1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2009, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <algorithm>
#include "triangulation/ntriangulation.h"
namespace regina {
namespace {
// Mapping from vertices (0,1,2) of each external face of a new tetrahedron
// to the vertices of this new tetrahedron in a 3-2 move.
// Each new tetrahedron has its vertices numbered so that the corresponding
// face embedding permutation for the internal face is the identity.
// Also, threeTwoVertices[i] refers to face i of the new tetrahedron for
// each i.
const NPerm threeTwoVertices[3] = {
NPerm(3,1,2,0), NPerm(3,2,0,1), NPerm(3,0,1,2)
};
// Mapping from vertices (0,1,2) of each external face of a new tetrahedron
// to the vertices of this new tetrahedron in a 2-3 move.
// Each new tetrahedron has its vertices numbered so that the corresponding
// edge embedding permutation for the internal edge is the identity.
// Also, twoThreeVertices[i] refers to face i of the new tetrahedron for
// each i.
const NPerm twoThreeVertices[2] = {
NPerm(1,2,3,0), NPerm(0,2,3,1)
};
// A helper routine that uses union-find to test whether a graph
// contains cycles. This is used by collapseEdge().
//
// This routine returns true if the given edge connects two distinct
// components of the graph, or false if both endpoints of the edge
// are already in the same component (i.e., a cycle has been created).
bool unionFindInsert(long* parent, long* depth, long vtx1, long vtx2) {
// Find the root of the tree containing vtx1 and vtx2.
long top1, top2;
for (top1 = vtx1; parent[top1] >= 0; top1 = parent[top1])
;
for (top2 = vtx2; parent[top2] >= 0; top2 = parent[top2])
;
// Are both vertices in the same component?
if (top1 == top2)
return false;
// Join the two components.
// Insert the shallower tree beneath the deeper tree.
if (depth[top1] < depth[top2]) {
parent[top1] = top2;
} else {
parent[top2] = top1;
if (depth[top1] == depth[top2])
++depth[top1];
}
return true;
}
}
bool NTriangulation::threeTwoMove(NEdge* e, bool check, bool perform) {
const std::deque<NEdgeEmbedding>& embs = e->getEmbeddings();
if (check) {
if (e->isBoundary() || ! e->isValid())
return false;
if (embs.size() != 3)
return false;
}
// Find the unwanted tetrahedra.
NTetrahedron* oldTet[3];
NPerm oldVertexPerm[3];
stdhash::hash_set<NTetrahedron*, HashPointer> oldTets;
int oldPos = 0;
for (std::deque<NEdgeEmbedding>::const_iterator it = embs.begin();
it != embs.end(); it++) {
oldTet[oldPos] =(*it).getTetrahedron();
if (check)
if (! oldTets.insert(oldTet[oldPos]).second)
return false;
oldVertexPerm[oldPos] = (*it).getVertices();
oldPos++;
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing 3-2 move\n";
#endif
// Perform the move.
ChangeEventBlock block(this);
int oldPos2, newPos, newPos2;
// Allocate the new tetrahedra.
NTetrahedron* newTet[2];
for (newPos = 0; newPos < 2; newPos++)
newTet[newPos] = new NTetrahedron();
// Find the gluings from (0,1,2) of the new tetrahedron faces
// to the vertices of the old tetrahedra.
NPerm gluings[2][3];
for (oldPos = 0; oldPos < 3; oldPos++)
for (newPos = 0; newPos < 2; newPos++)
gluings[newPos][oldPos] = oldVertexPerm[oldPos] *
twoThreeVertices[newPos];
// Find the tetrahedra to which the old tetrahedron faces are glued,
// store the gluings from (0,1,2) of the new tetrahedron faces to the
// vertices of these adjacent tetrahedra, and unjoin the tetrahedra.
NTetrahedron* adjTet[2][3];
int adjFace;
int oldFace;
for (oldPos = 0; oldPos < 3; oldPos++)
for (newPos = 0; newPos < 2; newPos++) {
// Note that gluings[n][o][3] == oldVertexPerm[o][n], since
// twoThreeVertices[i][3] == i.
