File: sample-misc.rga

package info (click to toggle)
regina-normal 4.6-1.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 18,696 kB
  • ctags: 8,499
  • sloc: cpp: 71,120; ansic: 12,923; sh: 10,624; perl: 3,294; makefile: 959; python: 188
file content (1134 lines) | stat: -rw-r--r-- 66,088 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
<?xml version="1.0"?>
<reginadata engine="4.6">
<packet label="Container"
	type="Container" typeid="1"
	parent="">
<packet label="Sample Data File"
	type="Text" typeid="2"
	parent="Container">
  <text>In this file you will find some sample packets that illustrate the objects with
which Regina can work.</text>
</packet> <!-- Sample Data File (Text) -->
<packet label="LaTeX Document"
	type="PDF" typeid="10"
	parent="Container">
  <pdf encoding="base64">
JVBERi0xLjMKJcfsj6IKNSAwIG9iago8PC9MZW5ndGggNiAwIFIvRmlsdGVyIC9GbGF0ZURlY29k
ZT4+CnN0cmVhbQp4nL19W7Ndx3GeHxMkP+LoKRsqYXvuFz/ZKst2pZxYllBlpyQ9UMAhKRsAJZII
rX+f/vrrnjVrn32oi8kUi4WNxlpz7dvX3TPrdw/hGh8C/rM/37x/8Zc/6w+fffUiPPy9/P/Zi9+9
iPrAg/3x5v3Dj1/LQ/MhlmsuLT28/vQFX44PKbVrS/Oh13BNczy8fv/iF5d/eTnztZWeL48vpZ/c
RymXd/IzjNhGrZc3X7x8Jc+nEfK8vJd/SKX1OuTxV7mX62z98rVSY6v58gWo9ZpzvfxM32tjjGht
t1jy5bOtud9oPzkP6f4DHmk593j5BI/EHmIflx/gkTprS+VXr/+nTC3Ghym9plYwt1exxGsd4+FV
btIUZvVWZvU3aGyOMtvlq5evShzXWqYMLlyL9CA/PwV1XkfoHGcsYcrvx8+ORzC4UmIM8fLhEz5e
pb1yPHE9nqh3qVGpZfZ6+ZG0UNI1jnT5/cs0rinKGm4D+sgeYmyXN58c5A9CTrICWQbxBd4rdZTL
N5xTG7Jr75Wax7j8+uWr1K+zYx5vrblcLj+V1rIsfk+Xv8VUM7avXP6OTxQhv/1C36w5xcubj9jj
kqKM+vL4AY2HmIruccktcT3lvXp5yxXKtabLl2i5hDhmujy+WQ+/O574va14ypftvQ9f6ZByTr3t
9LePNgGZzO16xTRlvb60LSnRdzDFnH0H9Zk7O9gubz85Hljj/OQlmKuEeu21i7AoE/33d8f7j/s4
r/Ya3nnlL72K8Tpr4quvdQ1TDPPy+TYKaUSauLbcL1zlkITdH/f91kfKtcpWrNF9/snBR1+ziS6i
8Rwf4X3ZiFs+Alk6PHZbtvD53bZeyjO9fMn2Wuy+oDLOr48HPrEGRPa/0R7yLH3fkGNyNrJ4Zqht
7JtM7my2PbFNwvYpjNQuf7W6w0795PWLf4bCLBOS8yDCk2QnHt4fFFlhUN69kF1pz1DsrXcvPn/x
Lw8fXoQrlEyYD09/fPmZaN7fvIgtiYaKD62Xfk0D/TVhlaEU2agpbcUW0nVOUMK1NVDqlNVNQhG9
lqpShvwqoMjbpPR+HU0oqetfmyjGjL/GqxGSrJAQYhW1oJQqullm0YNIohLKuGZ0E7INpUJLSTdt
NlEfSsn6ehNVLpaClKBDaSNYT0ksQRVCT9fO8SdYrdZaEZFXQtT2WqtNlAcp0pMMX6wPlzRWGVZA
T3n6pEW6sDAtY7NJEbYCJSUxDKTIL5lDi/ma7BmMq7VQhC1AKBOa56GJAr+GQsrQxapDdiWdKD2g
uf2tJs31reFaIet731i1NvfxiTbFyLc51CT/YuMbmHGrYqVD3tcCbw++JZsmLbYyIc2kTDBHK6PY
JLDsYK3SYe1JmaLghSLr7nslv2RrSpUtIkWYDExQSgVLK6VdK54RZhvcvir8IDMtMC58psFsgyIb
G0lRhm5Fxt5IwThkXtCJle0MYVahZCyusfHEYgol+aLOjkUVL8Cm1QJsOSjCyPqSeA5XWYvc25Xy
gqVMIAiHk4LlxjtNbL3uXsOWKKXYRsgO6H6KI3KdOmDhq6vwca7CbzpekUAVmSxcyjmJE4QdEYr8
CykYr1LyNWjDPQaVmSx8wTl14c6p7Yg+0PXrIkU9klJ0ml1kb+pbQf8qo+r59ID6V6dGZI26vpJE
Y4IyhCNr5mCqstIQMYBIY8DUEyNVZZxcu4nMyGIA+j5xUVriC3BtCimy4ZXLx/0ePWJphSL7roSR
IOO5w59UwrQl7zIEXYcp8pH3nZvCLDpeUR2Dj8hSNd1/Ga/Oe8peZqUMaqkpWwk+z+KrctpiaZWr
wVdBhysuoe5KkR4LG+7cgxK6KaU5suqXg2MnWxRK57RTgASCzRN5LwVZT2xTEaOpL4kRLcqfRcZZ
+AwsGIRD1lXNRRDVrnIo7mnnS9VkVWQtJqW0wr5le5WPUpB1m5GyGjgaGXFTimwYn5E1HpiDbI9K
r3gZSTezNN14UCKlrrRKYUhRbELA6sjeqQ4SZylwvcRqqAiJ/YSrDW0SqLNhUbEIQqFFESM9VRjE
axSvWykyHF2LRUkwJds70gqUwdYsgEjp7HrqYFIeVEkivVzjJIsCCS+tkYvlJds8mVRgT5APpSTK
h8CKrrx/LI64edyZOsgWKcviwBAVsYUcT5a9rpiVyFAjJfuyB1rOlIsqVNm+ARUHiryvLa8NzTIy
1auZOjMBCsEsggsSmxFtos3kYY5FnhW6W3WvGqtURP2B/Ys6UEoR7oQUidtKm5ygl2H6l35ORWzm
UMZt0MqgiDbSlsmuoDQKFpg76zIL8COniFavusxFRpjQl1ibxL7EaOqiCuRQKyN70zEylRplnRrH
dexSpHZo7k/I8HSv5MlOSlVDchgUoUz1i47hwaXRPYeh08VRn2fu0gi/CIr1WByBi2R2Ubn6SBOW
LFgtGUQlJQayrezVTKR0soXwfOIzMDJmOXVp4ITQuAZbGtGFxoHOpdIHealnW4oGuA2rHaDMldDU
DBWoN10KcWbUQxAH1vhE3C/zByr0HCjC7Jg4fIbJ8Q2AXPgVBbZaKRXcIL5HprckFApslWFxcZr4
E3A9YAuNMNBpg7dY6esGYZwKTyjZPLsY5gZbTk3RhUPVm4p0GoXQ1VI1sUYhkjKVjRr+7E6BfWvC
AWGeKNAH7fRWNlsglAGz27Cu6qdp5xAhWQksEUcHiykU4EGfgTqJou5ssWyWAn59p2QhujqxxXdz
BnVf2kzWMhYUU++wsoXbQJWo4xqkZFW/QAiFfQk3TPXLC9ZRt3zCf1mue4Irgml14UjKlDCe6v4u
6qTsvNVFK9HKNBF2NCvsF7jfSeGCUBQaKBdHLFzron2puJz3e+/Uxy4dXaw3RV6RBXoS7Vl2Ieuy
EKnugthFF3Ab1CkWPBSC8QDkGUw8ZDe4ehVqTynDJRMyKqs3ZJgUsgrDFEHR3VDlMtkOlZ4qoKmL
NTQSQiXV1SaPlEzPF3EwwPojFXpPSe2EvtWsL+j3qJRunF7E5IlrIJRhG+OKdaRJpwaBLVXioNB0
wr0NJwockzr2tzJ8o8SWyRW50wSjd/J/5kY2+GfdrIwaY8yCZmiqIA5ZJBqUpMpJ1maaO5DlV8B4
ZZQ6gRyIAOAGqi+/TOCIwUxXEq0A7TdgafiMsHVWSrJFF96HSu+ikiYtqVhQZTbOFRSxhcoUosi6
2fGu4+/itphFltVXtu7DRpxkpAAAXeSGayWekCqybv6MMCiMb4dHp0sXodfQde02pyhi3JWivg8o
IgNYCHjVZL8IPQtCNmsSBWjWsgtdzFSzcM4zOze3qItvx9FF4bEBicfaKyGapKZmAhRF/RWg6JRN
3QSwLDpPiqaVEq/6UrCe4NpF1RuTOxdEw2vXCO2Zh9ioJYQS+ZJsgiqkg0J7tb8FU9v2hrOKKrqm
wxP0hWNokXK6DT9QTjuQA53pSTntwr3EIpMevKxUoHshDndQfb7WTpzywHZEnxOnTRlu1LhGZ+/i
7Y/zrohL2ZU9O2K7ildmNJYo2RDhFBmED9kFxE7ilUkDiThLN3xSsPNCmQZih1g0VY9iOxhgAMqZ
hVo2EOYU5VShFIqLoCX167rwE59I6usqOzK+AA2nLCHb04ndhIk1WiOaX7dFsBv9TqhvdUIE8XWy
Ncago8EoIPDAgpnQEqGQQora64g9UXtzPCNwJped0qat8uqrDZO6NR6HuhizNqxeSOM8K4E44hyF
S0FcK2DKJmpyF+EUacPFnPlPf/giPuA/BMBgXKO6ChWChuCXKAsA9QqDTHAvG6emGW4HpxgCDfoK
4MDBgMpt+LNx0kVjFsvBUMwNmYMNJAIEa0KZH5EhX85GUGIoPOgz1UF2JYhoUFR8RuRQY2LRkC9s
J3jtIMzIORzvyPx639uFtiVB/xYVtOjYGIWBUi/aaKJWXsAdMwrGirTvx6xHHiqYx8oMCMlp9Rzc
I8xoYQPuqOzCJHgRylQRO0JkQ/CpxrbEC5gmLJ2RLHiV7N1iAnAhKLyjF3quWCKLGxDP1D49TtDV
IRBKtdUa8m/al7ucSoFwVLFD/UyoFhBbzbTo0/KuZAvTeTju7wolqP+I0Kctj2wvIhBVXDDTASIK
CW8Ju3B8kAl0BUjBOSAoA0IgSJNF1kCdeHbNJ54JKWpKFtkYmRZf8dLYdQnCfZ0Nx8olFTborlyC
