1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2009, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "manifold/nsfs.h"
#include "subcomplex/nsatblockstarter.h"
#include "subcomplex/nsatregion.h"
#include "triangulation/nedge.h"
#include "triangulation/ntetrahedron.h"
#include "utilities/ptrutils.h"
#include <set>
#include <sstream>
namespace regina {
namespace {
/**
* An anonymous inline boolean xor. I'm always afraid to use ^ with
* bool, since I'm never sure if this bitwise operator will do the
* right thing on all platforms.
*/
inline bool regXor(bool a, bool b) {
return ((a && ! b) || (b && ! a));
}
}
NSatRegion::NSatRegion(NSatBlock* starter) :
baseEuler_(1),
baseOrbl_(true),
hasTwist_(false),
twistsMatchOrientation_(true),
shiftedAnnuli_(0),
twistedBlocks_(0),
nBdryAnnuli_(starter->nAnnuli()) {
blocks_.push_back(NSatBlockSpec(starter, false, false));
if (starter->twistedBoundary()) {
hasTwist_ = true;
twistsMatchOrientation_ = false;
twistedBlocks_ = 1;
}
}
NSatRegion::~NSatRegion() {
for (BlockSet::iterator it = blocks_.begin(); it != blocks_.end(); it++)
delete it->block;
}
const NSatAnnulus& NSatRegion::boundaryAnnulus(unsigned long which,
bool& blockRefVert, bool& blockRefHoriz) const {
unsigned ann;
for (BlockSet::const_iterator it = blocks_.begin(); it != blocks_.end();
it++)
for (ann = 0; ann < it->block->nAnnuli(); ann++)
if (! it->block->hasAdjacentBlock(ann)) {
if (which == 0) {
blockRefVert = it->refVert;
blockRefHoriz = it->refHoriz;
return it->block->annulus(ann);
}
which--;
}
// Given the precondition, we should never reach this point.
// TODO: Return junk.
return NSatAnnulus();
}
void NSatRegion::boundaryAnnulus(unsigned long which,
NSatBlock*& block, unsigned& annulus,
bool& blockRefVert, bool& blockRefHoriz) const {
unsigned ann;
for (BlockSet::const_iterator it = blocks_.begin(); it != blocks_.end();
it++)
for (ann = 0; ann < it->block->nAnnuli(); ann++)
if (! it->block->hasAdjacentBlock(ann)) {
if (which == 0) {
block = it->block;
annulus = ann;
blockRefVert = it->refVert;
blockRefHoriz = it->refHoriz;
return;
}
which--;
}
// Given the precondition, we should never reach this point.
}
NSFSpace* NSatRegion::createSFS(long nBoundaries, bool reflect) const {
NSFSpace::classType baseClass;
bool bdry = (nBoundaries || twistedBlocks_);
if (baseOrbl_) {
if (hasTwist_)
baseClass = (bdry ? NSFSpace::bo2 : NSFSpace::o2);
else
baseClass = (bdry ? NSFSpace::bo1 : NSFSpace::o1);
} else if (! hasTwist_)
baseClass = (bdry ? NSFSpace::bn1 : NSFSpace::n1);
else if (twistsMatchOrientation_)
baseClass = (bdry ? NSFSpace::bn2 : NSFSpace::n2);
else {
// In the no-boundary case, we might not be able to distinguish
// between n3 and n4. Just call it n3 for now, and if we discover
// it might have been n4 instead then we call it off and return 0.
baseClass = (bdry ? NSFSpace::bn3 : NSFSpace::n3);
}
// Recall that baseEuler_ assumes that each block contributes a plain
// old disc to the base orbifold (and, in particular, it ignores any
// reflector boundaries arising from twistedBlocks_). This lets us
// calculate genus just by looking at baseEuler_, orientability and
// the number of punctures.
NSFSpace* sfs = new NSFSpace(baseClass,
(baseOrbl_ ? (2 - nBoundaries - baseEuler_) / 2 :
(2 - nBoundaries - baseEuler_)),
nBoundaries /* punctures */, 0 /* twisted */,
0 /* reflectors */, twistedBlocks_ /* twisted */);
for (BlockSet::const_iterator it = blocks_.begin(); it != blocks_.end();
it++)
it->block->adjustSFS(*sfs, ! regXor(reflect,
regXor(it->refVert, it->refHoriz)));
if (shiftedAnnuli_)
sfs->insertFibre(1, reflect ? -shiftedAnnuli_ : shiftedAnnuli_);
if ((sfs->baseGenus() >= 3) &&
(sfs->baseClass() == NSFSpace::n3 ||
sfs->baseClass() == NSFSpace::n4)) {
// Could still be either n3 or n4.