// oldFace = gluings[newPos][oldPos][3];
oldFace = oldVertexPerm[oldPos][newPos];
adjTet[newPos][oldPos] =
oldTet[oldPos]->adjacentTetrahedron(oldFace);
if (adjTet[newPos][oldPos]) {
for (oldPos2 = 0; oldPos2 < 3; oldPos2++) {
if (adjTet[newPos][oldPos] == oldTet[oldPos2]) {
adjFace = oldTet[oldPos]->adjacentFace(oldFace);
for (newPos2 = 0; newPos2 < 2; newPos2++)
// if (gluings[newPos2][oldPos2][3] == adjFace) {
if (oldVertexPerm[oldPos2][newPos2] == adjFace) {
// Face oldFace of oldTet[oldPos] is glued to
// face adjFace of oldTet[oldPos2] and should be
// glued to face oldPos2 of newTet[newPos2].
if ((oldPos2 < oldPos) ||
(oldPos2 == oldPos &&
newPos2 < newPos)) {
// We've already seen this gluing from
// the other direction and
// gluings[newPos2][oldPos2] has already
// been modified. We'll have to leave
// this gluing to be made from the
// other direction.
adjTet[newPos][oldPos] = 0;
} else {
adjTet[newPos][oldPos] = newTet[newPos2];
gluings[newPos][oldPos] =
threeTwoVertices[oldPos2]
* gluings[newPos2][oldPos2].inverse()
* oldTet[oldPos]->
adjacentGluing(oldFace)
* gluings[newPos][oldPos];
}
break;
}
break;
}
}
if (oldPos2 >= 3)
gluings[newPos][oldPos] =
oldTet[oldPos]->adjacentGluing(oldFace)
* gluings[newPos][oldPos];
oldTet[oldPos]->unjoin(oldFace);
}
}
// Remove the old tetrahedra from the triangulation.
for (oldPos = 0; oldPos < 3; oldPos++)
delete removeTetrahedron(oldTet[oldPos]);
// Insert the new tetrahedra into the triangulation.
for (newPos = 0; newPos < 2; newPos++)
addTetrahedron(newTet[newPos]);
// Glue the faces of the new tetrahedra.
for (oldPos = 0; oldPos < 3; oldPos++)
for (newPos = 0; newPos < 2; newPos++)
if (adjTet[newPos][oldPos])
newTet[newPos]->joinTo(oldPos, adjTet[newPos][oldPos],
gluings[newPos][oldPos] *
threeTwoVertices[oldPos].inverse());
newTet[0]->joinTo(3, newTet[1], NPerm());
// Tidy up.
gluingsHaveChanged();
return true;
}
bool NTriangulation::twoThreeMove(NFace* f, bool check, bool perform) {
if (check) {
if (f->getNumberOfEmbeddings() != 2)
return false;
// We now know that the given face is not on the boundary.
}
// Find the unwanted tetrahedra.
NTetrahedron* oldTet[2];
NPerm oldVertexPerm[2];
int oldPos;
for (oldPos = 0; oldPos < 2; oldPos++) {
oldTet[oldPos] = f->getEmbedding(oldPos).getTetrahedron();
oldVertexPerm[oldPos] = f->getEmbedding(oldPos).getVertices();
}
if (check)
if (oldTet[0] == oldTet[1])
return false;
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing 2-3 move\n";
#endif
// Actually perform the move.
ChangeEventBlock block(this);
int oldPos2, newPos, newPos2;
// Allocate the new tetrahedra.
NTetrahedron* newTet[3];
for (newPos = 0; newPos < 3; newPos++)
newTet[newPos] = new NTetrahedron();
// Find the gluings from (0,1,2) of the new tetrahedron faces
// to the vertices of the old tetrahedra.
NPerm gluings[3][2];
for (oldPos = 0; oldPos < 2; oldPos++)
for (newPos = 0; newPos < 3; newPos++)
gluings[newPos][oldPos] = oldVertexPerm[oldPos] *
threeTwoVertices[newPos];
// Find the tetrahedra to which the old tetrahedron faces are glued,
// store the gluings from (0,1,2) of the new tetrahedron faces to the
// vertices of these adjacent tetrahedra, and unjoin the tetrahedra.
NTetrahedron* adjTet[3][2];
int adjFace;
int oldFace;
for (oldPos = 0; oldPos < 2; oldPos++)
for (newPos = 0; newPos < 3; newPos++) {
// Note that gluings[n][o][3] == oldVertexPerm[o][n], since
// threeTwoVertices[i][3] == i.