RguD77AFfYDDhnFbpufveEFYtFLOgqsxmGD144P9VSFfQwiTLACDqywggkiWhDOaTwSZ0kx8yeRH
zCL7MTdV5ZD9uNZwWa2hWZAK8gxeRySUPAGZH4OzZJyyQWfgLZEQmgpFM9gWkTJyiTroGLLITqZa
EzWrvafk8TrxZhF5qSJNFiw01QeUGkwZRkW0iNrS5ACBQc1WccMtoCjcD3iK+CnNCRx9aCUwDqO2
rVWym0icKdWicYwqAhfriYLYY/SXdN2F1S0MKV1RZJLZXwWEKjLdrC2GnA2WMaoHJKJbgUVJPnXl
tzFcpQM0Ngq1gghR1wnRJYVvXWH2ezrPquDgpD1YoCArIZpnB0Crj8jIzAcfjOJg9Iy1FNlCVeTS
HFGgBsyhtlsyB0aD4Y3oLVg0oVDJ1WrOHbIJ2AzApkCUgM2Ekoa1NiTBkAOAFLEaYHDWBEPwdvSv
uXnoIA/1nRA8bvYKwxQKtfiKvAz3rwmwOBNE99+8FItFgtBw02cCdx09U93D1+W8EZgfm1JWdATP
Y5lGmRM9bGSDGNRRsA9C8BAJwieZGpjRIqiSpGyQvRmDVNDAdNRVNkFoNgfNfoAvgGaJhKYaTaFE
Q7FAXUE18DTP0XmgAvGSAic2blo6ITaioiX8bhhLPA7s7xFxQJyNuj1auAMhM9XSrttTIdbbKZEx
f7RDzimihJJRLG5nyKwi2GrILFPRUHjfMUzHeXWPCDZm+5ALYmQiw7Orm0SmTB/yMGKC3jQyKZRh
0Yuc6RdCRhnpRK5zqtQW48ksu17ilokSlNc5QjezQmE4eZlioUSu82webDQkCJNuLcdG9ydkR5zC
oSpr7iwIxT2ZsBBlpKy5iySUoKkoRG64X6CkuiXhNso0/vE4axMpZOwOfamrkvt6KzPiUoJFCHJk
dALxnma9I6YuhGYBeUxUk41lGlb1AO6hHnKqFK5aTDnlTJspu+NgG6lVLEYLhipzYcIUaSGyc6ZX
26DpbXng9CvFA5mZ0Reoxp2bVi40IbPRTb3aPog8l8ZoFKMDhVETobQVd8jcPaFY3AF5kXGiIMJy
eqkG5kK9YVHvssShiZx88yI9/NsLFgr97O8PsIGkZlbfHF69sisp6gsH9WvLdAiFpLWGPEVh0KDB
J4DvAWVvMEaYABHZmR0NJYvmi5s82QxdcqF4xhtxPU05IkE4zCXgX7P5A5lJgvVAE5HR3KY0kqJb
f47Fm9W4ad+7djt+DA8coJHeNQMx+1ebZKVhLwx5Lk8IOWpV1svj8hQktK1BrKQRiCPN67UAm7sS
NaCmQVxLOMZEvQLHSgn0kdT3ZJ4cnn1XL4NxoQjoRA/WfdrKkTdk/JnrBARTzeOaUCiakN68DOiX
EnefAjHecHL5YXqw6JVVExsFWuX00oF9QKFdLebioHOGetM1+fhUbo7kPxPDS/IjwsvgWEh1slQx
lflyJ9ZqURoj4JVqMy9VaFh6KKEZzCnHLkG5dsS+uJGZ4ZyYN9ir0QZRK+Z4ls4oKmID7Mmyy1tV
B1CIIuxg2yQuDiG3++TOeb1W59dFYbTh5y9+8QB/JQtjon6qSNu/Wr/e3r4AhN1UKexNOrA/um0s
FVlxEGirlI7ws7qO0LIIwkSTLUWqW0lKGx668ZIUhM4ro0TFhLYpeEFsiaAcsYm6haci1r0Vlqk4
OqgMJMXguEN2VRdX/sXCIB708NB8xPuqmRF6YcuRTg1wA334FSMY2eCWh1OaGO1iFHNIzfeNmF6v
VPnZVF7RtBkMhREGXc06HH+JLVHTBp3KZsDHZedn6NuQyfKsHkHsQU2FS0VH1lPtajUQhGAEPBoE
/w06NU3MHZkVpfS5+ajgol+J3n/75P33jEOp0XjaYgpWsoKEwuh72Q0SCmqxlkgj6qshD8/nHGER
d6eFMs3lDjdhEffBtYCBa5A9tJfoarVc6QZHBNrjpC8f+YyVNCzv/oiD5FX2wIKFjSDjO0GCOEWT
hrY3PCNtLOo3dEtmsuRSvi1YOEaMigX1UYRiwVEWaAjFi1pmY2zsWIrZ1StfPhRKWImEUjd2ndNw
z8qZBRbbHAAlRK250q2iF+MFCzA/zBR6wQK0IR2QwEzoCmlpwUJY8SqtViCkScxFhK6x4c1zDKNx
m0I3LzVMlgg1GSOrDsKw2JS7pDGyHgi6nWkuhODVL5GXGZNH0DEziGiRfTOjM5sHGAkctpRk7JbE
ZLxRswiBMHs52pFG7QDMKcKoTWInVi8ER9DuwSN/kRVwBa9VgAqZW4ArpVxoR3u3pG8qWkazIS6B
e+ocLPiQZIWzNlM8eUIvTkHZZMNW4AAKk+Y5BGvYk7Xu0gO4mYeaGIw+oFxm+H0HOAybH+VvWuDQ
2onCALMCQKaA3PddlD9krhLqiTRSxTfek6IxpTutWkAkaY1RvA/aFtSTLVLACitL730whbqcoKRV
Z1s0MKGASENBqEYgXg2sLavFM18leBK9WgKtRCbRPWCYtLb4QcsAk+URLV3vwaKE+gQdsJiKzphK
pn+A2MA01FvOrt4q4kC0wEo2HD17geGBsKUHYiagcM3pC4WsXkZkwBfCZYi/0YlcFAQF1PP0mGaq
kZbvaBmeK59Z2WPRTdGKDoZFWaiRMK9gMRPWUGnAhS3XSIxboqUgtcBwD6YlbL8WOJRhAA3Cos+s
/UOYWbevG86DvJdTOYO6uSd4r65r3KUIQRgNEywRhsrSzUEGg+UBgcjv0CgahWd0plsRSVh1EJaz
hzdvcZ+WnNL3ctWEX7SkwTtflO7lAf4WNAsJlgkABpjeuWr5YrWWCb6w+rriGgabZ1NtAceFAQCv
DxBHyoJXGPw4oUpoYvWpZbHnvqSrJDgpPoDvVegOJ+hUuEhH6QQU5hybD6fbqR4lQg62wUE1TI/N
t7zRUnVifGWdzmSgpyK19KBqmjGbfQPDKWF4QZLx5MogKt9qhXUZ18Xabe4FF87+R95Z63MtN51W
iBOMfNRgeBi0t2mRBg+THSlvD6d2JCwsTFbtmWlD1pI11mlEk/ygVSQMJ6i6yMwPe+EGKp7U257B
1CTKwWAY+2Q2YdWS9VmuFjPrKlPI9HOj8tTwutZ2WJGaRTAG42uqfhPrJFDcbMYhsE4CRdxUthY8
Oao9cglsOWYrdsuiR7pSPF6YobiOcgbmpJXgkS8Ge1Z9yOHbrtAQng5NjYuiDCeoddTM+VZw4iEn
ZORsASyYtU0l0Bk6ilvStOTtnKaY07Q0uq9sEhFQtpTdKEYJGnLqw5IKauK1umBV4yQx0qWSEVjt
klpn0l+ePZVCHlU+IpFaXSAas5h3US3b7OViXlG5ss3ik1Rm8EU9WI2HKJOQtmy4eDIGxVxKUmZu
dsFcdX+iJfBpNhK9ygMcaxEo0/5eAZWgm+YuxVY4elRNiT+sbvVRM+HVpj2uMlaEvVVhFIscR8Yu
NqUS6VBtNVsR+ChSFbkDmYjnLQggPiZLvxqrZ96xfGSqjmtec1ICM7aiDqdV1WbDoNEEJSaGXYBB
aQwjk38N0SsrTLF63UaGAYW5s604Da60GgDXwVZQgohXtYKSQqiIQgP6/d1ilWQ7UFByq7HK6bUg
pRn+XZRMs7u9lViY6UEUFpBsPaOe2sZGTzGEYidE0nXhFo1mLuA9RzcoXi3AMPtkSn9Uq9ifwuAt
bksloIlBCFgeorGqCZVjfVeJCSI8hGfIJeybIoAtM6LtlX7CWJUYf1rxruC+zmgrCiatmH0yukCs
PkNgz84PB5yEbliIsyoXjZv8OCiWOBbNr1GtOS1gg2yzlv6hByWUSb2+gh2jsJzoIGBKJEyDyDT1
2yORbs9OCYrhjo5CoqVfY4E2y6fxemb5mOUKBawzQysA4f5AhNrRQk5ZYNYXIPqhVQkrEgedohh5
nTRCrEkj+yLmxcpfJld0i+Cwzn/xY4T3oJvZB+UyQhmE3adZMSZEeawv1J8kekLMbWOvq5WRWgAX
ebfNfdIEdKl74McT0E3x3bsjCbv8spWoRarSUtRq2Y/QJ0JNbR7u3orYHbEBzxofkSFkltMO8/V8
y9gLV+zAC5zH0wmY5Z4ejbgLe2S5Z/aIqWfCPed4ZMu3ZLSl9BwCnyhq/P5waHO9oZDnPSmsExm+
LsOycIar1wS23LmFXRcAiAgg1z1PGFGlrZBA9jHa+SFGeHEUKlkUOBPXODJc5VBH5UjLtCyrcgSB
JMI+A3ArvLxVH+RIdLsKRbDNRWsfmk8C7qrWf3sViMetj8oLsMLUNEvzQrBFWRkSe6sgmrs3XGgs
ts5xpsM4Kyc7PtK8ZiGzenqdtFgzPw6a+QmsVVKva6rJo+JKwBMtdnBG90qPMXg1v7Jf0Yr/6ouD
HHXZj6LBMGFOyHybWA4OOIYVmWYgGqcr7HhV0GjddmJoneOaZgtjV8Fp8Ig9k0WMjAyexVplbWAu
84yuDqHn1uElRP/14NfwiCLq9KBkkYm2SsCe2cbwY46uZHM3BLgKynDqvlmlkB6Bix7vRADQjsBZ
3BRlrTj41Zqlm7xICTEXqhHUMfEZr5EblTmVzBNVSqnKn6Dk6hQ9f+WULcA8arSDd/pv70FhMfT+
vveRjb8HMFY9jdXqzxD7sYJOP4Emwh6MwqIwxH4oXWMQ32C5V11oqdyfYYabkRjsaiaBgZgSAiuO
1zE1lHpTHcyosaiGYBCzFDNlnpqMlgSYSQHbOgUjbkbhmZIU/bBbnnZup3k0uWi9nTI8vQg/27ZO
BAllMgvrp8nEDbIzOX7UzVKjiKrYUTflJD04Fi2WbGnatqpqZ6EcNauh1bpfnl5ZVcqBJTLriOkK
L0NfjMMbPM63BBStYPyjmLsdcuVRn9HNcw5QDVuaNoXK4MBKymqpsx6Gk11iuCDw8Jomo4k5Q2+r
hq3agbnKyqlQDXOGWRhFQviG7nbILBqTrSTmdAccgN+QRrIqQavCE4KVH3oyV3z9QUMTqwOWYslc
r08TFGHlhzhdxM6bZYmFYr4+47QoCnzY8AtqBInlIot9jqpBBWEslluUEm14BwKM17ZaTThdWvZu
