1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2009, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <map>
#include <queue>
#include "triangulation/nisomorphism.h"
#include "triangulation/ntriangulation.h"
namespace regina {
std::auto_ptr<NIsomorphism> NTriangulation::isIsomorphicTo(
const NTriangulation& other) const {
std::list<NIsomorphism*> results;
if (findIsomorphisms(other, results, true, true))
return std::auto_ptr<NIsomorphism>(results.front());
else
return std::auto_ptr<NIsomorphism>(0);
}
std::auto_ptr<NIsomorphism> NTriangulation::isContainedIn(
const NTriangulation& other) const {
std::list<NIsomorphism*> results;
if (findIsomorphisms(other, results, false, true))
return std::auto_ptr<NIsomorphism>(results.front());
else
return std::auto_ptr<NIsomorphism>(0);
}
unsigned long NTriangulation::findAllSubcomplexesIn(
const NTriangulation& other, std::list<NIsomorphism*>& results) const {
return findIsomorphisms(other, results, false, false);
}
unsigned long NTriangulation::findIsomorphisms(
const NTriangulation& other, std::list<NIsomorphism*>& results,
bool completeIsomorphism, bool firstOnly) const {
if (! calculatedSkeleton)
calculateSkeleton();
if (! other.calculatedSkeleton)
other.calculateSkeleton();
// Deal with the empty triangulation first.
if (tetrahedra.empty()) {
if (completeIsomorphism && ! other.tetrahedra.empty())
return 0;
results.push_back(new NIsomorphism(0));
return 1;
}
// Basic property checks. Unfortunately, if we allow boundary
// incomplete isomorphisms then we can't test that many properties.
if (completeIsomorphism) {
// Must be boundary complete, 1-to-1 and onto.
// That is, combinatorially the two triangulations must be
// identical.
if (tetrahedra.size() != other.tetrahedra.size())
return 0;
if (faces.size() != other.faces.size())
return 0;
if (edges.size() != other.edges.size())
return 0;
if (vertices.size() != other.vertices.size())
return 0;
if (components.size() != other.components.size())
return 0;
if (boundaryComponents.size() != other.boundaryComponents.size())
return 0;
if (orientable ^ other.orientable)
return 0;
// Test degree sequences and the like.
std::map<unsigned long, unsigned long> map1;
std::map<unsigned long, unsigned long> map2;
std::map<unsigned long, unsigned long>::iterator mapIt;
{
EdgeIterator it;
for (it = edges.begin(); it != edges.end(); it++) {
// Find this degree, or insert it with frequency 0 if it's
// not already present.
mapIt = map1.insert(
std::make_pair((*it)->getNumberOfEmbeddings(), 0)).first;
(*mapIt).second++;
}
for (it = other.edges.begin(); it != other.edges.end(); it++) {
mapIt = map2.insert(
std::make_pair((*it)->getNumberOfEmbeddings(), 0)).first;
(*mapIt).second++;
}
if (! (map1 == map2))
return 0;
map1.clear();
map2.clear();
}
{
VertexIterator it;
for (it = vertices.begin(); it != vertices.end(); it++) {
mapIt = map1.insert(
std::make_pair((*it)->getNumberOfEmbeddings(), 0)).first;
(*mapIt).second++;
}
for (it = other.vertices.begin();
it != other.vertices.end(); it++) {
mapIt = map2.insert(
std::make_pair((*it)->getNumberOfEmbeddings(), 0)).first;
(*mapIt).second++;
}
if (! (map1 == map2))
return 0;
map1.clear();
map2.clear();
}
{
ComponentIterator it;
for (it = components.begin(); it != components.end(); it++) {
mapIt = map1.insert(
std::make_pair((*it)->getNumberOfTetrahedra(), 0)).first;
(*mapIt).second++;
}
for (it = other.components.begin();
it != other.components.end(); it++) {
mapIt = map2.insert(
std::make_pair((*it)->getNumberOfTetrahedra(), 0)).first;
(*mapIt).second++;
}
if (! (map1 == map2))
return 0;
map1.clear();
map2.clear();
}
{
BoundaryComponentIterator it;
for (it = boundaryComponents.begin();
it != boundaryComponents.end(); it++) {
mapIt = map1.insert(
std::make_pair((*it)->getNumberOfFaces(), 0)).first;
(*mapIt).second++;
}
for (it = other.boundaryComponents.begin();
it != other.boundaryComponents.end(); it++) {
mapIt = map2.insert(
std::make_pair((*it)->getNumberOfFaces(), 0)).first;
(*mapIt).second++;
}
if (! (map1 == map2))
return 0;
map1.clear();
map2.clear();
}
} else {
// May be boundary incomplete, and need not be onto.
