File: spheres.cpp

package info (click to toggle)
regina-normal 4.6-1.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 18,696 kB
  • ctags: 8,499
  • sloc: cpp: 71,120; ansic: 12,923; sh: 10,624; perl: 3,294; makefile: 959; python: 188
file content (154 lines) | stat: -rw-r--r-- 6,649 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2009, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public             *
 *  License along with this program; if not, write to the Free            *
 *  Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,       *
 *  MA 02110-1301, USA.                                                   *
 *                                                                        *
 **************************************************************************/

/* end stub */

#include "surfaces/nnormalsurface.h"
#include "surfaces/nnormalsurfacelist.h"
#include "triangulation/ntriangulation.h"

namespace regina {

NNormalSurface* NNormalSurface::findNonTrivialSphere(NTriangulation* tri) {
    // If the triangulation is already known to be 0-efficient, there
    // are no non-trivial normal 2-spheres.
    if (tri->knowsZeroEfficient())
        if (tri->isZeroEfficient())
            return 0;

    /**
     * See the comments at the beginning of ../triangulation/surfaces.cpp
     * for an explanation of why the following algorithm is correct.
     */

    int coords;
    if ((! tri->hasBoundaryFaces()) && tri->isValid() &&
            (! tri->hasNegativeIdealBoundaryComponents())) {
        // We can guarantee that at least one normal sphere will show up
        // as a vertex surface in quad space, if any exist.
        coords = NNormalSurfaceList::QUAD;
    } else {
        // We have to resort to standard tri-quad coordinates.
        coords = NNormalSurfaceList::STANDARD;
    }

    // Construct the vertex normal surfaces and look for any spheres
    // or 1-sided projective planes.
    NNormalSurfaceList* surfaces = NNormalSurfaceList::enumerate(tri, coords);
    unsigned long nSurfaces = surfaces->getNumberOfSurfaces();

    const NNormalSurface* s;
    NLargeInteger chi;
    for (unsigned long i = 0; i < nSurfaces; i++) {
        s = surfaces->getSurface(i);

        // No need to test for connectedness since these are vertex surfaces.
        if (s->isCompact() && (! s->hasRealBoundary()) &&
                (! s->isVertexLinking())) {
            chi = s->getEulerCharacteristic();
            if (chi == 2 || (chi == 1 && s->isTwoSided().isFalse())) {
                // It's a non-trivial 2-sphere!
                // Clone the surface for our return value.
                NNormalSurface* ans = (chi == 1 ? s->doubleSurface() :
                    s->clone());

                surfaces->makeOrphan();
                delete surfaces;
                return ans;
            }
        }
    }

    // Nothing was found.
    // Therefore there cannot be any non-trivial 2-spheres at all.
    surfaces->makeOrphan();
    delete surfaces;
    return 0;
}

NNormalSurface* NNormalSurface::findVtxOctAlmostNormalSphere(
        NTriangulation* tri, bool quadOct) {
    NNormalSurfaceList* surfaces = NNormalSurfaceList::enumerate(tri, quadOct ?
        NNormalSurfaceList::AN_QUAD_OCT : NNormalSurfaceList::AN_STANDARD);
    unsigned long nSurfaces = surfaces->getNumberOfSurfaces();
    unsigned long nTets = tri->getNumberOfTetrahedra();

    // Note that our surfaces are guaranteed to be in smallest possible
    // integer coordinates.
    // We are also guaranteed at most one non-zero octagonal coordinate.

    // Note that in this search a 1-sided projective plane is no good,
    // since when doubled it gives too many octagonal discs.

    const NNormalSurface* s;
    unsigned long tet;
    int oct;
    NLargeInteger octCoord;
    for (unsigned long i = 0; i < nSurfaces; i++) {
        s = surfaces->getSurface(i);

        // No need to test for connectedness since these are vertex surfaces.
        // No need to test for vertex links since we're about to test
        // for octagons.
        if (s->isCompact() && (! s->hasRealBoundary())) {
            if (s->getEulerCharacteristic() == 2) {
                // Test for the existence of precisely one octagon.
                for (tet = 0; tet < nTets; tet++)
                    for (oct = 0; oct < 3; oct++)
                        if ((octCoord = s->getOctCoord(tet, oct)) > 0) {
                            // We found our one and only non-zero
                            // octagonal coordinate.
                            if (octCoord > 1) {
                                // Too many octagons.  Move along.
                                // Bail out of all our loops.
                                oct = 3;
                                tet = nTets;
                                break;
                            } else {
                                // This is our almost normal 2-sphere!
                                // Clone the surface for our return value.
                                NNormalSurface* ans = s->clone();

                                surfaces->makeOrphan();
                                delete surfaces;
                                return ans;
                            }
                        }
                // Either too many octagons or none at all.
                // On to the next surface.
            }
        }
    }

    // Nothing was found.
    // Therefore there cannot be any non-trivial 2-spheres at all.
    surfaces->makeOrphan();
    delete surfaces;
    return 0;
}

} // namespace regina