HWcuEyPoNDIovIaf1IXeZpjoF+oq2HE6lD7rnPMqIOnWlS2dInosrRXXWN0FLBkRfbGKR0+cr7N1
qzzwCBKH5uFeDwDjtLBV9lha3AsPtc5iPhynqrXMgiWOFsdljcWqgUxFhDpaot/COZlF0CiKYKTG
Do2sKgnB0c1YbFEaAcbxEpTYqZXONOiqKFiHWnxsduzumI0Xba0lwArrOfK1cF4oh39JdhLPSsi8
wFRDYTpFL0LQgzpaCJA8PqUujnokfmoIXhDDvn5Yj1K+6iOTlmElhrynUawGtfgBFz9HhIidjbjb
yfcVo9f8x8NW56U1j5H+G6UT7p9Gs1e1GoKL4VziZuHGVZp8UFaFlL+1VeV1L9tOHpfunR7+qn7y
KPTKfOokGp3zOfd5roylroXilqMYsVmBVKEZkiVtBF8que+OI1UoJGDiASvJmqXk65cnp7CKLjUx
AGAgg7L9TVrGe9QNeahzAXqV3sR4g9U9hs4UMI6cWxWhg/Fpmt5jn8eBOdTm6PgcNAuF1mxhQz2q
xchK9+wJziAnUkxOcf4+nynEAgt1arKk51M7Wv95dJS15nYLShec2Cp7wKbw7JVOgTNIgWEJR6UJ
XiXjIR7s9oTQClQc5Vvi0mULojKxdMRVvBQReDCaeopW0OWHEvMMFp+x+q0/nE/b2ihRQ563bYhi
nFpatfVj55APlsgyTnKNH6zVU/wbiE44+K+BlWNKFvNdfJR5+monRIvpeDAp52rphdVKNinkIbR3
jPqWvShDaxmVRY7hmeHZpsDYxzbxNFnRflTepWHXhyzh8FPkC/aLrbSgwyrxw9k3DXmtMkDhfSJr
v+BELfDcJdOTwI2RD1CYxj+CBUKhWVi3oqQU86pcpAFKxOZbdWOkAtsqID0welRJRuStVN94IWXs
dnCWQd53RxgUBREWv6TSPdJMEfhMCXGdoqOTg5oOc3LsFN2KRAglMc2UDJxoGPSkRCMdFa0RMzfH
o6AenDiioKj+OUdBvaAgTF5Lsg4PiQfIEBaSVtTgOFiXLYDB5QqNV9oga8WD0n6w7igFwME6dXU8
pCGUaJEFz+GHnJmdXVXBIVnK3o6tiLtslrQVY9MQgz3iBg53TiiS9yymbDAPXqxTA3NY3tUNp1DS
1dLUFj2ld1Cy4wi9p2M7rgAYwdiE5VKE4llhOzAucIQXAqzqw5mZl1IbYhd28LTA8haEYnEa1HJY
0UziArvfuw7sHcWQYw7GQdzp1vjp2PxyAXPVHCtzefTMjzo463DJOoK0jqSsg0urjNWP7xz1nB5R
PUIliKgqGuLNSwqfC6EZ+EYJqRlIiSuAyjNbR3zFz3UddatW4IS0oAWFQ2AUxOGQnhbUSMnoHkDt
dhfCRmEKCu0EC6mySmurmLUTPFudrR1mg6lmeNzLftdlAxFVgLHsq+MxCyCtwPox3J2VcRONpsEQ
NMXdWYuybsoqxeqGnlLsLb876xcPKBcTS4X9z6JEf7V+vX2B6gBZo2+OeuXs13RpAgvJvYzavWLX
4XRWn5Qc6HmvpwpAIu/iWU+hYslu67r98eVn0lPlFToY+NBpet9w0RT0ZumIfk1itg+F1vDTmPca
vOprURAFVG2eceyK90MVDcnKe+JohNBlt5/+wGjgkmpCq6iXL63i0Hy2s3HKdVkDkHaPh7o6GQ6s
wiMfsXb0bdMusfC+oTX8RVnDL4Fhin34uJmOcuLLtTZhdV4QplLFfSzXt0+7JOQB0zbtAnwa4jbt
ArucyzbtsrDyNu3vlnUzxGWyUnZUZUMEGTNdZZXVjMRnZSqBe9547DhZbv8exc7RwctUhXTTj3Zd
7KwI3IVWyZgsGoOlVfWcoT3VBRfDoEYz44YaTX7gxPl9gugLdTFKoE647Ull9ocqtHpdk5g/RvtM
hG/OFix5McbRgbJObXkfGfEhdQRLoYHNpdslHTiTO0gxr7+aV5URvhqGidSvEWll4TVSGXykZOKz
ZumUjKt0mjnAqs9yYZZZk0bqGebC8mNNNQ12HrolqBKtY0ZgWJ1kuCGRlGxZNrsvKmc7JYUjjuo9
5my1V1qyzHY6DYneKsh2tNiYZ/T50rrNr9A3y+p+67Uiwztvnnm3a9CyxlOz1Wh3UpKVuVhJSEYV
n14bWKpNfVGq1QAdb9VKZKctD9O+pXrvWrHSqk+90ftHXUJiy52lm+B3zc3hwkbeVzCS99UZL0IV
C3cUCwbx6X7fVwZe0bqWcbVFnlaPkWmJMyr7WJAyvKfZeKdFtNvIdPtaY+kI9zwwQ4FTuNH2vF7T
dmmIMoFeuUHoqJTBkpWcXVj8ypJsN0Jk5B2Q/x7ZstJK0as9SqSRPd4qdjBOKXqJCQszrC9S+saU
Op4yfQ7MQGrYnQJh2hdBdp9VVFcLx77b9KXQm1iqHXk5lqt2X/TJ6NiolsLLmaBYKFbDmJHm0I2o
ViahWxUKKYXLzrIApXTjf3qz2zN+f8vRTify2PrqWtyrFBth07ryfczIFoHQrsbIxWZlWanF2lgd
k+oWeS9MNeCRcS+eTtyOb+ZshgaXQ0Q2w5iMUJrzcWUlBfazOUHXpkSX+8oqNBzar+1Mqa4teC+Z
sldIp3ZyMH2W7Qop3CVThg8HNmhYFbhOgdfNxKU/mOKEz+oybZfURAM0ulwxszrKNQEXNFpm4Vjz
MBkg0X2BG6YH1fsu5HrBTNw13uDdOcoVrIVCSRV1subDMoXaKVr3odfSVNPAdotOSAysZVygppPY
KHZf0HpLwzP2Vp8uWByPKxDU9NbE8ZgQo+4occxOYfIU8xq0NTi2YGqHe4xLxsppfWButeXIuJ76
lyPvmglWrRUrg2MzjUlY7A0tAhIuumBxuKAPnl3BxUiN7UyNdG8KrfJ4sVCyCbrG3ROvHaLvoWmE
Qq036USAsXh7kWL87JfA6g1HOiu4nH3uXIkYsTJYDmYQNMSp3B39GSQnOymdnXdWt+Fm3UBndtJa
HxQ9I533t/RKjLq3jKMMo++9I0Kht0Rl9cKa3ZRxTEFT/GOfJo6cz30hEN+ZfkcTx9IZQYKkKQug
xkmZItkdsBmxw5m4L5Q9VM8ouy3Zw3HHQVNEhYIKNl7c5CyAi3yVj2My2esGvYentTNOIumkFv+h
DM/udgp8qVh942J1uNRDn3FfrFueahlY4EY9/jWr6WxkrfUM3ExmDboWlnoIJeMYkbo5w05EKtbR
wsURzXuDZ6DugN1ioAStkexW/7geaZ0BQ21F6yr9atIM4KsXllUL9GXzQVimaBSe9ML5NQ6vDtZV
ZqsAPiad7CJcXZhs9YU24FLsmNk0YGXrC4fPdsB8fT88mvW8WGEIudm+2T0Iw4z/94Gn1607d2HC
Ewf/CQa49fj16LB595tn/520/bmswB0g9RQDPcVJN6gIo/xOGvr8O9+UgmCg8ik7RSzCQ8sKDEuw
kuGFHAvy4H4OU4d1j9J5qe6a3W1H2nnW86C2B0DP5iAvXCgo3YKpjh2Lllrs+3SPEnnedG33uac/
ESmuUMFCirib3wCsaaeSmbQ+kGLJvAZjAcWCWxQUmTlQLLlYIseBosYptBkDigU+kiY0HCiWrGHb
AyfK/IexsuHEgsISjfw7TiyWZV4wsWhFUdtgYikGyhdMLICbejmZw8QCd6NtKLEgN+WHIRqbSUzk
LJhY9A7issFE3J9PgOUwsfg5owUTC66fVcjlMLHAa6ECNZhYkOauG0pcBAeJxzsOErXdMjeQWLSI
pW8gsZRsANBBYlHtsIPEglsYVTM7SCzA6wpsHSTqcmnlvIPEgsIbXlJJI1aQ3k+75dN9qHFDiQXw
ae4oUXdPgYehxKKwcXeqhKIpvAMmlmyXFS2YWLJ+WGWDiQUQteUNJipF3W2HiUWrlMYGE/UZRTAO
E5Uydpiofanb5zDxGI/BxAJ4N+MGE0v2DyE4TCyof9LjEw4Ti16oEjeYeKyXQ64CV7puKBGfXKAf
78it2Hm5Be50q3LaAKBuZ64bSCxeirE/w4jD1o6d1d66QuHg2EBi0XuUTwN2X9ZAogrI3EHiYu0F
EotetdE2kFjwPZfeN5RYikVhF0osuGNfnVtHiUoZB0gshVdsLYyohLFBxINQXVHYdf0LIa5G3BXX
XmrZAKKOjRQCxKJRsrEBRJ2iTsidVBX5VDeAqBKugQ0HiMdqOkJcC+4AqCBWrgeBHCAuAV8AcSm7
BRALLvxRWO4AsRTHKQ4QlxZdUE+ZT6flcLD4AaedwgsRjrcgC3FsAFFFKp90B8Aoey8uvoOXWS2A
KIy0o8OCIF7fnHN88UTxxVoaRfvlwIYFGXTdp6WPYMjWESm2khPxhWPDghO+ulaODQsS5oQphg1L
9ljSocYCLwNb2LDgDNOoGzYsyUG5Q6KS7LMECzWVZDECB1ayl5334S6GRL5cY0COzkri3TULwIm4
24o7yCs4WaQxFgeCBaeG+pkQTIP6S3GyjP9oOA69lOLoOnae0iEwLLEZ8lrjx+EfNRxrish6l74v
Q8wsNF3IsMQ07BZgIsOCIkIiTkOGBTluRfWODAuKEfOODMVEGap3aCgK1pDr4oDAassDGhYkuQkW
g7uJbViwwrkvtMRgk2NDUeaaBNy4PFTipoUNSyhDQ9NuVfFtA70exaFhQWI81g0aitmwo1uODgtu
HGgbOBQCL8hY4FBzSzzWZuiw4OZavfbD0eHxjMNDbUfPhDk81K70LJfDQ6E0uz/W4GHBJbm8LZbw
sPj9Bwsernk7OtSl0a/0ODosWjWQN3S4ltjhoXr8el2cw0PZqUC85PBwZSj//8DDJ8jgjkf/1Os/
+/h3seF30TBQ2D3c9BTyPIVFtyAIucnvqCkMa6Wk/6z8MAq5jkS3AqLzI++ftLtX1d/kje+mlm/S
z9YnDINoxj/UzOkle/gmq3w/83zOTt+d6NN2nmSn77fD92+Sznfz0je563tzf76ZO3P/s5LaT6d+
88j7J+2e+rxJZ99PeZ/T4nc7fdrOk7T4/XZsvzxFol+oKM9UWtypx4A/onaA13VrPYZ70qute/UY