// oldFace = gluings[newPos][oldPos][3];
oldFace = oldVertexPerm[oldPos][newPos];
adjTet[newPos][oldPos] =
oldTet[oldPos]->adjacentTetrahedron(oldFace);
if (adjTet[newPos][oldPos]) {
for (oldPos2 = 0; oldPos2 < 2; oldPos2++) {
if (adjTet[newPos][oldPos] == oldTet[oldPos2]) {
adjFace = oldTet[oldPos]->adjacentFace(oldFace);
for (newPos2 = 0; newPos2 < 3; newPos2++)
// if (gluings[newPos2][oldPos2][3] == adjFace) {
if (oldVertexPerm[oldPos2][newPos2] == adjFace) {
// Face oldFace of oldTet[oldPos] is glued to
// face adjFace of oldTet[oldPos2] and should be
// glued to face oldPos2 of newTet[newPos2].
if ((oldPos2 < oldPos) ||
(oldPos2 == oldPos &&
newPos2 < newPos)) {
// We've already seen this gluing from
// the other direction and
// gluings[newPos2][oldPos2] has already
// been modified. We'll have to leave
// this gluing to be made from the
// other direction.
adjTet[newPos][oldPos] = 0;
} else {
adjTet[newPos][oldPos] = newTet[newPos2];
gluings[newPos][oldPos] =
twoThreeVertices[oldPos2]
* gluings[newPos2][oldPos2].inverse()
* oldTet[oldPos]->
adjacentGluing(oldFace)
* gluings[newPos][oldPos];
}
break;
}
break;
}
}
if (oldPos2 >= 2)
gluings[newPos][oldPos] =
oldTet[oldPos]->adjacentGluing(oldFace)
* gluings[newPos][oldPos];
oldTet[oldPos]->unjoin(oldFace);
}
}
// Remove the old tetrahedra from the triangulation.
for (oldPos = 0; oldPos < 2; oldPos++)
delete removeTetrahedron(oldTet[oldPos]);
// Insert the new tetrahedra into the triangulation.
for (newPos = 0; newPos < 3; newPos++)
addTetrahedron(newTet[newPos]);
// Glue the faces of the new tetrahedra.
for (oldPos = 0; oldPos < 2; oldPos++)
for (newPos = 0; newPos < 3; newPos++)
if (adjTet[newPos][oldPos])
newTet[newPos]->joinTo(oldPos, adjTet[newPos][oldPos],
gluings[newPos][oldPos] *
twoThreeVertices[oldPos].inverse());
NPerm internalPerm = NPerm(0,1,3,2);
newTet[0]->joinTo(2, newTet[1], internalPerm);
newTet[1]->joinTo(2, newTet[2], internalPerm);
newTet[2]->joinTo(2, newTet[0], internalPerm);
// Tidy up.
gluingsHaveChanged();
return true;
}
bool NTriangulation::fourFourMove(NEdge* e, int newAxis, bool check,
bool perform) {
const std::deque<NEdgeEmbedding>& embs = e->getEmbeddings();
if (check) {
if (e->isBoundary() || ! e->isValid())
return false;
if (embs.size() != 4)
return false;
}
// Find the unwanted tetrahedra.
NTetrahedron* oldTet[4];
stdhash::hash_set<NTetrahedron*, HashPointer> oldTets;
int oldPos = 0;
for (std::deque<NEdgeEmbedding>::const_iterator it = embs.begin();
it != embs.end(); it++) {
oldTet[oldPos] =(*it).getTetrahedron();
if (check)
if (! oldTets.insert(oldTet[oldPos]).second)
return false;
oldPos++;
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing 4-4 move\n";
#endif
// Perform the 4-4 move as a 2-3 move followed by a 3-2 move.
ChangeEventBlock block(this);
NFace* face23 = (newAxis == 0 ?
oldTet[0]->getFace(embs[0].getVertices()[2]) :
oldTet[1]->getFace(embs[1].getVertices()[2]));
int edge32 = embs[3].getEdge();
twoThreeMove(face23, false, true);
calculateSkeleton();
threeTwoMove(oldTet[3]->getEdge(edge32), false, true);
// Tidy up. Note that gluingsHaveChanged() was already called by
// twoThreeMove() and threeTwoMove().
return true;
}
bool NTriangulation::twoZeroMove(NEdge* e, bool check, bool perform) {
if (check) {
if (e->isBoundary() || ! e->isValid())
return false;
if (e->getNumberOfEmbeddings() != 2)
return false;
}
NTetrahedron* tet[2];
NPerm perm[2];
int i = 0;
for (std::deque<NEdgeEmbedding>::const_iterator it =
e->getEmbeddings().begin(); it != e->getEmbeddings().end(); it++) {
tet[i] = (*it).getTetrahedron();
perm[i] = (*it).getVertices();
i++;
}
if (check)
if (tet[0] == tet[1])
return false;
if (check) {
NEdge* edge[2];
NFace* face[2][2];
// face[i][j] will be on tetrahedron i opposite vertex j of the
// internal edge.
for (i=0; i<2; i++) {
edge[i] = tet[i]->getEdge(
NEdge::edgeNumber[perm[i][2]][perm[i][3]]);
face[i][0] = tet[i]->getFace(perm[i][0]);
face[i][1] = tet[i]->getFace(perm[i][1]);
}
if (edge[0] == edge[1])
return false;
if (edge[0]->isBoundary() && edge[1]->isBoundary())
return false;
if (face[0][0] == face[1][0])
return false;
if (face[0][1] == face[1][1])
return false;
// The cases with two pairs of identified faces and with one
// pair of identified faces plus one pair of boundary faces are
// all covered by the following check.
if (tet[0]->getComponent()->getNumberOfTetrahedra() == 2)
return false;
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing 2-0 move about edge\n";
#endif
// Actually perform the move.