// Shrug, give up.
delete sfs;
return 0;
}
return sfs;
}
bool NSatRegion::expand(NSatBlock::TetList& avoidTets, bool stopIfIncomplete) {
NSatBlockSpec currBlockSpec;
NSatBlock *currBlock, *adjBlock;
unsigned ann, adjAnn;
unsigned long adjPos;
bool adjVert, adjHoriz;
bool currTwisted, currNor;
unsigned annBdryFaces;
// Try to push past the boundary annuli of all blocks present and future.
// We rely on a vector data type for BlockSet here, since this
// will keep the loop doing exactly what it should do even if new
// blocks are added and blockFound.size() increases.
for (unsigned long pos = 0; pos < blocks_.size(); pos++) {
currBlockSpec = blocks_[pos];
currBlock = currBlockSpec.block;
// Run through each boundary annulus for this block.
for (ann = 0; ann < currBlock->nAnnuli(); ann++) {
if (currBlock->hasAdjacentBlock(ann))
continue;
// Do we have one or two boundary faces?
annBdryFaces = currBlock->annulus(ann).meetsBoundary();
if (annBdryFaces == 2) {
// The annulus lies completely on the triangulation
// boundary. Just skip it.
continue;
} else if (annBdryFaces == 1) {
// The annulus lies half on the boundary. No chance of
// extending it from here, but we have no chance of
// filling the entire triangulation.
if (stopIfIncomplete)
return false;
continue;
}
// We can happily jump to the other side, since we know
// there are tetrahedra present.
// Is there a new block there?
if ((adjBlock = NSatBlock::isBlock(
currBlock->annulus(ann).otherSide(), avoidTets))) {
// We found a new adjacent block that we haven't seen before.
// Note that, since the annuli are not horizontally
// reflected, the blocks themselves will be.
currBlock->setAdjacent(ann, adjBlock, 0, false, false);
blocks_.push_back(NSatBlockSpec(adjBlock, false,
! currBlockSpec.refHoriz));
nBdryAnnuli_ = nBdryAnnuli_ + adjBlock->nAnnuli() - 2;
// Note whether the new block has twisted boundary.
if (adjBlock->twistedBoundary()) {
hasTwist_ = true;
twistsMatchOrientation_ = false;
twistedBlocks_++;
}
// On to the next annulus!
continue;
}
// No adjacent block.
// Perhaps it's joined to something we've already seen?
// Only search forwards from this annulus.
if (ann + 1 < currBlock->nAnnuli()) {
adjPos = pos;
adjAnn = ann + 1;
} else {
adjPos = pos + 1;
adjAnn = 0;
}
while (adjPos < blocks_.size()) {
adjBlock = blocks_[adjPos].block;
if ((! adjBlock->hasAdjacentBlock(adjAnn)) &&
currBlock->annulus(ann).isAdjacent(
adjBlock->annulus(adjAnn), &adjVert, &adjHoriz)) {
// They match!
currBlock->setAdjacent(ann, adjBlock, adjAnn,
adjVert, adjHoriz);
nBdryAnnuli_ -= 2;
// See what kinds of inconsistencies this
// rejoining has caused.
currNor = regXor(regXor(currBlockSpec.refHoriz,
blocks_[adjPos].refHoriz), ! adjHoriz);
currTwisted = regXor(regXor(currBlockSpec.refVert,
blocks_[adjPos].refVert), adjVert);
if (currNor)
baseOrbl_ = false;
if (currTwisted)
hasTwist_ = true;
if (regXor(currNor, currTwisted))
twistsMatchOrientation_ = false;
// See if we need to add a (1,1) shift before
// the annuli can be identified.
if (regXor(adjHoriz, adjVert)) {
if (regXor(currBlockSpec.refHoriz,
currBlockSpec.refVert))
shiftedAnnuli_--;
else
shiftedAnnuli_++;
}
break;
}
if (adjAnn + 1 < adjBlock->nAnnuli())
adjAnn++;
else {
adjPos++;
adjAnn = 0;
}
}
// If we found a match, we're done. Move on to the next annulus.
if (adjPos < blocks_.size())
continue;
// We couldn't match the annulus to anything.
if (stopIfIncomplete)
return false;
}
}
// Well, we got as far as we got.
