File: ntrivialtri.cpp

package info (click to toggle)
regina-normal 4.6-1.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 18,696 kB
  • ctags: 8,499
  • sloc: cpp: 71,120; ansic: 12,923; sh: 10,624; perl: 3,294; makefile: 959; python: 188
file content (210 lines) | stat: -rw-r--r-- 7,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2009, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include <algorithm>
#include "algebra/nabeliangroup.h"
#include "manifold/nhandlebody.h"
#include "manifold/nlensspace.h"
#include "manifold/nsimplesurfacebundle.h"
#include "triangulation/nboundarycomponent.h"
#include "triangulation/ncomponent.h"
#include "triangulation/nedge.h"
#include "triangulation/nface.h"
#include "subcomplex/ntrivialtri.h"

namespace regina {

const int NTrivialTri::N2 = 200;
const int NTrivialTri::N3_1 = 301;
const int NTrivialTri::N3_2 = 302;
const int NTrivialTri::SPHERE_4_VERTEX = 5000;
const int NTrivialTri::BALL_3_VERTEX = 5100;
const int NTrivialTri::BALL_4_VERTEX = 5101;

NTrivialTri* NTrivialTri::isTrivialTriangulation(const NComponent* comp) {
    // Since the triangulations are so small we can use census results
    // to recognise the triangulations by properties alone.

    // Are there any boundary components?
    if (! comp->isClosed()) {
        if (comp->getNumberOfBoundaryComponents() == 1) {
            // We have precisely one boundary component.
            NBoundaryComponent* bc = comp->getBoundaryComponent(0);

            if (! bc->isIdeal()) {
                // The boundary component includes boundary faces.
                // Look for a one-tetrahedron ball.
                if (comp->getNumberOfTetrahedra() == 1) {
                    if (bc->getNumberOfFaces() == 4)
                        return new NTrivialTri(BALL_4_VERTEX);
                    if (bc->getNumberOfFaces() == 2 &&
                            comp->getNumberOfVertices() == 3)
                        return new NTrivialTri(BALL_3_VERTEX);
                }
            }
        }

        // Not recognised.
        return 0;
    }

    // Otherwise we are dealing with a closed component.

    // Before we do our validity check, make sure the number of
    // tetrahedra is in the supported range.
    if (comp->getNumberOfTetrahedra() > 3)
        return 0;

    // Is the triangulation valid?
    // Since the triangulations is closed we know that the vertices are
    // valid; all that remains is to check the edges.
    unsigned long nEdges = comp->getNumberOfEdges();
    unsigned long i;
    for (i = 0; i < nEdges; i++)
        if (! comp->getEdge(i)->isValid())
            return 0;

    // Test for the specific triangulations that we know about.

    if (comp->getNumberOfTetrahedra() == 2) {
        if (comp->isOrientable()) {
            if (comp->getNumberOfVertices() == 4) {
                // There's only one closed valid two-tetrahedron
                // four-vertex orientable triangulation.
                return new NTrivialTri(SPHERE_4_VERTEX);
            }
        } else {
            // There's only one closed valid two-tetrahedron non-orientable
            // triangulation.
            return new NTrivialTri(N2);
        }
        return 0;
    }

    if (comp->getNumberOfTetrahedra() == 3) {
        if (! comp->isOrientable()) {
            // If the triangulation is valid and the edge degrees
            // are 2,4,4,6 then we have N(3,1) or N(3,2).
            // All of the vertices are valid since there are no boundary
            // faces; we thus only need to check the edges.
            if (comp->getNumberOfEdges() != 4)
                return 0;

            int degree[4];
            for (i = 0; i < 4; i++)
                degree[i] = comp->getEdge(i)->getDegree();
            std::sort(degree, degree + 4);

            if (degree[0] == 2 && degree[1] == 4 && degree[2] == 6 &&
                    degree[3] == 6) {
                // We have N(3,1) or N(3,2)!
                // Search for Mobius band faces.
                unsigned long nFaces = comp->getNumberOfFaces();
                for (i = 0; i < nFaces; i++)
                    if (comp->getFace(i)->isMobiusBand())
                        return new NTrivialTri(N3_2);
                return new NTrivialTri(N3_1);
            }
        }
    }

    return 0;
}

NManifold* NTrivialTri::getManifold() const {
    if (type == SPHERE_4_VERTEX)
        return new NLensSpace(1, 0);
    else if (type == BALL_3_VERTEX || type == BALL_4_VERTEX)
        return new NHandlebody(0, true);
    else if (type == N2)
        return new NSimpleSurfaceBundle(NSimpleSurfaceBundle::S2xS1_TWISTED);
    else if (type == N3_1 || type == N3_2)
        return new NSimpleSurfaceBundle(NSimpleSurfaceBundle::RP2xS1);
    return 0;
}

NAbelianGroup* NTrivialTri::getHomologyH1() const {
    NAbelianGroup* ans = new NAbelianGroup();

    if (type == N2)
        ans->addRank();
    else if (type == N3_1 || type == N3_2) {
        ans->addRank();
        ans->addTorsionElement(2);
    }

    return ans;
}

std::ostream& NTrivialTri::writeName(std::ostream& out) const {
    if (type == SPHERE_4_VERTEX)
        out << "S3 (4-vtx)";
    else if (type == BALL_3_VERTEX)
        out << "B3 (3-vtx)";
    else if (type == BALL_4_VERTEX)
        out << "B3 (4-vtx)";
    else if (type == N2)
        out << "N(2)";
    else if (type == N3_1)
        out << "N(3,1)";
    else if (type == N3_2)
        out << "N(3,2)";
    return out;
}
std::ostream& NTrivialTri::writeTeXName(std::ostream& out) const {
    if (type == SPHERE_4_VERTEX)
        out << "S^3_{v=4}";
    else if (type == BALL_3_VERTEX)
        out << "B^3_{v=3}";
    else if (type == BALL_4_VERTEX)
        out << "B^3_{v=4}";
    else if (type == N2)
        out << "N_{2}";
    else if (type == N3_1)
        out << "N_{3,1}";
    else if (type == N3_2)
        out << "N_{3,2}";
    return out;
}
void NTrivialTri::writeTextLong(std::ostream& out) const {
    if (type == SPHERE_4_VERTEX)
        out << "Two-tetrahedron four-vertex 3-sphere";
    else if (type == BALL_3_VERTEX)
        out << "One-tetrahedron three-vertex ball";
    else if (type == BALL_4_VERTEX)
        out << "One-tetrahedron four-vertex ball";
    else if (type == N2)
        out << "Non-orientable triangulation N(2)";
    else if (type == N3_1)
        out << "Non-orientable triangulation N(3,1)";
    else if (type == N3_2)
        out << "Non-orientable triangulation N(3,2)";
}

} // namespace regina