but not divisible by \a p),
* and -1 otherwise.
*
* \pre The given integer \a p is an odd positive prime.
*
* @param p the given odd prime.
* @return The Legendre symbol (0, 1 or -1) as described above.
*
* @author Ryan Budney
*/
int legendre(const NLargeInteger& p) const;
private:
/**
* Initialises this integer to infinity.
* All parameters are ignored.
*/
NLargeInteger(bool, bool);
friend class NPrimes;
/**< Allow access to private members. */
friend class NRational;
/**< Allow access to private members. */
friend std::ostream& operator << (std::ostream& out,
const NLargeInteger& large);
};
/**
* Writes the given integer to the given output stream.
*
* @param out the output stream to which to write.
* @param large the integer to write.
* @return a reference to \a out.
*/
std::ostream& operator << (std::ostream& out, const NLargeInteger& large);
/*@}*/
// Inline functions for NLargeInteger
inline NLargeInteger::NLargeInteger() : infinite(false) {
mpz_init(data);
}
inline NLargeInteger::NLargeInteger(long value) : infinite(false) {
mpz_init_set_si(data, value);
}
inline NLargeInteger::NLargeInteger(const NLargeInteger& value) :
infinite(value.infinite) {
mpz_init_set(data, value.data);
}
inline NLargeInteger::NLargeInteger(const char* value, int base, bool* valid) :
infinite(false) {
if (valid)
*valid = (mpz_init_set_str(data, value, base) == 0);
else
mpz_init_set_str(data, value, base);
}
inline NLargeInteger::NLargeInteger(const std::string& value, int base,
bool* valid) : infinite(false) {
if (valid)
*valid = (mpz_init_set_str(data, value.c_str(), base) == 0);
else
mpz_init_set_str(data, value.c_str(), base);
}
inline NLargeInteger::NLargeInteger(bool, bool) : infinite(true) {
// Private constructor.
mpz_init(data);
}
inline NLargeInteger::~NLargeInteger() {
mpz_clear(data);
}
inline bool NLargeInteger::isInfinite() const {
return infinite;
}
inline long NLargeInteger::longValue() const {
return mpz_get_si(data);
}
inline NLargeInteger& NLargeInteger::operator =(const NLargeInteger& value) {
infinite = value.infinite;
mpz_set(data, value.data);
return *this;
}
inline NLargeInteger& NLargeInteger::operator =(long value) {
infinite = false;
mpz_set_si(data, value);
return *this;
}
inline NLargeInteger& NLargeInteger::operator =(const char* value) {
infinite = false;
mpz_set_str(data, value, 10);
return *this;
}
inline NLargeInteger& NLargeInteger::operator =(const std::string& value) {
infinite = false;
mpz_set_str(data, value.c_str(), 10);
return *this;
}
inline void NLargeInteger::swap(NLargeInteger& other) {
NLargeInteger tmp(other);
other = *this;
*this = tmp;
}
inline bool NLargeInteger::operator ==(const NLargeInteger& compareTo) const {
return ((infinite && compareTo.infinite) ||
((! infinite) && (! compareTo.infinite) &&
mpz_cmp(data, compareTo.data) == 0));
}
inline bool NLargeInteger::operator ==(long compareTo) const {
return ((! infinite) && mpz_cmp_si_cpp(data, compareTo) == 0);
}
inline bool NLargeInteger::operator !=(const NLargeInteger& compareTo) const {
return (((! infinite) || (! compareTo.infinite)) &&
(infinite || compareTo.infinite ||
mpz_cmp(data, compareTo.data) != 0));
}
inline bool NLargeInteger::operator !=(long compareTo) const {
return (infinite || mpz_cmp_si_cpp(data, compareTo) != 0);
}
inline bool NLargeInteger::operator <(const NLargeInteger& compareTo) const {
return ((! infinite) &&
(compareTo.infinite || mpz_cmp(data, compareTo.data) < 0));
}
inline bool NLargeInteger::operator <(long compareTo) const {
return ((! infinite) && mpz_cmp_si_cpp(data, compareTo) < 0);
}
inline bool NLargeInteger::operator >(const NLargeInteger& compareTo) const {
return ((! compareTo.infinite) &&
(infinite || mpz_cmp(data, compareTo.data) > 0));
}
inline bool NLargeInteger::operator >(long compareTo) const {
return (infinite || mpz_cmp_si_cpp(data, compareTo) > 0);
}
inline bool NLargeInteger::operator <=(const NLargeInteger& compareTo) const {
return (compareTo.infinite ||