// Not much we can test for unfortunately.
if (tetrahedra.size() > other.tetrahedra.size())
return 0;
if ((! orientable) && other.orientable)
return 0;
}
// Start searching for the isomorphism.
// From the tests above, we are guaranteed that both triangulations
// have at least one tetrahedron.
unsigned long nResults = 0;
unsigned long nTetrahedra = tetrahedra.size();
unsigned long nDestTetrahedra = other.tetrahedra.size();
unsigned long nComponents = components.size();
unsigned i;
NIsomorphism iso(nTetrahedra);
for (i = 0; i < nTetrahedra; i++)
iso.tetImage(i) = -1;
// Which source component does each destination component correspond to?
long* whichComp = new long[nDestTetrahedra];
std::fill(whichComp, whichComp + nDestTetrahedra, -1);
// The image of the first source tetrahedron of each component. The
// remaining images can be derived by following gluings.
unsigned long* startTet = new unsigned long[nComponents];
std::fill(startTet, startTet + nComponents, 0);
int* startPerm = new int[nComponents];
std::fill(startPerm, startPerm + nComponents, 0);
// The tetrahedra whose neighbours must be processed when filling
// out the current component.
std::queue<long> toProcess;
// Temporary variables.
unsigned long compSize;
NTetrahedron* tet;
NTetrahedron* adj;
NTetrahedron* destTet;
NTetrahedron* destAdj;
unsigned long tetIndex, adjIndex;
unsigned long destTetIndex, destAdjIndex;
NPerm tetPerm, adjPerm;
int face;
bool broken;
long comp = 0;
while (comp >= 0) {
// Continue trying to find a mapping for the current component.
// The next mapping to try is the one that starts with
// startTet[comp] and startPerm[comp].
if (comp == static_cast<long>(nComponents)) {
// We have an isomorphism!!!
results.push_back(new NIsomorphism(iso));
if (firstOnly) {
delete[] whichComp;
delete[] startTet;
delete[] startPerm;
return 1;
} else
nResults++;
// Back down to the previous component, and clear the
// mapping for that previous component so we can make way
// for a new one.
// Since nComponents > 0, we are guaranteed that comp > 0 also.
comp--;
for (i = 0; i < nTetrahedra; i++)
if (iso.tetImage(i) >= 0 &&
whichComp[iso.tetImage(i)] == comp) {
whichComp[iso.tetImage(i)] = -1;
iso.tetImage(i) = -1;
}
startPerm[comp]++;
continue;
}
// Sort out the results of any previous startPerm++.
if (startPerm[comp] == 24) {
// Move on to the next destination tetrahedron.
startTet[comp]++;
startPerm[comp] = 0;
}
// Be sure we're looking at a tetrahedron we can use.
compSize = components[comp]->getNumberOfTetrahedra();
if (completeIsomorphism) {
// Conditions:
// 1) The destination tetrahedron is unused.
// 2) The component sizes match precisely.
while (startTet[comp] < nDestTetrahedra &&
(whichComp[startTet[comp]] >= 0 ||
other.tetrahedra[startTet[comp]]->getComponent()->
getNumberOfTetrahedra() != compSize))
startTet[comp]++;
} else {
// Conditions:
// 1) The destination tetrahedron is unused.
// 2) The destination component is at least as large as
// the source component.
while (startTet[comp] < nDestTetrahedra &&
(whichComp[startTet[comp]] >= 0 ||
other.tetrahedra[startTet[comp]]->getComponent()->
getNumberOfTetrahedra() < compSize))
startTet[comp]++;
}
// Have we run out of possibilities?
if (startTet[comp] == nDestTetrahedra) {
// No more possibilities for filling this component.
// Move back to the previous component, and clear the
// mapping for that previous component.
startTet[comp] = 0;
startPerm[comp] = 0;
comp--;
if (comp >= 0) {
for (i = 0; i < nTetrahedra; i++)
if (iso.tetImage(i) >= 0 &&
whichComp[iso.tetImage(i)] == comp) {
whichComp[iso.tetImage(i)] = -1;
iso.tetImage(i) = -1;
}
startPerm[comp]++;
}
continue;
}
// Try to fill the image of this component based on the selected
// image of its first source tetrahedron.