ChangeEventBlock block(this);
// Unglue faces from the doomed tetrahedra and glue them to each
// other.
NPerm crossover = tet[0]->adjacentGluing(perm[0][2]);
NPerm gluing;
NTetrahedron* top;
NTetrahedron* bottom;
int topFace;
for (i=0; i<2; i++) {
top = tet[0]->adjacentTetrahedron(perm[0][i]);
bottom = tet[1]->adjacentTetrahedron(perm[1][i]);
if (! top) {
// Bottom face becomes boundary.
tet[1]->unjoin(perm[1][i]);
} else if (! bottom) {
// Top face becomes boundary.
tet[0]->unjoin(perm[0][i]);
} else {
// Bottom and top faces join.
topFace = tet[0]->adjacentFace(perm[0][i]);
gluing = tet[1]->adjacentGluing(perm[1][i]) *
crossover * top->adjacentGluing(topFace);
tet[0]->unjoin(perm[0][i]);
tet[1]->unjoin(perm[1][i]);
top->joinTo(topFace, bottom, gluing);
}
}
// Finally remove and dispose of the tetrahedra.
delete removeTetrahedron(tet[0]);
delete removeTetrahedron(tet[1]);
// Tidy up.
// Properties have already been cleared in removeTetrahedron().
return true;
}
bool NTriangulation::twoZeroMove(NVertex* v, bool check, bool perform) {
if (check) {
if (v->getLink() != NVertex::SPHERE)
return false;
if (v->getNumberOfEmbeddings() != 2)
return false;
}
NTetrahedron* tet[2];
int vertex[2];
std::vector<NVertexEmbedding>::const_iterator it;
int i = 0;
for (it = v->getEmbeddings().begin(); it != v->getEmbeddings().end();
it++) {
tet[i] = (*it).getTetrahedron();
vertex[i] = (*it).getVertex();
i++;
}
if (check) {
if (tet[0] == tet[1])
return false;
NFace* face[2];
for (i = 0; i < 2; i++)
face[i] = tet[i]->getFace(vertex[i]);
if (face[0] == face[1])
return false;
if (face[0]->isBoundary() && face[1]->isBoundary())
return false;
// Check that the tetrahedra are joined along all three faces.
for (i = 0; i < 4; i++) {
if (i == vertex[0])
continue;
if (tet[0]->adjacentTetrahedron(i) != tet[1])
return false;
}
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing 2-0 move about vertex\n";
#endif
// Actually perform the move.
ChangeEventBlock block(this);
// Unglue faces from the doomed tetrahedra and glue them to each
// other.
NTetrahedron* top = tet[0]->adjacentTetrahedron(vertex[0]);
NTetrahedron* bottom = tet[1]->adjacentTetrahedron(vertex[1]);
if (! top) {
tet[1]->unjoin(vertex[1]);
} else if (! bottom) {
tet[0]->unjoin(vertex[0]);
} else {
NPerm crossover;
if (vertex[0] == 0)
crossover = tet[0]->adjacentGluing(1);
else
crossover = tet[0]->adjacentGluing(0);
int topFace = tet[0]->adjacentFace(vertex[0]);
NPerm gluing = tet[1]->adjacentGluing(vertex[1]) *
crossover * top->adjacentGluing(topFace);
tet[0]->unjoin(vertex[0]);
tet[1]->unjoin(vertex[1]);
top->joinTo(topFace, bottom, gluing);
}
// Finally remove and dispose of the tetrahedra.
delete removeTetrahedron(tet[0]);
delete removeTetrahedron(tet[1]);
// Tidy up.