T6s2xCFjmdnW1p1x3Yzhmaf+uHHdjOH+U/fGdTujZ0Z/s4b3x/UdR6Bi5Q0QehlYV07ojeXMMMSJ
LpTdlTgdB8ZhF+X7maC7FN6zhqOj3ZymU19asKCXSI71HjTIbAyFem+5+S3XPqKMmsWxt3SPEjnb
1f9tXysQ9UyJgqsghG1mplLKLCSYnqdEk7zEoligHPf1eTzYHhksAIjVgvSNx9V55RlfStny9NHS
dX4uD+EWNmMXWvViF3JnnLnT8/q1exIBcYMHvWnCEhyFd1riYoBsK8eaClzFldlT4c0A065Vznou
Va8p4L9XT+d52ktvv7QkAzPVFh9TvMFkhQbIKsGj7eKI9q0KO0yUEdQ85Yf0YjbND1kJYNZwmPrz
vOop6zldC39YgiDqp1NGsc+QZXx2QYMUxQoSNQeiQZ2yor2Fn8QCNGfGowaLHCTbk27FkMD8nIGe
WR5brCPjxuxsoQ0LGo+xogtMEMEt1riAfxQow99WSNfsCEmGb6+RlmY5A4Ui+pJd0ZtH0avJtHRR
p4nIgwadmhU6ZpwTV2TrlykLIGVBNij2zLAPhCwKDrspQm7NFn3icpl6eibxQMNGyTz8evQ1i0WL
1njwcQfFDmvMflz/mBaKVDkLmzk+uKZw0hen4KoAha6+gAUnzDzPT6ylF5ilbSMKKm/1FpAVmNIj
ZW3bUPHrotUU2KYLZRIUG18UHCnTEoeynEG7c2uxV0FBMQRxseAK2y8uLfjeRzv4uOCLIEx8GquX
yBNTGyTWb7KlTWKEYlExl6qC+yRi3CSv4NRZ2YRTnBiLtnhUIhbifAp4iTy/fGgAoTCcvpREQdn3
KJsiwdeceTeIKxuhTN4k4/pIYXQcm85axsXVmhD47Zml+QqOtymIcu1YUKmusXHXoAWXeug1JKZk
D/PjeljNTy2brl4ujunz7zvH9tSy3bFId63WyUbdT7J9R40rmLrjAjw13U/N+60xB5j6jpr6PjJt
edpH/TIv/lEJ1JPvuF+Pss47OLR03JRI4hk8vRxtPkOZPJ1Zhp1Lvu2LNaE92XuJl2pmnC7vfest
NzuIvEaUbY20pdqfoUSe6Fv93/b1h/wct7GbM/+0yVjNZS6e5UaQsPOaANbrdH7tSg/6Vqs04Ff/
uhWkZ4RX9PuC3a7J1aT7tKsEkuXlpx06nrw/SGwq4yG4XMBqIyYPs+IUJf0NxGWDXTdAo4/IV0w8
4KwvaRxbgZXd0pc1Ati3jRIrGwiMqp3pyFD8eti62LfjMrICWvtehvl8MHA8ft3czHa9akQ/oct6
FJxL4Ed1izlnenbBKGbjJ1VfKXbGOeMIhC4GLvKaNM68YnGn8Fjo8dZMhYcOVssz0yAdveOrSnEf
4CxMCB2TwDnz80Tdoh+LMdvgF33Xgk39kuu2pnMw/n+sO+760dHY1pTAU/TH7omJ1zLLtcEacdET
Gs4EGrPTQ+POKAVXFcW5MZPYc365bjFcwckenmA3piz6UdWNbcWe84zTYm2hsLJqsX/BV1aV3w6p
p4U3Kfq+rcsdffJUaJ/qilvNcN+6fEeNM1T3RPHeUZhPleqtCtVQ3XfTlFuXyAnbH2/eP/z49Yu/
/JlwFE6vplYeXn8qC66PPGjJKsCgVpXNh9fvX/zCPzAfc798eMvv2eeQ9+/Ovzu+Z2/fnc+pt8sX
fLiXcvnm+DL9b46Hv9YmWrp8jicRpBqXx98JMYUeerp83Prgs9JA3Vv44qB+2Ls+f/Jeppv36eIz
UEEE8VVCKlmm+Vam+VcvX0VNztfzz5uG6mndcOhAdEZAE5cfvHz9b0/60vsqRUcG9vIPL3G1Sqkj
W3vCbaI2RNviYYTfgvh+r/CFUXFg+c4HrAguxvAxnPYO9yA3nIrdX/nlxZb23vRRzTxn8iH9DYY0
Z093pwjElmWNOMVf/vLeHPHRyCpOvTX4Y25E7anfGzC+MybA2Z/+5cvzUOe+IMilil/8gGRJlEnq
G/8F7UfRpjndG/ErYSRR/q9O7/zFy6indpvs0r01QUZVHKM/YZtkvve2qYX2fW7TKLPdax54cHv4
dlFPC4R7IhZLymre2VH9Wf/zTPttq9HFA/mzV+O75bEWRYhP/PJf0X7tov7v8xgC5l3M/Z/OZQIV
vlcuixjWn72u//oSVjtXQbn32sdh0Vrrc+t6Gr/Wb4ljcVqhv9Z9qz2M52QXudL4va9rGH9gXeEZ
He/g0hX5V+/gL1QDiZtY6j2OQsy7C0awp+NLIPIqFu3ekgIWyVj/s4phG8ut/t6E/U/R3yP28cfL
Vkxz3lc2IkI40/jtJjKXtXvL+rbzzxtDfBrTK/iUSRTKK6CfWBOb+vnmKrxXFySkHi+/3RyW34vr
MRD16buT8iWWQCxMa/cdlke8hS/HwQ96hWM8opgvb8Xj0W8q53x583Hr8PHDS1w/E1ORJrQ/8dwu
H81jEVloey8fPsMzSBkXGR5KL2Id5uqoL/TxSzZSx7x8Cr6NtQn5Ezwr/l+9/N/n3sKk4pjp2yYl
NkaWQpuqc29gf/8tRxBHv/xW6YJ2SkkXWwF58c3jPr2zX7g3mfVL4k+omJ64gF/rQAREykrAL6zY
qN9qJ7OOenncG35cU/l68eTThcUXEs6O6tb0V6pfMmKnh/07Vui97UzLLqLaBxtLQ3D+5eMb3ess
Xu/ntkitmre8Paw9o69XKI4SuCb6SFgXZ5C1z39UFZOrANZ7KgYVlF1kAPAsicJfmqDmLv/dVzSC
mKWVV6d3XiuXphhUelHCX/vAM7HgYX3mJ6rAROaTPQP78HB65F+XE+kKQZ3yH718hauYxI5e3mwb
bOIQ48apj7vMiZQAX41Sz5xKqnD42pIv/Mly+eka5uVvdY3bGPHyd3gAbmTdZeUZtn5/qIAn2EM6
0+ngnqq6/zNQEcYgYNFGKzbS2opT0LozbDsL5N6xTg0fXJjPizz66CIJT+fZhXf3iW6j4FKnebtk
wGXt8jO60riv+fL42dHdLjSf+Aqny6+5b7I6v2cboZ34+fL4bonKm2dl0Azs2abhksW+JO5/7+MC
a42Ypf9vpFd8+EUY4Kf6hExMdKquQsKlUAmr4CtC6cKd861Rutwu2Asxihx/8RIffwJPvWFHU9Tu
R7hBVdhHyO8PrtmG8kE3ocWke4fWcCfPXbkTsZ192UsyYRZhOVmZba+hZDLq2XaE/Hh32VASGRyd
/cIXRZy3AbsErRambDNnlqr08+/HFB4PKqwS8hkxiULAEZEeYQSxMjN1eRLV0r2XbQXuup/lWsXg
+XA2aVILePl4XYypm4NET7rdHOPJMEP/Np5EOWhMz0QW3u0/9dEpS7JWc5c8OAA4qpjOEgKacMjl
7dbqzum7D0HDW7KKRdbY6reIsY6mbd6C9OLewrFWh7eg82zf7i1gsDmelBKprURYLTeiv6Yi6lja
t28f39pDIgbPKxU8ESqcimUlN/3ySFchiY179MmJx7MN8FNf4OR6EN1/cdcgnn5vbfx6W+1HG3Q+
2+B3tNy4CDUvPeJLPMve4b9jnMi7tqcmQR/Y+INKRK9xazcmmuxSq/hAh3ie40M4G50XbFDZy2LU
4MLg52wDrtSifrp+3pMuhLuj/Fxzu7UkUCR3hwHbVO4N4+0xjMeD+tnx88vjgU9uR68/Pz8e+M1B
fXP8/Go9cG9ODV90P/T+bz9xEaQXFXS3EFEPM+3svekFuID4CC246mT4lCpq7VtEEa9N97VKH/Gp
6Yzi43/8Dz4bhWPebk/s3HpXuWzP/vrjeuJJAJMSa46T/uUqnkZA1fS4/NNmBHZX+4nmezKkR1uC
1m68KMTm53NR2RvdieyIaKKPTxqWp9ru1/qCw/j/x6ErNjfgcV+aD9urR5c0CyhYbMnNQiZvUP+0
cpqMq5/eTf3g8obTIpg/DmGHP15QJ3Hy7r4iFepx82LdZcOOf8onuszs44e37Ac1bP2P4hyMeiQx
Pz96qTBVlOwt2MGopfFNB+8r9fhE8/rUdRyi3c7Dapf/pba/wX4dAvVPP7fpi7bnRBFMBKdpK3Fe
/s9LfCp7zJM38tEXTTDtjX3RxqqJahL9/rnrW/Hbn1Hwj/ZeV+Csx3PKycj+Nx17mdilE8PALMqO
CEPQLHLmz66NmrxY0AaYyj2Mf3zx+oe/cEdW/PjfM0kRxEF+fHsPFT8xtfjASjt5ZkqEQ/csAtHP
+5Qb6bxBq7e5jQ+fnXkU1V1l3Ko49DzyH+nIL/L/ODk1bDqfkfzjZhpv9uHNCXWffbqIo2Mh3ZjK
I8eg/eGWhzieSSEdW0e/Soz9GaEfXUOiOo5GlJM/9niW7hPvod6qjz811oPPXMnKbg6id3DX3kYc
P1xe+WZDH4+fn90YTu7dh1t7qz9fHT8/Hj+/ummXLWy9/fXx892tmb5t4eujhY16vfvsF3eH8+XR
wpu7M/70bgtf3izJBvqejOHD3Xa//lYPA7VYKaxoKTdeHLrnM5FIxtdyNm1uQn5PZgjibP/u4MmP
j089gVvgu+nDD1+xlVrjjdepkjHz2YB9djzy6iX9UXyQK8czbjKpR552DUe48K4m290Oe7YIcrv8
4GSIf/L6xT/Lf/8PmyVY82VuZHN0cmVhbQplbmRvYmoKNiAwIG9iagoxNDA4NAplbmRvYmoKNCAw
IG9iago8PC9UeXBlL1BhZ2UvTWVkaWFCb3ggWzAgMCA1OTUgODQyXQovUm90YXRlIDAvUGFyZW50
IDMgMCBSCi9SZXNvdXJjZXM8PC9Qcm9jU2V0Wy9QREYgL1RleHRdCi9FeHRHU3RhdGUgMjYgMCBS
Ci9Gb250IDI3IDAgUgo+PgovQ29udGVudHMgNSAwIFIKPj4KZW5kb2JqCjMgMCBvYmoKPDwgL1R5
cGUgL1BhZ2VzIC9LaWRzIFsKNCAwIFIKXSAvQ291bnQgMQo+PgplbmRvYmoKMSAwIG9iago8PC9U
eXBlIC9DYXRhbG9nIC9QYWdlcyAzIDAgUgo+PgplbmRvYmoKNyAwIG9iago8PC9UeXBlL0V4dEdT
dGF0ZQovT1BNIDE+PmVuZG9iagoyNiAwIG9iago8PC9SNwo3IDAgUj4+CmVuZG9iagoyNyAwIG9i
