File: nlayeredlensspace.cpp

package info (click to toggle)
regina-normal 4.6-1.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 18,696 kB
  • ctags: 8,499
  • sloc: cpp: 71,120; ansic: 12,923; sh: 10,624; perl: 3,294; makefile: 959; python: 188
file content (179 lines) | stat: -rw-r--r-- 6,764 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2009, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "algebra/nabeliangroup.h"
#include "manifold/nlensspace.h"
#include "maths/numbertheory.h"
#include "subcomplex/nlayeredlensspace.h"
#include "triangulation/nedge.h"
#include "triangulation/ncomponent.h"
#include "triangulation/ntetrahedron.h"

namespace regina {

NLayeredLensSpace* NLayeredLensSpace::clone() const {
    NLayeredLensSpace* ans = new NLayeredLensSpace();
    ans->torus = torus->clone();
    ans->mobiusBoundaryGroup = mobiusBoundaryGroup;
    ans->p = p;
    ans->q = q;
    return ans;
}

NLayeredLensSpace* NLayeredLensSpace::isLayeredLensSpace(
        const NComponent* comp) {
    // Basic property check.
    if ((! comp->isClosed()) || (! comp->isOrientable()))
        return 0;
    if (comp->getNumberOfVertices() > 1)
        return 0;

    unsigned long nTet = comp->getNumberOfTetrahedra();
    NLayeredSolidTorus* torus;
    for (unsigned long i = 0; i < nTet; i++) {
        torus = NLayeredSolidTorus::formsLayeredSolidTorusBase(
            comp->getTetrahedron(i));
        if (torus) {
            // We have found a layered solid torus; either this makes the
            // layered lens space or nothing makes the layered lens space.
            NTetrahedron* tet = torus->getTopLevel();
            int tf0 = torus->getTopFace(0);
            int tf1 = torus->getTopFace(1);
            if (tet->adjacentTetrahedron(tf0) != tet) {
                delete torus;
                return 0;
            }

            /* We already know the component is orientable; no need
               to check orientation!
            if (perm.sign() == 1) {
                delete torus;
                return 0;
            }*/

            // This is the real thing!
            NLayeredLensSpace* ans = new NLayeredLensSpace();
            ans->torus = torus;

            NPerm perm = tet->adjacentGluing(tf0);
            if (perm[tf1] == tf0) {
                // Snapped shut.
                ans->mobiusBoundaryGroup = torus->getTopEdgeGroup(
                    5 - NEdge::edgeNumber[tf0][tf1]);
            } else {
                // Twisted shut.
                ans->mobiusBoundaryGroup = torus->getTopEdgeGroup(
                    NEdge::edgeNumber[perm[tf1]][tf0]);
            }

            // Work out p and q.
            switch (ans->mobiusBoundaryGroup) {
                // For layered solid torus (x < y < z):
                case 0:
                    // L( x + 2y, y )
                    ans->p =
                        torus->getMeridinalCuts(1) + torus->getMeridinalCuts(2);
                    ans->q = torus->getMeridinalCuts(1);
                    break;
                case 1:
                    // L( 2x + y, x )
                    ans->p =
                        torus->getMeridinalCuts(0) + torus->getMeridinalCuts(2);
                    ans->q = torus->getMeridinalCuts(0);
                    break;
                case 2:
                    // L( y - x, x )
                    ans->p =
                        torus->getMeridinalCuts(1) - torus->getMeridinalCuts(0);
                    if (ans->p == 0)
                        ans->q = 1;
                    else
                        ans->q = torus->getMeridinalCuts(0) % ans->p;
                    break;
            }

            // Find the nicest possible value for q.
            // Choices are +/- q, +/- 1/q.
            if (ans->p > 0) {
                if (2 * ans->q > ans->p)
                    ans->q = ans->p - ans->q;
                if (ans->q > 0) {
                    unsigned long qAlt = modularInverse(ans->p, ans->q);
                    if (2 * qAlt > ans->p)
                        qAlt = ans->p - qAlt;
                    if (qAlt < ans->q)
                        ans->q = qAlt;
                }
            }

            return ans;
        }
    }
    return 0;
}

NManifold* NLayeredLensSpace::getManifold() const {
    return new NLensSpace(p, q);
}

NAbelianGroup* NLayeredLensSpace::getHomologyH1() const {
    NAbelianGroup* ans = new NAbelianGroup();
    if (p == 0)
        ans->addRank();
    else if (p > 1)
        ans->addTorsionElement(p);
    return ans;
}

std::ostream& NLayeredLensSpace::writeName(std::ostream& out) const {
    if (p == 3 && q == 1) {
        out << "L(3,1)";
        if (torus->getNumberOfTetrahedra() != 2)
            return out;
        else if (isSnapped())
            return out << " (1)";
        else
            return out << " (2)";
    } else
        return out << "L(" << p << ',' << q << ')';
}

std::ostream& NLayeredLensSpace::writeTeXName(std::ostream& out) const {
    if (p == 3 && q == 1) {
        out << "L_{3,1}";
        if (torus->getNumberOfTetrahedra() != 2)
            return out;
        else if (isSnapped())
            return out << "^{(1)}";
        else
            return out << "^{(2)}";
    } else
        return out << "L_{" << p << ',' << q << '}';
}

} // namespace regina