// Properties have already been cleared in removeTetrahedron().
return true;
}
bool NTriangulation::twoOneMove(NEdge* e, int edgeEnd,
bool check, bool perform) {
// edgeEnd is the end opposite where the action is.
if (check) {
if (e->isBoundary() || ! e->isValid())
return false;
if (e->getNumberOfEmbeddings() != 1)
return false;
}
const NEdgeEmbedding& emb = e->getEmbeddings().front();
NTetrahedron* oldTet = emb.getTetrahedron();
NPerm oldVertices = emb.getVertices();
NTetrahedron* top = oldTet->adjacentTetrahedron(oldVertices[edgeEnd]);
int otherEdgeEnd = 1 - edgeEnd;
if (check) {
if (! top)
return false;
if (oldTet->getVertex(oldVertices[edgeEnd])->isBoundary() &&
oldTet->getVertex(oldVertices[otherEdgeEnd])->isBoundary())
return false;
}
NFace* centreFace = oldTet->getFace(oldVertices[edgeEnd]);
NFace* bottomFace = oldTet->getFace(oldVertices[otherEdgeEnd]);
NPerm bottomToTop =
oldTet->adjacentGluing(oldVertices[edgeEnd]);
int topGlued[2];
NEdge* flatEdge[2];
int i;
for (i=0; i<2; i++) {
topGlued[i] = bottomToTop[oldVertices[i + 2]];
flatEdge[i] = top->getEdge(
NEdge::edgeNumber[topGlued[i]][bottomToTop[oldVertices[edgeEnd]]]);
}
if (check) {
if (centreFace == bottomFace)
return false;
if (flatEdge[0] == flatEdge[1])
return false;
if (flatEdge[0]->isBoundary() && flatEdge[1]->isBoundary())
return false;
// This next test should follow from the two edges being distinct,
// but we'll do it anyway.
if (top->getFace(topGlued[0]) == top->getFace(topGlued[1]))
return false;
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing 2-1 move\n";
#endif
// Go ahead and perform the move.
ChangeEventBlock block(this);
// First glue together the two faces that will be flattened.
NTetrahedron* adjTet[2];
adjTet[0] = top->adjacentTetrahedron(topGlued[0]);
adjTet[1] = top->adjacentTetrahedron(topGlued[1]);
if (! adjTet[0])
top->unjoin(topGlued[1]);
else if (! adjTet[1])
top->unjoin(topGlued[0]);
else {
int adjFace[2];
adjFace[0] = top->adjacentFace(topGlued[0]);
adjFace[1] = top->adjacentFace(topGlued[1]);
NPerm gluing = top->adjacentGluing(topGlued[1])
* NPerm(topGlued[0], topGlued[1])
* adjTet[0]->adjacentGluing(adjFace[0]);
top->unjoin(topGlued[0]);
top->unjoin(topGlued[1]);
adjTet[0]->joinTo(adjFace[0], adjTet[1], gluing);
}
// Now make the new tetrahedron and glue it to itself.
NTetrahedron* newTet = new NTetrahedron();
addTetrahedron(newTet);
newTet->joinTo(2, newTet, NPerm(2,3));
// Glue the new tetrahedron into the remaining structure.
if (oldTet->adjacentTetrahedron(oldVertices[otherEdgeEnd]) == top) {
// The top of the new tetrahedron must be glued to the bottom.
int topFace = bottomToTop[oldVertices[otherEdgeEnd]];
NPerm bottomFacePerm = NPerm(oldVertices[edgeEnd],
oldVertices[otherEdgeEnd], oldVertices[2], oldVertices[3]);
NPerm gluing = bottomFacePerm.inverse() *
top->adjacentGluing(topFace) * bottomToTop *
bottomFacePerm * NPerm(0,1);
top->unjoin(topFace);
newTet->joinTo(0, newTet, gluing);
} else {
int bottomFace = oldVertices[otherEdgeEnd];
int topFace = bottomToTop[bottomFace];
NTetrahedron* adjTop = top->adjacentTetrahedron(topFace);
NTetrahedron* adjBottom = oldTet->adjacentTetrahedron(bottomFace);
NPerm bottomFacePerm = NPerm(oldVertices[edgeEnd],
oldVertices[otherEdgeEnd], oldVertices[2], oldVertices[3]);
if (adjTop) {
NPerm topGluing = top->adjacentGluing(topFace) *
bottomToTop * bottomFacePerm * NPerm(0,1);
top->unjoin(topFace);
newTet->joinTo(0, adjTop, topGluing);
}
if (adjBottom) {
NPerm bottomGluing = oldTet->adjacentGluing(bottomFace) *
bottomFacePerm;
oldTet->unjoin(bottomFace);
newTet->joinTo(1, adjBottom, bottomGluing);
}
}
// Finally remove and dispose of the unwanted tetrahedra.
delete removeTetrahedron(oldTet);
delete removeTetrahedron(top);
// Tidy up.