ago8PC9SMjUKMjUgMCBSL1IyMwoyMyAwIFIvUjIxCjIxIDAgUi9SMTkKMTkgMCBSL1IxNwoxNyAw
IFIvUjE1CjE1IDAgUi9SMTMKMTMgMCBSL1IxMQoxMSAwIFIvUjkKOSAwIFI+PgplbmRvYmoKMjgg
MCBvYmoKPDwvU3VidHlwZS9UeXBlMUMvRmlsdGVyL0ZsYXRlRGVjb2RlL0xlbmd0aCAyOSAwIFI+
PnN0cmVhbQp4nI2Ue1RTVxbG7yXk5lYRhHB1Rp17U+ujFUWxahUdCwrooOgo4DgWeVQiiQQiITxC
QECkiieIWISGZ8LD8BgZtCKo+KioJNZVA+JMXcU6bdFaHyPtON139ThrzY2o0NWZWfNPVvZa5+59
zrd/30cSzk4ESZKSlSFhYT7zHH9n8JNJfooT/xsRwjrexP9LjFxEyMW5acprGzxA7Q5BbjBvPCEi
yaC1761U79RplHEKrezNlW/JfJYseUfmnyDXKLfFJMpCYrQKeUKMVihUslD1NqVcq/OW+atUso2O
L5JlG+XJck2qPHZ49kp1ws4UrVwjC1HHyjWJBEF4Jm5Tx+6Ub9fEJSu0ypR4Vcwcbz+CWE8EEL8n
AokNRBCxigglVhNhxO+IcCKY2ESsJUKIFYQr4Ua8TjDCywhnIpPoJT3JfBI7hTmdEnEi7Fwslohj
xZ9Q3tQJ6kdJjqRBcoVezZtdeTOygs0aZvV4ZIcw+0Tp5+DLezItqHwbu4LSa5AqoQEZuU5sixqp
4G3K2ICamjVIz0VBICXtfHLz2LkLRvV6FqfFSp6fO+I4N2f0uUxqaPPJZasjlenprDA33wqfW8l+
OyQPivjtQDKWRJSvzy1I28Pm70qP8Ef0opW9985YQAKTTcfRbs6gqM6qQ3SdqbKx/w0Uif3W4ylv
Y5fvpoMHcEcfV3Kvml6yQ71dxMeBigF3779jZ+zs/SZ2x9IHs8EJnB48BA8Wx+CFjH/IX+7fu3at
78anwfO8Q/z8h1uEWeG6FcRWjz/boViQJBN+OsvEoayP2X6qoh41NyWhLC6SL6aa8w8rf67SfEra
1bjj/YroyZj0mo2lePzdWf/sbj/SaOEg3jlAEhq5eHnA+r7Bh73Xej/tCg1zCIE1VpjrGDm8BMfE
AfCFSubK5QtXb15escArMDjwt4pvzrB4hvOJmJO7WxAN5KMHIAW3+Y9ffy9Sp1Jy0keNBUb5zy7z
zPLfVkYNKzWlBzyt5MUbUN0n4pdBKGOqRm1ArXmMJ+CxXjOxG3YdmgEM/Or03XrHcnR5+9L3cCmb
w3erkR/yO6v/ijb0MMb+Kxd70Xlk05RMo1/yBO5WEtbaH30tgmKeYsCVKq8XpicL07HraerWZ6iJ
3VsS21pTW2HpWYr0S5dvXcBumjmMTj0q54awbQaVmYQSVA1CBXVUueP2SSiTm0GNghbm2CHo64nS
TtDAOua7Kw9hHGtIrkyrR7S5puJITXb74s1rdGvDOKn9qOT5urATlakR2tahCm4A23xHKjCODMEi
xxSs6wH/Sxd7YGuPR+PldIdBjl/ecGOi9MccyIIAJjzm9IVLHR3nP2mP2LQxKuoPnI+COVBwTNuF
6G/7bww27W7MsHCmsrqijwzFO2v3HEZ0ZW1ZY216c3jOlv3KrZy+VFG9FdFzAvwWRVfuKE/npJjI
0e9OSZiEFEZNSbZ/JFqFcuiFT9eBJ3g+tf2tTXd28xF216EYsw+iA6k8tAvlFWaifJRtzDHur0GF
qKjQWHSYhrH4KjPT72RHVUlLSw1XX1GC+hE9CGK0MMoveuYrp3jcsEK2VWWdKB2Cc/Ahoy1KO6A5
mFi0qgwdpxtamh98aUxIOsAaMgozmhHdikw1nF1SgeoTkvdm7Slgo0xRKB3ReKl2SdzcpxnfZnHS
+115X+zaNGn79h3zIkJLb2nYD6r2liYhWoFS07hZEj3SNJVUGNrK2K64CwUWAeT5LV+e+QdmTPEH
ueG9Prce+TyNRPy7cIoZSQ1YJ/mF5Z5l/Y9g+j9i6YUXrlt/qCEdNM23i0DjQHbxKGQX36aqkVnp
eAS7ZMEIpd/gfZTX9bj+mwMnB6uQSbFjf2oGuz9kY64W0cvR+XruJaoDTzxA/iRIsPZ9sPGTmGEU
p44iXIxteNzLlwj1mREYp1LSIb7A2ZJiVqtTUtRqc4rFYjZb2JdhZXsV3unwUwtjiDehKkSPziq4
/R+ySinkto9vdvwy9KcWFmp/KS0uobzsyf0nThy2tLGvnD1WcLZTtwg+FngBN5CIW0fZxpvSJ7/Q
po3Ci/BsMTwdbhw8YrSuZ1lbRtnOe0ToLQPUFzcFeOeK49JetIExI+1Vw9bns4QrpAt7Ost/9kLJ
+aMYmPAsCzOj6tujFjmBeimaj/WJ1eOiPXoQQgThUnmnFsasOrP/GKItZkE2DcqMyT14II8DlaQv
/A6eFj0drUgw6evKLSVtBhZ9aDDUFBoNH6ESRP/1vCqAk57Ggfuw2x+9JgVdDf6+zXao+TSbI2TS
OxKkRamxuriMSJSH6JD3jx7v+qoNphc52IC6XrKbnyfil0AdU9aKWlsVKJvDfVS2AikUrajsOUDg
TkIEuIvglo1pS2iIl2tUqu1NSS3H6pubhyE4Z4Um4Yfs6L7XDYHdIn4ar2P2FaqrdiB6afBCLMZj
e31vdj1sB/9rCPQ4AE/B4/FEvBqvAlf8a5DdvXOp0aJGuRn7UG4up4iX5ygFXxOzgICp8NbQ9z9Y
OnPX1XJrcB8TEdNz686pi+2dHRt8fSM3RnOuOaU8lOLQEgrrDkmsY+xj2THOOrXLa1YXF7vLOIL4
N1DSkpwKZW5kc3RyZWFtCmVuZG9iagoyOSAwIG9iagoxOTM1CmVuZG9iagozMCAwIG9iago8PC9T
dWJ0eXBlL1R5cGUxQy9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoIDMxIDAgUj4+c3RyZWFtCnic
rVZ7UFP5Fb4hGq+PWrXN1lR7L+u6ijNdLav1sW6nKqL1wYKID3AFEVBieATkEQiEvCA399zchCQk
hEcgSMBEUJ4K8hDrgHSxK26726l11d1tp9bpTLvtTn9hLjP0BnQ77e4fOzv9796595zfOd/3ne93
BNi8EEwgECyIiIo7EP6T4OPrgVWCwOqQwI+EoJ56NnVwPiwRwpJ5/tWLnq1AZ5ej3d9Fm5ZhQoFg
3+FTEdnyolzp+fS80LCIDaHhO3ZsC92dmZYrTUnOCo1KzktPy0zO418yQo9mp0jT8oo2hu7OyAiN
DUZcDI1Nu5iWW5CWOnd0RHamPD8vLTc0Kjs1LTcLw7BlWSnZ76Ttjcndl5cfJytMzsSwaGwvFoNt
wvZhr2Ph2FFsPXYMO479FDuMncT2YO9gy/lmsAXYgIAQFIZsDHEIcaFr3sp5n85PEC0Q/XpBM56B
zyz8YkaQNoYtnQl5cxum9gTe8AgC37tTPy5ExShCbPFUNlo81cPA1F12Xer76HeA3zAlFkQlcYtL
U0iVlNJCAZ7Uen7gWTvaYKnSgV4FxhIDoZPLNxwBvICucTVXeW2XyIaRHjQPRvGP4zwJO05FK1SE
flDqOwPnoTBPmalIUcWAEddUgaWaYTwWov6Be9APuBey1EpKYVCSu7gRYzldAZREbStpcNZZ3VZi
aeCM2oM6H/Z5BCjkAUp+KgzsD3xHHF8OZ/lkSoeyqeWSp3PwTMchbhkn5tZw68LGDnyGvv/4bzUW
nUNnoGmNjtj9xpuGYsCP5faNjrR84R0gr90butoHDugz1pzFl84IZla/gCV4hvOBMFCJ/OLnMZNb
XiZd+17UY7QMidEatJ7gKrkGceo5/2+GvEh45TbZMT7g6wJ8sDUp5kz+Wlk0mRV3MjEB+MQhfz6G
gX9K4Bf8asovnMoLPBLXTtxhLzM462TqbAaLNuMCBTJSBlI2A/AKFSjUdtpO3jLaCqEAtEa9UceF
TB9ayUUH6spraaYAJNxykVINijIbuK23QUeDkdKQ3MrpltK4c6rTRolOTRdpKymrr50FP3kFrlI8
yJVOqHfqmTIy1mT0Qg2wUGmuReKAcyWSTf/FUsIYXSBxgJmxuPE5yOUetJPHQzSJKjqFSIeUYh+8
zw64H16Be2DF+891HVrDvbaOiwwf2Pr86/E+qP6gq7Oqz9pCVnrE19H2f7BVgHc3yaWvcjvgArl0
yjCHzdQvHgvRrt+KddJy3X7AZ7uzQy2J7orQEXQUSVE+eu2tzzkxyd37snd/CxRTYDSUkg9fsV+1
Mm2A/1X06GEi94OYLC5663oyIXZv8k7A14oygLVWslVMJckT0hIkBHV60Xv8ua98JkTvo0kx2iRC
K9Cqz9HCJ/snOAHJjXzNMdyq6e65CiWzHx3Advaw0EV2Qw/F02/lIa7WQ+ERsNnNYDK7SCQJ9Int
16zA1/aJ6MFwzqHCkg1pSWR6arwiGnBuhYiXnteHqRvR5MMafiY3PBEiB+oRM2wfEn8CFmiFhtJ0
NSWDClxlV3jr/a6uWwcdF/adj89XEuqRVPeFbzlcPutlm4ng8WBGg3jc9KP+dl6jm4VoEv1e/Fh0
z14iLzYo+TijnjYAhfPtmh0s47YQv0RyhtcJWCSOMqBUNFVUQRTtVeZuB/xnognktLUFyZCghaJ/
eTL2XaQUVB5JK+cHE7gYc72JaEKRrLecl7dk+pSoWANFKis0jIJOS4PeUEJyP5xu+x+cu3tZ6Cb7
4SbVB7jdCW6nFpSkRrQHbNVBqGt4ZgWHZ61N4kcRDQK0+K4QVQfWip+K6hwvft8p6kBhZheY+Mob
iy2aXE0Bb2Kp3Ob5W0XFLyX3B1EE100bDEoolcS3pdz6+/ALyysDukhHFJ1K2RULuByaa61Qa20N
Kmql/6V3bBqvuSMMVAVWiU2VPEAs7tDVFGbqs3RGYg/XV1EERq1KosjOykwCPFF7o2287U/N90lb
o8UFbnzogv/MxnQurHyOQ5PLTNj8Lc9HAXc4qJyLGnlpKpkTmbMbTuBbRrNuj7T7fJeI+mPXy93Q