((! infinite) && mpz_cmp(data, compareTo.data) <= 0));
}
inline bool NLargeInteger::operator <=(long compareTo) const {
return ((! infinite) && mpz_cmp_si_cpp(data, compareTo) <= 0);
}
inline bool NLargeInteger::operator >=(const NLargeInteger& compareTo) const {
return (infinite ||
((! compareTo.infinite) && mpz_cmp(data, compareTo.data) >= 0));
}
inline bool NLargeInteger::operator >=(long compareTo) const {
return (infinite || mpz_cmp_si_cpp(data, compareTo) >= 0);
}
inline NLargeInteger NLargeInteger::operator +(const NLargeInteger& other)
const {
if (infinite || other.infinite)
return infinity;
NLargeInteger ans;
mpz_add(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::operator -(const NLargeInteger& other)
const {
if (infinite || other.infinite)
return infinity;
NLargeInteger ans;
mpz_sub(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::operator *(const NLargeInteger& other)
const {
if (infinite || other.infinite)
return infinity;
NLargeInteger ans;
mpz_mul(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::operator /(const NLargeInteger& other)
const {
if (infinite)
return infinity;
if (other.infinite)
return zero;
if (mpz_sgn(other.data) == 0)
return infinity;
NLargeInteger ans;
mpz_tdiv_q(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::divExact(const NLargeInteger& other)
const {
NLargeInteger ans;
mpz_divexact(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::operator %(const NLargeInteger& other)
const {
NLargeInteger ans;
mpz_tdiv_r(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::operator -() const {
if (infinite)
return infinity;
NLargeInteger ans;
mpz_neg(ans.data, data);
return ans;
}
inline NLargeInteger& NLargeInteger::operator +=(const NLargeInteger& other) {
if (! infinite) {
if (other.infinite)
infinite = true;
else
mpz_add(data, data, other.data);
}
return *this;
}
inline NLargeInteger& NLargeInteger::operator +=(long other) {
if (! infinite) {
if (other >= 0)
mpz_add_ui(data, data, other);
else
mpz_sub_ui(data, data, -other);
}
return *this;
}
inline NLargeInteger& NLargeInteger::operator -=(const NLargeInteger& other) {
if (! infinite) {
if (other.infinite)
infinite = true;
else
mpz_sub(data, data, other.data);
}
return *this;
}
inline NLargeInteger& NLargeInteger::operator -=(long other) {
if (! infinite) {
if (other >= 0)
mpz_sub_ui(data, data, other);
else
mpz_add_ui(data, data, -other);
}
return *this;
}
inline NLargeInteger& NLargeInteger::operator *=(const NLargeInteger& other) {
if (! infinite) {
if (other.infinite)
infinite = true;
else
mpz_mul(data, data, other.data);
}
return *this;
}
inline NLargeInteger& NLargeInteger::operator /=(const NLargeInteger& other) {
if (! infinite) {
if (other.infinite)
(*this) = zero;
else if (mpz_sgn(other.data) == 0)
infinite = true;
else
mpz_tdiv_q(data, data, other.data);
}
return *this;
}
inline NLargeInteger& NLargeInteger::divByExact(const NLargeInteger& other) {
mpz_divexact(data, data, other.data);
return *this;
}
inline NLargeInteger& NLargeInteger::operator %=(const NLargeInteger& other) {
mpz_tdiv_r(data, data, other.data);
return *this;
}
inline void NLargeInteger::negate() {
if (! infinite)
mpz_neg(data, data);
}
inline void NLargeInteger::raiseToPower(unsigned long exp) {
if (exp == 0)
(*this) = one;
else if (! infinite)
mpz_pow_ui(data, data, exp);
}
inline NLargeInteger NLargeInteger::abs() const {
if (infinite)
return infinity;
NLargeInteger ans;
mpz_abs(ans.data, data);
return ans;
}
inline NLargeInteger NLargeInteger::gcd(const NLargeInteger& other) const {
NLargeInteger ans;
mpz_gcd(ans.data, data, other.data);
return ans;
}
inline NLargeInteger NLargeInteger::lcm(const NLargeInteger& other) const {
if (mpz_sgn(data) == 0 || mpz_sgn(other.data) == 0)
return zero;
NLargeInteger ans(*this);
ans.divByExact(gcd(other));
ans *= other;
return ans;
}
inline int NLargeInteger::legendre(const NLargeInteger& p) const {
return mpz_legendre(data, p.data);
}
} // namespace regina
#endif
|