1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2009, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include <algorithm>
#include <cmath>
#include <complex>
#include "regina-config.h"
#include "maths/approx.h"
#include "maths/numbertheory.h"
#include "triangulation/ntriangulation.h"
namespace regina {
namespace {
/**
* Allows calculation of [n]! for arbitrary n.
* Values are cached as they are calculated.
*/
class BracketFactorial {
private:
double* fact;
/**< The cached values [0]!, [1]!, ..., [r-1]! . */
double* inv;
/**< The cached inverses of the values stored in fact[]. */
double angle;
/**< The angle arg(q0). */
unsigned long r;
/**< The integer r, for which 2r * angle is some integer
multiple of 2 * Pi. */
public:
/**
* Precalculate all values [0]!, ..., [r-1]!.
*
* Requires r >= 3.
*/
BracketFactorial(double newAngle, unsigned long newR) :
fact(new double[newR]), inv(new double[newR]),
angle(newAngle), r(newR) {
fact[0] = fact[1] = inv[0] = inv[1] = 1.0;
for (unsigned long i = 2; i < r; i++) {
fact[i] = fact[i - 1] * sin(angle * i) / sin(angle);
inv[i] = inv[i - 1] * sin(angle) / sin(angle * i);
}
}
/**
* Clean up memory.
*/
~BracketFactorial() {
delete[] fact;
delete[] inv;
}
/**
* Calculates the single value [n] (note that there is no
* factorial symbol included).
* These values are individually easy to calculate and so
* are not cached.
*/
double bracket(unsigned long index) const {
if (index == 0 || index == 1)
return 1;
return sin(angle * index) / sin(angle);
}
/**
* Returns the value [index]!.
*/
double operator [] (unsigned long index) const {
return (index < r ? fact[index] : 0.0);
}
/**
* Returns the value [index]! ^ -1.
*
* Requires index < r.
*/
double inverse(unsigned long index) const {
return inv[index];
}
};
/**
* Represents the initial data as described in Section 7 of Turaev
* and Viro's paper.
*/
struct InitialData {
unsigned long r;
/**< The integer r. */
double angle;
/**< The angle arg(q0). */
BracketFactorial fact;
/**< The cached values [n]!. */
double vertexContrib;
/**< The vertex-based contribution to the Turaev-Viro invariant;
this is the inverse square of the distinguished value w. */
InitialData(unsigned long newR, double newAngle) :
r(newR), angle(newAngle), fact(angle, r) {
vertexContrib = 2.0 * sin(angle) * sin(angle) / r;
}
/**
* Determines whether (i/2, j/2, k/2) is an admissible triple.
*/
bool isAdmissible(unsigned long i, unsigned long j,
unsigned long k) const {
return ((i + j + k) % 2 == 0) &&
(i <= j + k) && (j <= i + k) && (k <= i + j) &&
(i + j + k <= 2 * (r - 2));
}
/**
* Determines the face-based contribution to the Turaev-Viro
* invariant. This corresponds to +/- Delta(i/2, j/2, k/2)^2.
*/
std::complex<double> faceContrib(unsigned long i, unsigned long j,
unsigned long k) const {
// By admissibility, (i + j + k) is guaranteed to be even.
std::complex<double> ans =
fact[(i + j - k) / 2] *
fact[(j + k - i) / 2] *
fact[(k + i - j) / 2] *
fact.inverse((i + j + k + 2) / 2);
return ((i + j + k) % 4 == 0 ? ans : -ans);
}
/**
* Determines the edge-based contribution to the Turaev-Viro
* invariant. This corresponds to w(i/2)^2.
*/
std::complex<double> edgeContrib(unsigned long i) const {
return (i % 2 == 0 ? fact.bracket(i + 1) : - fact.bracket(i + 1));
}
/**
* Determines the tetrahedron-based contribution to the Turaev-Viro
* invariant. This combines with the square roots of the face-based
* contributions for the four tetrahedron faces to give the symbol
*
* | i/2 j/2 k/2 |
* | l/2 m/2 n/2 | .