AY3NNf76TucomPDZYmk6v5woPao4LAU8B1pcXxY7wfB0B7gOAYqYWiwMDAaQ2OqzmWyMzdQCdYD/
s6k0qgwUmhjSqAYjryhVsBoTW88SPrSfMfOaNEuCcBLTVaJCoKC8KIbbv5I3ruDPaiewZjOwLGEy
MUyV9yZ6tbURiQFvFzWBQa83ao3lQX7btelazWae3zngnWAZHmFhmLwFt6nhWYYbHBooIUtESsgw
UZDNVpjBxZsWP1Uv7On+o2oPOtcrQDcnxp4K0Z2pcH5qTDYeAHs5q6M0NE0RYboyWk2DQqKuAteA
Sa+hKBXQBBc2/SltpLVglKjtJW6ftdVuIoZRUkfFRAEckYAeDFQp71960OARN3M7bnja3A7C0+ka
5yn9D7yqk4r9PJFyY1NDk7WVsZCWRmCgGu5Hthy2N7kaG1v8t8a6+ofADVY1QyfrK9JBNzvGntb6
Tm9Re+LxM8kpUiL2gFKZXhy8LKrlL5UUPl595+k4ivijMLAMvS3WZ9MFUIqrM7Yfj4QPq297P/R/
TFjdlppvqJt4bjXkgBykNqn34pXsPqoO+Huh2jdcc65bPgZ3obfH94HvfhfaCCP41TJ/Vl5uXp7K
qq/UE5dyWBk/qimyNcVn80/Izp4GPF7Z02tnLjlukL3o7UpPVTcviaDSs/RyXun/dZti94WBwsBi
8dzY4cGxk+mlFTShuC6rlfEWKOQWcT/m1m3tj/zo2o3GwW7SkdBRcPUbKzqmUayTRb0VB/i7ujHf
kB8trO8lm8f7h3r4Hab5RLKRruAVt3RGGD76oqSpr+w9g2ByNl4euj46CXg/nCyR67OMWvIgV/2V
XaQbbZmLkXwl6NsvS0+ONLwbGZ+UlEnoJk+4EyEaEi5IT/8fFqd8z9TPPVyLA100ibhkxwL/ovuL
iUXztjUsWeixL1mCYf8GH1FeZAplbmRzdHJlYW0KZW5kb2JqCjMxIDAgb2JqCjIyNDQKZW5kb2Jq
CjMyIDAgb2JqCjw8L1N1YnR5cGUvVHlwZTFDL0ZpbHRlci9GbGF0ZURlY29kZS9MZW5ndGggMzMg
MCBSPj5zdHJlYW0KeJxjZGBhYmBkZGRz9g2ONAex1H9IM/6QYfohy9zd/XPJ9+WsPTyM3TzM3Tws
c7+nCn03FfxuxP9dX4CBmZHRzTvKOb+gsigzPaNEQcNZU8HQ0tJcwTE3tSgzOTFPwTexJCM1N7EE
yMlRCM5PzkwtqdRTcMzJUQgC6ShWCEotTi0qS00B2+2cn1tQWpJapOCbn5JalMfAwMAIxMsYmBgZ
mbT5/jPX3Gb4XraH8TvDTwvmn/Xfy0RnLO5evKSku1b+zzu22pLuouLF3TPk+UoW/bRfwvZbeCr7
Hq4X3Hum8/AwMAAA86NOKgplbmRzdHJlYW0KZW5kb2JqCjMzIDAgb2JqCjIzMgplbmRvYmoKMzQg
MCBvYmoKPDwvU3VidHlwZS9UeXBlMUMvRmlsdGVyL0ZsYXRlRGVjb2RlL0xlbmd0aCAzNSAwIFI+
PnN0cmVhbQp4nIXP3UtTcRgH8N9x7pyjLTVxsSi3Q0ZLQtMs1JtMFxKZ5EteBIVMPW6T6WzOfDel
aXPPcebMlxQZomSZ7ghBqdFFkRFJRBdFSS/IILCITC9+Z/wEO/sH6u55Lp7v9/NQKDwMURSlNOQX
pYeGQ9J+SjoQJsUrAIJLwStKUClAFe4P9sXi7D04Ixofj0FKiso9d+lyqcFW22S3mMwO7oghkUvN
zEznsqt5u6XcWMPlGx1mvtrokBcrV2wrt/COpmQu22rlikIXdVwRX8fbr/EVoWaDrbq23sHbuXxb
BW+vKaizFJgtCKHw7NQIFqGDKJZyU4CUshUxyI0+UiNhp3eojp8oakeRl4NAxMWilOOjpJJgrrpr
zOVthEZwObtaSMv2F02nvbk0FVgTM+fxC3PwEN7f7AdWZEptvukBobdvUPcERyvxPL1MDvd2e5zQ
vc9WArVaE/O0d6XXD0vwwTXkZsUG5iw4BzumWfJMGlLjOPJJSW7TUTthmVdlgjQlPvZR2PtZgQPB
GPXdHsGmzTuf4i4LNU/CG3g+zW57mSpo12t5Ez0u4GjPPMwAjnVNyOE8o4eRWZ38kHU7lNY080Ok
cGIAJwfwiYBCqpN+qWdhZF3rF+l6N6FdlVAACZ5OgTX5mXVor9JtGxiSONuN9fCWHXbjKL22km5t
g7brwz0e3WunkAJOMAonV87Ml72yrt5gC0OWJK3ZRE8ImJYtL2HLNShTzExSiLLMYHp4YWFyanFx
/KvwCOaE+6MPRu+Ne8Y9rPdWv/dOO7TqeDq1IyVP586qJXFE42Bl/7Fm2b8xg3/PbIjUu018IYBL
NhXSRaxT44xhrFmDLcCIxH8jaUPsC+bfTxUyxNBGmBQ4CnqsSsOn2v7rTltTZwwkzAOOA6zBaG51
gA3s/e78Uw4kFoiGUKb0LjaqwRfM8pGpUVwzSBPjECNGru7SRoan+1QR0wMq1eqYajdCfwFAl165
CmVuZHN0cmVhbQplbmRvYmoKMzUgMCBvYmoKNzMzCmVuZG9iagozNiAwIG9iago8PC9TdWJ0eXBl
L1R5cGUxQy9GaWx0ZXIvRmxhdGVEZWNvZGUvTGVuZ3RoIDM3IDAgUj4+c3RyZWFtCnicAS8C0P0B
AAQCAAEBAQZDTU1JNwABAQEk+BsB+BwC+B0Di3f5JvleBYsMA4sMBKn4oxL3QRH3PA/3OBAABAEB
RktaZUNvcHlyaWdodCAoQykgMTk5NyBBbWVyaWNhbiBNYXRoZW1hdGljYWwgU29jaWV0eS4gQWxs
IFJpZ2h0cyBSZXNlcnZlZENNTUk3Q29tcHV0ZXIgTW9kZXJucGFydGlhbGRpZmYAAAACbkAAAE8B
igADAgABAAcAyQFY/wFNVQAO/wLCMACBp/gfpwH4N9ON1QP3DsoVh36FcouICHWdgZudm5iUkB6Q
lJOrkKCQnpa5kaSRoZGhkKKWtI2TqLSns7q/1osIxYxYeE9g+wN7YR+Ab4eCi3oIVrdqvu+39x6a
mH6LiH2KhYCHHnQ7YGJjiwh2h5mgopCYnbgfl6q09YvDCOw+nFY4U1hjbR6E0FChYotgi3RsfnR1
Zn1Si4YIfpmLjpmMjqaSHprGnryyiwilknVweIJmhHAfhHCBYoZ1CA7/AmIRAHer+DSnyOfXqAHH
4a3r96bfA/ih9+YVfcVexy2L+yCL+wgiZzGFen1ii2MIRsH7Bvcw95f099f3Ivc/+wTt+xr7N177
FmyDkG+urqCqo6Z3lHiNHr3W3YuciwjW5Fz7ImCGaHg7H/uS+9oV+wV+4Kqypu2VpB+ducnn9wWL
COyrP09ISvtp+zwfDnef+T+f+6SVlZcG+2CVB6sK3AseCgQ3nwwJq48MDAAAKrP1qgplbmRzdHJl
YW0KZW5kb2JqCjM3IDAgb2JqCjU3MAplbmRvYmoKMzggMCBvYmoKPDwvU3VidHlwZS9UeXBlMUMv
RmlsdGVyL0ZsYXRlRGVjb2RlL0xlbmd0aCAzOSAwIFI+PnN0cmVhbQp4nEVPX0hTcRT+/Xbn3XVd
lka30R/vrlEyG0h7chJSNgiU7oO6iKigNS+6mNu629pmDtIVmT9nuiXmoE1h9GAFwaUX9ak99BiU
9Ri9BQb11rnzp9hdPsQ5HL7zHT6+82FkNiGMscUrD15zn63DU/pxrJ8w6S0M8Wxf1LcaCM8Q3lzR
3x+CW81w9SD0NyEW40uXrw/fve+NRNNqcHgkLjm97ZK7q6tT6hlV1GDAH5Zkf3xEGfXHjSUkDUYC
QSWe7pB6QiFpoK6ISQNKTFHvKUP75t7IaDQRV1RJjgwpajgYNnBMCcSDkbBfVSPJfzaBoBoIKdFQ
IoYQMqMbrRxCL/E0JngGNRhRkAmdQSn0Eftse0zjBwRjGv6mA1NrhzFhqUTK5RTJOHbesZkUSSZL
ZMlh2zMVV1FiWa9quKrpYY3R/+jNArTRtk/UblSbl54Wd1hLhqTKZVJaEnXGAkehde3nFpy8SY+J
O8z/m217/PMytGgglnHtl+F5wXfHQ7LcZGEqv5ibf5oTi29ebf5eW5zPzZA8l380Oy1eqfS/vf3j
8bMncw8I9zA7NZl97fnqc+wusONp48kXpOjYD+OpwEYF1iu4Wp9GMzUFZgWQqQuctJfK1EldtI/K
4KJO6AUZnOCCPnH38HOhAB1gBTt0L3B03WKIBeieACu1F2iHwbAq/SLQcwuUByELbg7WWdg8kqVu
ylODn+Bgw2JLrNTOr7C0ac6iWb8fEK3mzjLfqBV5HqG/KUX/bgplbmRzdHJlYW0KZW5kb2JqCjM5
IDAgb2JqCjU2NgplbmRvYmoKNDAgMCBvYmoKPDwvU3VidHlwZS9UeXBlMUMvRmlsdGVyL0ZsYXRl
RGVjb2RlL0xlbmd0aCA0MSAwIFI+PnN0cmVhbQp4nJWSXWxTZRjH37Ou3bE0RU2atIo9jXoBhCCg
ZBkhgVk/tsSqgCgfGlbXMqb9IG3Huo61Pe26nXOe09N1/US2bk3L2rWD4ZxcezMnEjNxcuENicEL
ojHxY/i2HJJ5mnrpDRdv8r7J+zzP7///PwRqbUEEQbQZTabuvXsa1xdrzxK1bS2152QAD+X1Hjmo
ZKBqnX9462l8+Cm8fyve/SSSEcQbb502Os8Pufr7znkM2407DHs7OtoNnXarq7/X7DCYzJ5zVrvZ
Iz1shmPO3n6rZ2i3odNmMxxtVLgNR61uq+uC1dKcbHTazw94rC6DyWmxuhwIIXnniVe7DiD0POpA
L6AdaCtSSKioDRWI6y3HZadkw5uE6ThS10NQwR9Vaq/PEPhN3Kbp7bKMnGECXAjAS0YmxhJzFQFK
+gW4xlSBjGchlw7xo5Qn6k5AETLxdOLSZIaHNUySOKaIXrgkbgOatH/ADI7QMBjMQHT5hgDL+iJ8
yxSlBhmYSdPgN8FkmaHersvZGYj5QDcM46MRmhS9j7o1+CS+WxXvytWbsoNeBJU6USFqQ7WXNO34