// Properties have already been cleared in removeTetrahedron().
return true;
}
bool NTriangulation::openBook(NFace* f, bool check, bool perform) {
const NFaceEmbedding& emb = f->getEmbedding(0);
NTetrahedron* tet = emb.getTetrahedron();
NPerm vertices = emb.getVertices();
// Check that the face has exactly two boundary edges.
// Note that this will imply that the face joins two tetrahedra.
if (check) {
int fVertex = -1;
int nBdry = 0;
if (tet->getEdge(NEdge::edgeNumber[vertices[0]][vertices[1]])->
isBoundary())
nBdry++;
else
fVertex = 2;
if (tet->getEdge(NEdge::edgeNumber[vertices[1]][vertices[2]])->
isBoundary())
nBdry++;
else
fVertex = 0;
if (tet->getEdge(NEdge::edgeNumber[vertices[2]][vertices[0]])->
isBoundary())
nBdry++;
else
fVertex = 1;
if (nBdry != 2)
return false;
if (tet->getVertex(vertices[fVertex])->getLink() != NVertex::DISC)
return false;
if (! f->getEdge(fVertex)->isValid())
return false;
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing open book move\n";
#endif
// Actually perform the move.
// Don't bother with a block since this is so simple.
tet->unjoin(emb.getFace());
gluingsHaveChanged();
return true;
}
bool NTriangulation::closeBook(NEdge* e, bool check, bool perform) {
if (check) {
if (! e->isBoundary())
return false;
}
// Find the two faces on either side of edge e.
const NEdgeEmbedding& front = e->getEmbeddings().front();
const NEdgeEmbedding& back = e->getEmbeddings().back();
NTetrahedron* t0 = front.getTetrahedron();
NTetrahedron* t1 = back.getTetrahedron();
NPerm p0 = front.getVertices();
NPerm p1 = back.getVertices();
if (check) {
if (t0->getFace(p0[3]) == t1->getFace(p1[2]))
return false;
if (t0->getVertex(p0[2]) == t1->getVertex(p1[3]))
return false;
if (t0->getVertex(p0[2])->getLink() != NVertex::DISC ||
t1->getVertex(p1[3])->getLink() != NVertex::DISC)
return false;
NEdge* e1 = t0->getEdge(NEdge::edgeNumber[p0[0]][p0[2]]);
NEdge* e2 = t0->getEdge(NEdge::edgeNumber[p0[1]][p0[2]]);
NEdge* f1 = t1->getEdge(NEdge::edgeNumber[p1[0]][p1[3]]);
NEdge* f2 = t1->getEdge(NEdge::edgeNumber[p1[1]][p1[3]]);
if (e1 == f1 || e2 == f2)
return false;
if (e1 == e2 && f1 == f2)
return false;
if (e1 == f2 && f1 == e2)
return false;
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing close book move\n";
#endif
// Actually perform the move.
// Don't bother with a block since this is so simple.
t0->joinTo(p0[3], t1, p1 * NPerm(2, 3) * p0.inverse());
gluingsHaveChanged();
return true;
}
bool NTriangulation::shellBoundary(NTetrahedron* t,
bool check, bool perform) {
// To perform the move we don't even need a skeleton.
if (check) {
if (! calculatedSkeleton)
calculateSkeleton();
int nBdry = 0;
int i, j;
int bdry[4];
for (i=0; i<4; i++)
if (t->getFace(i)->isBoundary())
bdry[nBdry++] = i;
if (nBdry < 1 || nBdry > 3)
return false;
if (nBdry == 1) {
if (t->getVertex(bdry[0])->isBoundary())
return false;
NEdge* internal[3];
j = 0;
for (i = 0; i < 4; ++i)
if (i != bdry[0])
internal[j++] = t->getEdge(NEdge::edgeNumber[bdry[0]][i]);
if (! (internal[0]->isValid() &&
internal[1]->isValid() &&
internal[2]->isValid()))
return false;
if (internal[0] == internal[1] ||
internal[1] == internal[2] ||
internal[2] == internal[0])
return false;
} else if (nBdry == 2) {
i = NEdge::edgeNumber[bdry[0]][bdry[1]];
if (t->getEdge(i)->isBoundary())
return false;
if (! t->getEdge(i)->isValid())
return false;
if (t->adjacentTetrahedron(NEdge::edgeVertex[5 - i][0]) == t)
return false;
}
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing shell boundary move\n";
#endif
// Actually perform the move.