calculateBaseEuler();
return true;
}
long NSatRegion::blockIndex(const NSatBlock* block) const {
BlockSet::const_iterator it;
unsigned long id;
for (id = 0, it = blocks_.begin(); it != blocks_.end(); it++, id++)
if (block == it->block)
return id;
return -1;
}
void NSatRegion::calculateBaseEuler() {
BlockSet::const_iterator it;
unsigned ann;
long faces = blocks_.size();
long edgesBdry = 0;
long edgesInternalDoubled = 0;
for (it = blocks_.begin(); it != blocks_.end(); it++)
for (ann = 0; ann < it->block->nAnnuli(); ann++)
if (it->block->hasAdjacentBlock(ann))
edgesInternalDoubled++;
else
edgesBdry++;
// When counting vertices, don't just count unique edges in the
// triangulation -- we could run into strife with edge identifications
// outside the region. Count the boundary vertices separately (this
// is easy, since it's the same as the number of boundary edges).
std::set<NEdge*> baseVerticesAll;
std::set<NEdge*> baseVerticesBdry;
NSatAnnulus annData;
for (it = blocks_.begin(); it != blocks_.end(); it++)
for (ann = 0; ann < it->block->nAnnuli(); ann++) {
annData = it->block->annulus(ann);
baseVerticesAll.insert(annData.tet[0]->getEdge(
NEdge::edgeNumber[annData.roles[0][0]][annData.roles[0][1]]));
if (! it->block->hasAdjacentBlock(ann)) {
baseVerticesBdry.insert(annData.tet[0]->getEdge(
NEdge::edgeNumber[annData.roles[0][0]][annData.roles[0][1]]));
baseVerticesBdry.insert(annData.tet[1]->getEdge(
NEdge::edgeNumber[annData.roles[1][0]][annData.roles[1][1]]));
}
}
// To summarise what was said above: the internal vertices are
// guaranteed to give distinct elements in the baseVertices sets,
// but the boundary vertices are not. Thus we calculate internal
// vertices via the sets, but boundary vertices via edgesBdry instead.
long vertices = baseVerticesAll.size() - baseVerticesBdry.size()
+ edgesBdry;
baseEuler_ = faces - edgesBdry - (edgesInternalDoubled / 2) + vertices;
}
void NSatRegion::writeBlockAbbrs(std::ostream& out, bool tex) const {
typedef std::multiset<const NSatBlock*, LessDeref<NSatBlock> >
OrderedBlockSet;
OrderedBlockSet blockOrder;
for (BlockSet::const_iterator it = blocks_.begin(); it != blocks_.end();
it++)
blockOrder.insert(it->block);
for (OrderedBlockSet::const_iterator it = blockOrder.begin();
it != blockOrder.end(); it++) {
if (it != blockOrder.begin())
out << ", ";
(*it)->writeAbbr(out, tex);
}
}
void NSatRegion::writeDetail(std::ostream& out, const std::string& title)
const {
out << title << ":\n";
BlockSet::const_iterator it;
unsigned long id, nAnnuli, ann;
bool ref, back;
out << " Blocks:\n";
for (id = 0, it = blocks_.begin(); it != blocks_.end(); it++, id++) {
out << " " << id << ". ";
it->block->writeTextShort(out);
nAnnuli = it->block->nAnnuli();
out << " (" << nAnnuli << (nAnnuli == 1 ? " annulus" : " annuli");
if (it->refVert || it->refHoriz) {
out << ", ";
if (it->refVert && it->refHoriz)
out << "vert./horiz.";
else if (it->refVert)
out << "vert.";
else
out << "horiz.";
out << " reflection";
}
out << ")\n";
}
out << " Adjacencies:\n";
for (id = 0, it = blocks_.begin(); it != blocks_.end(); it++, id++)
for (ann = 0; ann < it->block->nAnnuli(); ann++) {
out << " " << id << '/' << ann << " --> ";
if (! it->block->hasAdjacentBlock(ann))
out << "bdry";
else {
out << blockIndex(it->block->adjacentBlock(ann)) << '/'
<< it->block->adjacentAnnulus(ann);
ref = it->block->adjacentReflected(ann);
back = it->block->adjacentBackwards(ann);
if (ref || back) {
if (ref && back)
out << " (reflected, backwards)";
else if (ref)
out << " (reflected)";
else
out << " (backwards)";
}
}
out << "\n";
}
}
void NSatRegion::writeTextShort(std::ostream& out) const {
unsigned long size = blocks_.size();
out << "Saturated region with " << size <<
(size == 1 ? " block" : " blocks");
}
} // namespace regina
|