NJNgY8DrID6V+zKW4lM8TJGZADAf9zBg1rvAJLiAjASkySnIrsbpgSSFlWJV7BMHI2McFxnTnXr/
w+ETjL8pkAM6O78gQEV/HZaYxSZfiuZZKsTbolCCy59dzmT/xEg7v7C0PFv4QwxrY0GeAxbCXp9l
PMiFOPCRgTTESrcbPhXhm4bMyQzkMjSEqS6eFXxfWO534T2e1bXbG3hLtVQufF5YFbJ8EiBH8pDy
2z9hwKY/C1ahT4L3w+DoBDPJUUmuwoITRoL+cIhUb7b8E5TMwN/l8ZLkx8Z9GX7lJw1tYcMHgfQ1
vE7CNIXrCrwPK7Hy9/UjKzvT1N+5jTvwK3mn+5ao0ou/KLzNj7loDtgpappNcuCHcY5hAuSUGNXc
xHzyWlS4ATqsUdybfffMy/t3iWpKPCbe04xIoiM8zTM8JECA6MT097iqxUcUv+U6e7bv2ykqKSmx
Q4cbkDcr+GqFqMdqf2mSi9HUj0BeSUjBB4FxGhlwUg54TXAAGQ7+Lw3L+N8RGa24ovgaB5KLQmod
dI9TL6kRn3l0VfufOUOh5iKWfpASomYhz0kH8uwskInGOobAe9YJ0/HoBB+n1vCcHK8ozOIBz67x
i/SnXs4E5MXH6aDeJDSrCB4QPz+Q4fe+0pTdBYfD7XY4Cu5yuVAo69UD+fqhvDiXTmcVojndVlGu
b9ErW9tnVE8U4yoVQv8CROMLqgplbmRzdHJlYW0KZW5kb2JqCjQxIDAgb2JqCjk1OQplbmRvYmoK
NDIgMCBvYmoKPDwvU3VidHlwZS9UeXBlMUMvRmlsdGVyL0ZsYXRlRGVjb2RlL0xlbmd0aCA0MyAw
IFI+PnN0cmVhbQp4nK1YCVRUV7Z9RUm954RK+SJoUqXGOGtr1KjpGOM8ROOAOKIyg8xTySRQAkUN
p6qYZFCGqoJisEBABAecZ1vbdsikaaNxSMffcUrS9nn0tVf+faCk89vu/9f6DWuxKHjv3nP32Wef
fa6E6ebESCQS2ZylKydOEH8bLgySCG86CW9JgZj/Jm1Pd4ZeUujVreFN92ZXPN8Pffvg+L6MVCKZ
//H6OZFRiTFbgoLjBo+cM2rwxOnTpw6eFR4Qs8XPJ2LwUp+44IBwnzj6IWywR6TfloC4xPGDZ4WF
DV4pvhE7eGVAbEDM1gD/jq3nRIZHqeICYgYvjfQPiIlgGObdJbMSI/zW0s/rogKWzY0OXD4vJmh+
bPDKuC0eqlVbQ+PDfBLCfUeMHDV2yLjxEydP6fV+T4YZxwxl1jPLmLnMdGY8s5yZx7zPrGDmMxOY
d5iVzAJmIjOc8WAWMiOYVcwiZhLjySxmJjOrmSnMGmYJs5ZZysxm1jGfMHMYjunO9GB6M06MC9OH
cWV45g0mnBkk6cFMoogxLLOJuSdJcHJ2CpCOkZ7tNqpbq/MM57OykbJU2X+xW9hPuVlcS/ehPbge
ST1H99zbK7pXW2++92WXcS4Vfdz6HOwb3bex3wLX7q5X5GvlFf2Z/hv7l/e/35/wb/IB/Kk3ogYM
HODhxv8sWerJuLQ7gwP9LILCIcE3H+A3dqnwFRbyMTL1OymkH5kL3HSZlz6vXinsZvfAzj8r6h2y
IN0E8AV/mAHBZi6skr1hUgcpX1SyQXr1h4rYMKFM5tKeTpdd5xAWWSR17bOkwtD2JXxWsT4vGZJB
p8lKIX4v/uyWuNZvm6eBC2MrjPtNjeCA4/o6A+dg18XYq8zGAqNJeQgHOCPITpBxRq1JA1r3cA+I
UoSxjeZrsBf2wyFDq55zJLLLICVPXc8Rm1DAozO56UxUMpefnfqcZ4iPreyOoHJIyu9IhUn4gK+6
eMxYAnSXOH2EIQ4SwcukMtIYHIaSJIiB7QZ9VtpwYnAjUrRpC/TZkO1e1QTlCgcbbVikT4Io8DOG
m+gLh6Ecdgbj6BcSt6zUlBBNqmpV5PyPIQviIKHMkZ1vgxKuKqEkLl6VGr6pNejoxZYzZyoVNKox
ZgYcgnOryuaKTheXXMWAqwPk9eiEj3hiZTepYSE9YYPxmKkaqigke0RIFqrhoBKXsD9dP33pYqHn
SgVJ+RdPrqGHMOzm0IOFu+AIa0wpDbGsgNng5R25lJN/9heWDFE7h7HX8jPXK11+lhyJZtR2rP+u
yS7ZcxvXfCdFIrzB++o04ZDKRZfF11RZSndfmdn8Ien3G8KQvqT/k5HI4cA67FVQsB106XqtRq+I
GL84LRC41ZP24xSc+nXriR0XDUENyg4atEscksr2lVJhOF0Y38KNtro9dQ+M7g7W3+CljwE/2AB+
lEfsPoNNRcHbrtdnqomMzHAjPHrqzVn5NAVQZCvdb6THC9bNhgAIg6XGQJqEcvYUlGeWR+IS4nAj
00hWSnz4xuHgThlibDXVQxOcgkYdfW2jMakaymCHOTuvEIdioBu+SzJMWrMWdO6QpkryFmnYYP6M
sqr1JasSKJRbc7Y6OJefpTscTOdBcHCNUHlLipr2UXy6TUfD5ciMsEpZZwno2CjwGtaRkyN093o4
om8QczIM2qqVQqORRc3fnXJSc9ILwL0QzPnZhWho7+1mfHFd9rJ2ZE3mK9BMv/8ATTTuWPZDfWGj
UqhkG02FNxSVDjJDFg1gyEwkkS/Ou7kIOrVdmGCT1NzG3belQiiG8Nh/xHPSm/QbTSS0fvmfxmB3
7P3sMcoVJJp48d6w2Rp1KOYAXIBGus3JygPVh9qs++AA7FdVeVd5wwoKbxB4qjarNm2OWAdcJ2HV
NlWr4G7DwFZXSpPyywPk24S+p/hFLI4odHaw8zLyjiiFn1gyrItbJIyVH2mM8K7yHER6DB1FeCJ/
PBJllw7uqbMr0dqN+LC0+PTqpPANm1TesAmCqmL3RrfozkALNJnO1x60OvbWn4QGaN3m2FSYBHpI
5Lr4hHfuSoW/Cnf4pgvnsuvEag7T+xmiKC9WmKLFam4pSYhXa1K1GiWZTqxkER7OLAAT5Lhb7dkH
aS0HURr5gw9sNPpQGpWxVyBfXRKNgeTPbmTNKyGTNZqvdyTjegeJ4tgPdQXNSvRkOzEhqx041ia4
t8bYXZ9fxZLbA+S3cA5+y9ceO1J7DLjPLkwizqT3vKmz/AIsLVHKFCsYwcKt6paT3Or5JXDY86fH
yKN89BPSbYbPZlW8Uv7o8ksIr+dpNitfBL+q8T3G46YqqIZjnXzqVIMP2K76Dbfi7A4WpF+WCgMx
mbeZwfrE8xFlAPebYfTnwL+MRhZdDqK0vCDDlJWu12TolcHDJsJ2WAd+u+Oawg/DZWjkjFY+F0fd
se8B7scCMsifSoS0+3lGVdU+zS45/aOw+UdpewB+x6M3GYPvkcVkARlHJhNf4oPjyQScj4txDE7C
TQryDbnPjyED7+NOLMLhV27fw7fnkh2kjLw19Td0VSdy/1VJKe4K8qfShvaZ/Gt6iZMMP0AFjsTl
uJIMwolkppL0//tgvrMn7WXrTXltiqey38FV1bG5+5fvmEK7EpEmLAtaHx+1csXwDv6KbaAzV6Pt
8RaRwCVUcW8JfS/wZMG/g1g4o2IDJjjLH9Wk+l787SDCDR1N3iD9Hg1H7lrL/lqb0oxhPBnCQmhi
pCo2NSU0ygu42Z88oFD3vHb78z+2Tl4tauzETsF34OQ7+TYJdrv83T0pzheG8ShzkO7Iye4fPnzA
vAsydynStImpEMPFlcRX1+6yVDYF1q+e997qIQrCfhD2FbnxKthmY5upBvZBG+yjxNzKzhJVgp60
VtwJ91bhxQ5c8eiPUozHqzzOkGEvZG49fTzyPnlLSZ53SVYX0rIG8+dU/fbCF9Dwi/LosJTHik6U
H8hwEgxZ7wW0D0z6ZbfzDqzf02Ee1tul7YM7zEMMGR83m3xExdG90z2g5Vv2UWHoe0o7lsXIpqjD
RismYqasY13kZTgOqleVECVnl0WiyvnF+a74rF1M+Jx2dInW0dU7n19+fneA/CB+dJPH8eyT1gdf
5pnAYFLoDPFpEM1FWrfZyuxFdXVhtd6zgxZ6pyjkN9CJJcpfFMr67+EUdMS3AleevVOBUOFaczz+
C5z9RcPxAfK/Ygx+xE+GpxXVxrpddmV+UUXNPuDuwYi4KEPothhlRlpcpB9wI/P55sgWXTlwD69e
vdGU3BRToWzc05hTJioRmA1qbZYa0rik4rSSgvK8itK0Ov/4zRpfH4VPvY9ZBdz4+fM/3GwLsG9V
pm5LDIFgTt4OYcUBjvhlSaHe4MfNebIKXbDHT8duNqQcW1ujWF2zAj6h7d8bMo2h2VsdUAfZUFFq
4VBOfuaHzz924tDepgNm5TnZXewGUzznrhslptF4XkxjmwMPdaZxlR3fFm1g+wf8i0P/nAhKlJtU
E1vgTx2qGMKOheIGJRrust8XvErw1O0hYxRTMPdlgnvJcDTYPUqIgiaYZtFARcsmvFfuWl8RdxiT
6Y8B8gfoj6t5m/brZJjDrQ32mzE16Mw3CQpdsSF7O3CpkJmoJG5sEmQW5hiN5eUKkwlMZeUHfA4a
rFRK2UN/+PRE+O60ImVInX++Tz4nv+FRuLD47MCGqpa76JQzMcykMKbvoMBzxZBTrnzGlkKeOksP
aakKnXZ7ulYXUOML2yhhXQIWegSXRFarlHXRNZpPU7gux9bR/iToJBo2qbARc/h/dFhTYfOy5CDO
gM9k/9AFX5T+pwwdDeObNxmVjabqhA2PO1zF+jag88wfv68aIE/COHzOYxELFdQqmQtMtWAB7lvs
piXvzI99n4xUPk3lH1XevAA3ue+J7A4ZoSB/eI0I/LrjvRQBzGXlR5GVlVBv1LBlbxBtswthMfi1
BLQEndLsBu5m6dc1uVCYqob0TINSMzc4MQbWQ8axlIepf3RLvLS+flU5jV+SeV/sVSMsGOnAaRbJ
T1dxoF2Ks0QhfNtB3sYlMTLD9PDBo7Sc6htSy5I+D9Mar9dcv6Q4E7OKpaNf4EL4Uyl10BL+fKcK
YO/nrl88n0fdyEOcJ3zCk8Ei8L/foaHFbXsFZ53xpKmS+oiGTjgXaXOalfJn2cJevi7GGhmmioqO