// Don't bother with a block since this is so simple.
removeTetrahedron(t);
return true;
}
bool NTriangulation::collapseEdge(NEdge* e, bool check, bool perform) {
// Find the tetrahedra to remove.
const std::deque<NEdgeEmbedding>& embs = e->getEmbeddings();
std::deque<NEdgeEmbedding>::const_iterator it;
NTetrahedron* tet = 0;
NPerm p;
if (check) {
// CHECK 0: The tetrahedra around the edge must be distinct.
// We check this as follows:
//
// - None of the faces containing edge e must contain e twice.
// We throw this into check 2 below (see point [0a]).
//
// - The only remaining bad case is where a tetrahedron contains
// e as two opposite edges. In this case one can prove that
// we have a bad chain of bigons, which will be picked up in
// check 2 below.
// CHECK 1: Can we collapse the edge to a point (creating bigons and
// pillows with bigon boundaries)?
// The vertices must be distinct.
if (e->getVertex(0) == e->getVertex(1))
return false;
// If both vertices are in the boundary then we must be collapsing a
// boundary edge, and both vertices must have plain old disc links.
// Recall that ideal vertices return isBoundary() == true.
if (e->getVertex(0)->isBoundary() && e->getVertex(1)->isBoundary()) {
if (! e->isBoundary())
return false;
if (e->getVertex(0)->getLink() != NVertex::DISC)
return false;
if (e->getVertex(1)->getLink() != NVertex::DISC)
return false;
}
// CHECK 2: Can we flatten each bigon to an edge (leaving
// triangular pillows behind)?
//
// This is trickier. Even if every individual bigon is okay, we
// don't want a _chain_ of bigons together to crush a sphere or
// projective plane.
//
// The way we do this is as follows. Consider each NEdge* to be
// a vertex of some graph G, and consider each bigon to be an edge
// in this graph G. The vertices at either end of the edge in G
// are the (NEdge*)s that bound the bigon.
//
// We can happily flatten each bigon if and only if the graph G
// contains no cycles. We shall test this using union-find,
// which should have log-linear complexity.
//
// We deal with boundary edges and invalid edges as follows.
// All boundary and/or invalid edges become the *same* vertex in
// the graph G. This means, for instance, that a bigon joining two
// distinct boundary edges is not allowed. Invalid edges are
// included here because each invalid edge contains a projective
// plane cusp at its centre.
//
// If edge e is itself a boundary edge, things become more
// interesting again. In this case, the two *boundary* bigons
// are not subject to the same restrictions -- crushing bigons
// along the boundary does no harm, *unless* the boundary bigon
// edges themselves form a cycle. This is essentially the same
// dilemma as before but one dimension down. We can detect this
// because it implies either:
//
// - two edges of the same bigon are identified, and hence the
// two vertices of edge e are identified (which has already
// been disallowed in check 1 above);
//
// - the four edges of the two boundary bigons are identified in
// pairs, which means the entire boundary component consists
// of the two bigons and nothing else.
//
// What does this mean in a practical sense? If edge e is a
// boundary edge, we:
//
// - verify that the boundary component has more than two faces;
//
// - then ignore both boundary bigons from here onwards.
//
// Quite pleasant to deal with in the end.
if (e->isBoundary())
if (e->getBoundaryComponent()->getNumberOfFaces() == 2)
return false;
{
long nEdges = edges.size();
// The parent of each edge in the union-find tree, or -1 if
// an edge is at the root of a tree.
//
// This array is indexed by edge number in the triangulation.
// Although we might not use many of these edges, it's fast
// and simple. The "unified boundary" is assigned the edge
// number nEdges.
long* parent = new long[nEdges + 1];
std::fill(parent, parent + nEdges + 1, -1);
// The depth of each subtree in the union-find tree.
long* depth = new long[nEdges + 1];
std::fill(depth, depth + nEdges + 1, 0);
NEdge *upper, *lower;
long id1, id2;
// Run through all faces containing e.
it = embs.begin();
for ( ; it != embs.end(); ++it) {
tet = it->getTetrahedron();
p = it->getVertices();
upper = tet->getEdge(NEdge::edgeNumber[p[0]][p[2]]);
lower = tet->getEdge(NEdge::edgeNumber[p[1]][p[2]]);
if (upper == e || lower == e) {
// [0a]: Check 0 fails (see explanation earlier).
delete[] depth;
delete[] parent;
return false;
}
// Now that we've run check 0, skip the first (boundary)
// face if e is a boundary edge. We will skip the
// last boundary face automatically, since for a boundary
// edge there are k+1 faces but only k embeddings.