// Note that there is only one way of doing this (as seen by
// following adjacent tetrahedron gluings). It either works or
// it doesn't.
tetIndex = tetrahedronIndex(components[comp]->getTetrahedron(0));
whichComp[startTet[comp]] = comp;
iso.tetImage(tetIndex) = startTet[comp];
iso.facePerm(tetIndex) = NPerm::S4[startPerm[comp]];
toProcess.push(tetIndex);
broken = false;
while ((! broken) && (! toProcess.empty())) {
tetIndex = toProcess.front();
toProcess.pop();
tet = tetrahedra[tetIndex];
tetPerm = iso.facePerm(tetIndex);
destTetIndex = iso.tetImage(tetIndex);
destTet = other.tetrahedra[destTetIndex];
// If we are after a complete isomorphism, we might as well
// test whether the edge and vertex degrees match.
if (completeIsomorphism && ! compatibleTets(tet, destTet,
tetPerm)) {
broken = true;
break;
}
for (face = 0; face < 4; face++) {
adj = tet->adjacentTetrahedron(face);
if (adj) {
// There is an adjacent source tetrahedron.
// Is there an adjacent destination tetrahedron?
destAdj = destTet->adjacentTetrahedron(tetPerm[face]);
if (! destAdj) {
broken = true;
break;
}
// Work out what the isomorphism *should* say.
adjIndex = tetrahedronIndex(adj);
destAdjIndex = other.tetrahedronIndex(destAdj);
adjPerm =
destTet->adjacentGluing(tetPerm[face]) *
tetPerm *
tet->adjacentGluing(face).inverse();
if (iso.tetImage(adjIndex) >= 0) {
// We've already decided upon an image for this
// source tetrahedron. Does it match?
if (static_cast<long>(destAdjIndex) !=
iso.tetImage(adjIndex) ||
adjPerm != iso.facePerm(adjIndex)) {
broken = true;
break;
}
} else if (whichComp[destAdjIndex] >= 0) {
// We haven't decided upon an image for this
// source tetrahedron but the destination
// tetrahedron has already been used.
broken = true;
break;
} else {
// We haven't seen either the source or the
// destination tetrahedron.
whichComp[destAdjIndex] = comp;
iso.tetImage(adjIndex) = destAdjIndex;
iso.facePerm(adjIndex) = adjPerm;
toProcess.push(adjIndex);
}
} else if (completeIsomorphism) {
// There is no adjacent source tetrahedron, and we
// are after a boundary complete isomorphism.
// There had better be no adjacent destination
// tetrahedron also.
if (destTet->adjacentTetrahedron(tetPerm[face])) {
broken = true;
break;
}
}
}
}
if (! broken) {
// Therefore toProcess is empty.
// The image for this component was successfully filled out.
// Move on to the next component.
comp++;
} else {
// The image for this component was not successfully filled out.
// Undo our partially created image, and then try another
// starting image for this component.
while (! toProcess.empty())
toProcess.pop();
for (i = 0; i < nTetrahedra; i++)
if (iso.tetImage(i) >= 0 &&
whichComp[iso.tetImage(i)] == comp) {
whichComp[iso.tetImage(i)] = -1;
iso.tetImage(i) = -1;
}
startPerm[comp]++;
}
}
// All out of options.
delete[] whichComp;
delete[] startTet;
delete[] startPerm;
return nResults;
}
bool NTriangulation::compatibleTets(NTetrahedron* src, NTetrahedron* dest,
NPerm p) {
for (int edge = 0; edge < 6; edge++) {
if (src->getEdge(edge)->getNumberOfEmbeddings() !=
dest->getEdge(NEdge::edgeNumber[p[NEdge::edgeVertex[edge][0]]]
[p[NEdge::edgeVertex[edge][1]]])
->getNumberOfEmbeddings())
return false;
}
for (int vertex = 0; vertex < 4; vertex++) {
if (src->getVertex(vertex)->getNumberOfEmbeddings() !=
dest->getVertex(p[vertex])->getNumberOfEmbeddings())
return false;
if (src->getVertex(vertex)->getLink() !=
dest->getVertex(p[vertex])->getLink())
return false;
}
return true;
}
} // namespace regina
|