*/
std::complex<double> tetContrib(unsigned long i, unsigned long j,
unsigned long k, unsigned long l, unsigned long m,
unsigned long n) {
std::complex<double> ans = 0.0;
unsigned long minZ = i + j + k;
if (minZ < i + m + n)
minZ = i + m + n;
if (minZ < j + l + n)
minZ = j + l + n;
if (minZ < k + l + m)
minZ = k + l + m;
unsigned long maxZ = i + j + l + m;
if (maxZ > i + k + l + n)
maxZ = i + k + l + n;
if (maxZ > j + k + m + n)
maxZ = j + k + m + n;
double term;
for (unsigned long z = minZ; z <= maxZ; z++) {
if (z % 2 != 0)
continue;
// We are guaranteed that z / 2 is an integer.
term = fact[(z + 2) / 2] *
fact.inverse((z - i - j - k) / 2) *
fact.inverse((z - i - m - n) / 2) *
fact.inverse((z - j - l - n) / 2) *
fact.inverse((z - k - l - m) / 2) *
fact.inverse((i + j + l + m - z) / 2) *
fact.inverse((i + k + l + n - z) / 2) *
fact.inverse((j + k + m + n - z) / 2);
if (z % 4 == 0)
ans += term;
else
ans -= term;
}
return ans;
}
};
}
double NTriangulation::turaevViro(unsigned long r, unsigned long whichRoot)
const {
// Have we already calculated this invariant?
std::pair<unsigned long, unsigned long> tvParams(r, whichRoot);
TuraevViroSet::const_iterator it = turaevViroCache.find(tvParams);
if (it != turaevViroCache.end())
return (*it).second;
// Do some basic parameter checks.
if (r < 3)
return 0;
if (whichRoot >= 2 * r)
return 0;
if (gcd(r, whichRoot) > 1)
return 0;
// Set up our initial data.
double angle = (M_PI * whichRoot) / r;
InitialData init(r, angle);
// Run through all admissible colourings.
std::complex<double> ans = 0.0;
unsigned long nEdges = getNumberOfEdges();
unsigned long nFaces = getNumberOfFaces();
unsigned long* colour = new unsigned long[nEdges];
std::fill(colour, colour + nEdges, 0);
long curr = 0;
std::complex<double> valColour;
bool admissible;
std::deque<NEdgeEmbedding>::const_iterator embit;
long index1, index2;
unsigned long i;
while (curr >= 0) {
// Have we found an admissible colouring?
if (curr >= static_cast<long>(nEdges)) {
// Increment ans appropriately.
valColour = 1.0;
for (i = 0; i < vertices.size(); i++)
valColour *= init.vertexContrib;
for (i = 0; i < nEdges; i++)
valColour *= init.edgeContrib(colour[i]);
for (i = 0; i < nFaces; i++)
valColour *= init.faceContrib(
colour[edgeIndex(faces[i]->getEdge(0))],
colour[edgeIndex(faces[i]->getEdge(1))],
colour[edgeIndex(faces[i]->getEdge(2))]);
for (i = 0; i < tetrahedra.size(); i++)
valColour *= init.tetContrib(
colour[edgeIndex(tetrahedra[i]->getEdge(0))],
colour[edgeIndex(tetrahedra[i]->getEdge(1))],
colour[edgeIndex(tetrahedra[i]->getEdge(3))],
colour[edgeIndex(tetrahedra[i]->getEdge(5))],
colour[edgeIndex(tetrahedra[i]->getEdge(4))],
colour[edgeIndex(tetrahedra[i]->getEdge(2))]
);
ans += valColour;
// Step back down one level.
curr--;
if (curr >= 0)
colour[curr]++;
continue;
}
// Have we run out of values to try at this level?
if (colour[curr] > r - 2) {
colour[curr] = 0;
curr--;
if (curr >= 0)
colour[curr]++;
continue;
}
// Does the current value for colour[curr] preserve admissibility?
admissible = true;
const std::deque<NEdgeEmbedding>& embs(edges[curr]->getEmbeddings());
for (embit = embs.begin(); embit != embs.end(); embit++) {
index1 = edgeIndex((*embit).getTetrahedron()->getEdge(
NEdge::edgeNumber[(*embit).getVertices()[0]]
[(*embit).getVertices()[2]]));
index2 = edgeIndex((*embit).getTetrahedron()->getEdge(
NEdge::edgeNumber[(*embit).getVertices()[1]]
[(*embit).getVertices()[2]]));
if (index1 <= curr && index2 <= curr) {
// We've decided upon colours for all three edges of
// this face containing the current edge.
if (! init.isAdmissible(colour[index1], colour[index2],
colour[curr])) {
admissible = false;
break;
}
}
}
// Use the current value for colour[curr] if appropriate;
// otherwise step forwards to the next value.
if (admissible)
curr++;
else
colour[curr]++;
}
delete[] colour;
if (isNonZero(ans.imag())) {
// This should never happen, since the Turaev-Viro invariant is the
// square of the modulus of the Witten invariant for sl_2.
std::cerr <<
"WARNING: The Turaev-Viro invariant has an imaginary component.\n"
" This should never happen.\n"
" Please report this (along with the 3-manifold that"
" was used) to " << PACKAGE_BUGREPORT << "." << std::endl;
}
turaevViroCache[tvParams] = ans.real();
return ans.real();
}
} // namespace regina
|