//
// We do not need to worry about missing check 0 for
// the last boundary face, since if it fails there then
// it must also fail for the first.
if (e->isBoundary() && it == embs.begin())
continue;
id1 = ((upper->isBoundary() || ! upper->isValid()) ?
nEdges : upper->markedIndex());
id2 = ((lower->isBoundary() || ! lower->isValid()) ?
nEdges : lower->markedIndex());
// This bigon joins nodes id1 and id2 in the graph G.
if (! unionFindInsert(parent, depth, id1, id2)) {
delete[] depth;
delete[] parent;
return false;
}
}
// No bad chains of bigons!
delete[] depth;
delete[] parent;
}
// CHECK 3: Can we flatten each triangular pillow to a face?
//
// Again, even if each individual pillow is okay, we don't want
// a chain of pillows together to completely crush away a
// 3-manifold component.
//
// This means no cycles of pillows, and no chains of pillows
// that run from boundary to boundary.
//
// Test this in the same way that we tested edges. It's kind of
// overkill, since each vertex in the corresponding graph G will
// have degree <= 2, but it's fast so we'll do it.
{
long nFaces = faces.size();
// The parent of each face in the union-find tree, or -1 if
// a face is at the root of a tree.
//
// This array is indexed by face number in the triangulation.
// The "unified boundary" is assigned the face number nFaces.
long* parent = new long[nFaces + 1];
std::fill(parent, parent + nFaces + 1, -1);
// The depth of each subtree in the union-find tree.
long* depth = new long[nFaces + 1];
std::fill(depth, depth + nFaces + 1, 0);
NFace *upper, *lower;
long id1, id2;
for (it = embs.begin(); it != embs.end(); ++it) {
tet = it->getTetrahedron();
p = it->getVertices();
upper = tet->getFace(p[0]);
lower = tet->getFace(p[1]);
id1 = (upper->isBoundary() ? nFaces : upper->markedIndex());
id2 = (lower->isBoundary() ? nFaces : lower->markedIndex());
// This pillow joins nodes id1 and id2 in the graph G.
if (! unionFindInsert(parent, depth, id1, id2)) {
delete[] depth;
delete[] parent;
return false;
}
}
// No bad chains of bigons!
delete[] depth;
delete[] parent;
}
}
if (! perform)
return true;
#ifdef DEBUG
std::cerr << "Performing edge collapse move\n";
#endif
// Perform the move.
ChangeEventBlock block(this);
NPerm topPerm, botPerm;
NTetrahedron *top, *bot;
// Clone the edge embeddings because we cannot rely on skeletal
// objects once we start changing the triangulation.
std::deque<NEdgeEmbedding> embClones(embs);
for (it = embClones.begin(); it != embClones.end(); it++) {
tet = (*it).getTetrahedron();
p = (*it).getVertices();
top = tet->adjacentTetrahedron(p[0]);
topPerm = tet->adjacentGluing(p[0]);
bot = tet->adjacentTetrahedron(p[1]);
botPerm = tet->adjacentGluing(p[1]);
tet->isolate();
if (top && bot)
top->joinTo(topPerm[p[0]], bot,
botPerm * NPerm(p[0], p[1]) * topPerm.inverse());
delete removeTetrahedron(tet);
}
return true;
}
void NTriangulation::reorderTetrahedraBFS(bool reverse) {
unsigned n = getNumberOfTetrahedra();
if (n == 0)
return;
ChangeEventBlock block(this);
// Run a breadth-first search over all tetrahedra.
NTetrahedron** ordered = new NTetrahedron*[n];
bool* used = new bool[n];
std::fill(used, used + n, false);
unsigned filled = 0; /* Placed in the ordered array. */
unsigned processed = 0; /* All neighbours placed in the ordered array. */
unsigned nextTet = 0; /* Used to search for connected components. */
unsigned i;
NTetrahedron *tet, *adj;
while (processed < n) {
if (filled == processed) {
// Look for the next connected component.
while (used[nextTet])
++nextTet;
ordered[filled++] = tetrahedra[nextTet];
used[nextTet] = true;
++nextTet;
}
tet = ordered[processed];
// Add all neighbours of tet to the queue.
for (i = 0; i < 4; ++i)
if ((adj = tet->adjacentTetrahedron(i)))
if (! used[adj->markedIndex()]) {
ordered[filled++] = adj;
used[adj->markedIndex()] = true;
}
++processed;
}
// Flush the tetrahedra from the triangulation, and reinsert them in
// the order in which they were found during the breadth-first search.
tetrahedra.clear();
if (reverse) {
for (i = n; i > 0; )
addTetrahedron(ordered[--i]);
} else {
for (i = 0; i < n; )
addTetrahedron(ordered[i++]);
}
delete[] used;
delete[] ordered;
}
} // namespace regina
|