skU7auzWupfmXOVon1Djeroq+hJeubSagvsZ/iC48aS/Y+ku/5Nw1v3ayQs38bc2Mm1TrsKoAU3h
S1Lhxg5WZRoMaZmK4JXhtb4t74I7kU6dNGTaidk3o5SF2mNp15I4+cPqzN2ZNYHW6IIQCOHmrpsz
NWJmzpHVihUndZcMjYaCDNC9orxXB+XzjKbCPAUYzeb6E44tl4IeUMp3/+NjdHq66OupFuU/eDTn
VtdOhg6QJwiDvuInsjisy6FRtUSWjPhFAeezkzcsmD1V23Zcgd+8/M9N0L2rJKPZGTABx54+UPO7
WhGX69NEyKdbcVaTpNGO+Q8wn6r9+Pbp/AuUJRCVs122E6fsqscx1GZXQYHeqgU1xHGUW1sgZajC
L0zWYv4BDtHvH6GFcsuPHQo794jWljJ1Z1l2IeV8OdDXd4XsJFM6dEJs3GqrMJAOb0KKVJiMd/kd
FaX7Lxu7prdY2GhKEv1ek6GQjl1ApxGt+h2S70a6YZ2mmJa7yb2qGcqo4ws3eOjjfpneLkK2pjgM
hxF0y00xZRVDMWTvyC54aRfoUdlajG6VPL8sxX1YwhtMWblghuzr5wvyLx5rNVnFGCJ0qRBJzfJS
U4oYQ7mhQA2pEJ+SlpFJhhAXNyGOfa0U1NN2Uwu7YZ9hn/6VFPzIXjp1Y0irByS6JyRpE+hTNcZz
JivUQq2hVnwqEFQQcILrTEUnKmXiZP0znWnLjjqKG8SIVBQVFUTAJlOCGFGjwZZIP2lAn5U6gexw
G4l12iKDaIOrm8FCQYkwrNXHQjhEdILSBCX6gtQcTWF4XsIUkuU2Fi1ZRRTE7FfPd4KohdXGIPH5
o1CkKwpFV/JXt5wUc4YIoik3Z+czbHT7gTRlq8U/uReDuRPYzrJtl1ANlVJY57Uv5v8FPCdMdrDT
4ampSynFSceW5MBQa/W3h22urTc2fIdTr35mHyBPVuPdL/lsv2qfNuCsF3beUp6O8WBXxGjUIdqD
OQr0YqlqNQc1+TevK9kA3PT5XovCLUlVNWWWqqKs+o1GZXXDkUI6Qhw54/+uMpAKnXqtbp5uSfhH
W2LWwGbu/UcxFy8f2tdWrsjEafwIduycLZvW+zYcPdV6G6fnKrro4uyQFAlGkSxp/O69e49UVjka
W3a1iUmJ1ocboinIq02pYlKs+vxUSIbk7alZmqUz3GY8Sxcnk1x32LVrh6XjecMifTJsBS9jlAjy
NTAa2pY9Ibyb1zLQe63csGK5fivQf1SZHMYqSpBWfaWIk8qcWQy7wFZbf+HTWv98dfO6fHVxMk1+
evq2KHG83W08bbJRh9ts2C0SyhMSTXG14nQ7y/OfLiQ6BKThP3Un8f+9vRB7a1JAyr1ZhZu6bjK+
+B83GZ0KqLYIwzqm1OeXsZwOZEfwI6E3j9d+VYgP7azRmL+zuo2Tb4vb1bru80GvRrFRT4hshrdX
YrLSTEp49GWpJBkLS5pPn8qvhIPQGF0ZUOVrXgm+EKhfFrFpa1hAiKc4ulbGNtHpzgxlL2kuKK34
0XMJLrFJ0Ve4y5+PPegdnBgVHV0a1WjZWZBL+4bJaDQCZ4IUbWjmnCVLlWlpdMTVcZk52pzC219i
D0VnwyRm6988LJInZ6V4h2TydA9TUinph66huAKobcbZe3E29sF+xWKhmrk8rVmzfeICIl+uWEuc
0oiUgjejkPQ+RZzPkz53FxcAl5ttzlP+anVMpsu3opmHm2rsvQqdl2GfKb+ntkuj1Wp0oC9PVD4e
eYZMAhIAZGYgmUv6EtfUzoA12drcgm+voPyc4hg6FaEU7rwEgXh2grCIgrCghDcaDSkfR36y2Uup
0RgMoO04atFXXyF7KbbF7xU6JUW5+QWvevzzW1Zhm0Vy97kUV7WP4+ujyqKjoxJDFM0vNhi3GTOK
wL0AzDnGUq6ZTOBrYysjImJjIyIqY2trKyvFriXecOKys5JCLJNiLS7jz5KyFeyrxTvXPfGaFwUd
rYcmxwGKTNTnUmxr789XgilOsfTjSRAqlp4FzsHxKu7FLjZIlzZRESqa4nt0gNgH9zqmp1B2oq6w
SdmxEA50CD4WV2y7Mff6APmzGpzOY/lk8cJnlmKr2BWPU4FqhRMdXfHl7HHvKSt/6BghbKA75San
6yAtQ0HOv9jijPY3iE6GOqG7M11cVYNOjynJcMBt16NPNjgw4QGdTgRP3Mhjz+lPCbPBOzk4SIFr
WIumPpOKHPa59qfiXF1OpoGmLksZn74+fiH4wcY8L2uGWU/zyW2HjGQlOcImQsbOPJM5N1tRWNJ0
8hYcB/vG/MSSQJM/rOPkf4NgWBbrE+sfGL2RVuTKE0nnzAazgRqh+lJ7ZWWSPSQlOHPjlKujsRty
P3yPcuUv956ODAuyDxrFAQ6XfLeYmrejeJt6wEN5qb5KUvHvuoAgZYlrerKBfoG7np4hBTj5bdID
nWVP7u773e7G7XEWha9eEwnJXEhVanlFRcnuc6taZ40nPdcSiYLIfjVEv24HvNFFD4x8yRDB5Z8p
Qm52ew3fnBZ4vpz0c2zUOmDg5Yf3pMIq0eCyDhomJ3twuO3gayf9xuA9Hss3B2izFBFNHjlRwI0l
3BrCKP9PMWPg/3I1QOrE6cCZffR16++P1CSAIlkXL3oXjTGmOp26mHQ6hhKWdVHZ2mfaSHUpRhTK
iG8R6+hxtaeiR7epll7dbTt69bpq6dWbYf4b3Ih0yQplbmRzdHJlYW0KZW5kb2JqCjQzIDAgb2Jq
CjUxNTAKZW5kb2JqCjQ0IDAgb2JqCjw8L1N1YnR5cGUvVHlwZTFDL0ZpbHRlci9GbGF0ZURlY29k
ZS9MZW5ndGggNDUgMCBSPj5zdHJlYW0KeJyNVA1QVFUUvm/fsu8JK5XOE0t7uxiWZqYoE9q/kIA/
WwoWGhG7Cxtsu4AuSCAKhkDsnl2KjURRlwUScXdtJWBDK7QoZ8ymMH+mmWJ0dIpyyn7tPLo09oCx
aaZmas68mXffPef77vfu+Q5DlArCMAyXqEtYH7to7PUuaQYjzVRIt7NAM2cqi0aeCgM1C2pl90xV
9xTMuAUfvQljbyYswyStzkgs3FhmM+fmFWvnJM7Vxi5dGq9dlm+ymbMNBVqdoTjPlG8olhdWbVph
ttlUXHavdpnVqk0dqyjSppqKTLYSU84EeWJh/sbNxSabVleYY7IVEEImF2QXmnJTi81WQ356NCFP
kMfIGpJEUshi8iRZSXQkgTxOlhAFiZRVECWxkEFmPrNLYWQVbArbyJ5UJisvh5WFfSxFRI6EQUgK
DzDIIoPPIsNKB/CEcMX4DlUk6vIeNYsOVKjoQzvC9NxJN+Ro6OkkPdfmOgMH5DgLbXY+lIRmDskX
x08d9hY9ItKOfyZwkVJdTVCKCjJdqMZkDGelPJwkNG2HF8sdjspasbp0Y8oC4Gk04D19J5wYhVHu
E/Zah8Nhd2jq6iq2go03HNryurdr19EhyjU8SZOWU55ydOaVBXgXxvqQd4uR1xWLthOZ57YA45N5
mlDNSh1YKOCMBVdpLI2Pu4NOo1HD8zEW4y9dxSkiddG1Ap0GOGnoKLzrCWpau/v2heADCG7cW9iS
C+mQwS8BmUgYA2cel8ExrRMfnsCvGmal9bhJaGuA1w9Wn888qjH0pu1aK8tYeN9sOoVqf16I83Be
37W9zVuhptxRV1Gj2bRyRUmGnDHbgTMGNJ1KV4/zTW/Q43+jNQS/QSNVOzfwEzpoph8XDZ/3Y8Uh
xjeERdcahlichiuFtzcNQDPwKL7/+en+gmDla5rOPe0v73XV1da9BBV8ye7S/ft3e7ztZX6D3lhS
ViIa23Ma18uc4rqHl1tfM/aaNVtKy/IgF/Rtz3nLi2p0xZDKr/k4BVfj/RfeO395baetScxoXwWL
wQZZUOvUuyu7wAOvOpt37uIxokGIg8EjR2Dw0iVIysyEpDjNAM0Qzp6uSM/LW0un0+m5A12nPoJm
TeR1NlkklYGSEB4OYDA0BWNwKnZhdNTUrdJ+/Ea+mWDgDLzH/zDrAtWJo2H6a6PfRetVna5fICjH
r9Apt080Huam9mGEqhv8la2bDpphM6TIYew3H8sbcrQC/1PTV7v37qivKHVUVzg0tRusJYWwCqo/
2TFcc7z6HCUBubNaBDoJgzIKxtcvXbPOEUcfkM/H9I53DBfCR1qYn2QLTO5lMVeaLWBMiMZgmkHl
mJMxZ04d//yX1MdFDxWfOffWwDnxuCGdW5FfYH0CPmmTW4NZsp1ACKX+HzGGwbBfWCwaYYWe5305
RqvZZPKZe94M+HpE+hhdIei5E3/z0SB0yDY5Be2yTp00j7uBJX3XPwGUP7JSoMv+st/oh+Nln8ll
HfDZDXddV8y6SGoCaOzAuABzSPaycczJejwmDCecpNFpNLw23uAv6zjY6e3yVO/bslMMNLbLV8p/
2mNaqsnm6CK6OIuyC5F/YfDzd3rfatE8B/ofxX6V91Vo9VbBNs1qJ+yBNp4yA8L8+DLL08bAka+R
+L5/RZbPHhw/8o0pkjXxsCMX5UkynHOMKu98JtlSLpZfTG5eBfMgXVeSwf/PscJ8eeyjw62bH/rX
sfKfCfKfUTrCSZV3JCLE/O6Trgvufa6GC8CHuA12O6RCASRAkYvXc02XYZsD7C9VaeiDo6k0WbKG
XQmpLPZ7wQRWuHs86QLXQwm9fZTQJHn725CqwD5XdpEF7gHb+DZW/cE3bKmvboVbW6He3bAHEyTD
dEwcNTSUj3/1wCsvuz2ywZmnmghgzFmvtK6FuYoxLNZII4JrN7hgJ99n9Fqtxs1Z28Hu2ia+PRru
KnXWecaqnfUuD/8ufUDotvizsy2W7Gy/pbvb7+8WIyubRhKaqLsRs1pUNNPNhcKRiRDDlfEt6kmH
GtVqZNrUk53qSEL+BBzBPC4KZW5kc3RyZWFtCmVuZG9iago0NSAwIG9iagoxNTMyCmVuZG9iagoy
NSAwIG9iago8PC9CYXNlRm9udC9ERUJPVkYrQ01UVDEwL0ZvbnREZXNjcmlwdG9yIDI0IDAgUi9U
eXBlL0ZvbnQKL0ZpcnN0Q2hhciA0NS9MYXN0Q2hhciAxMTcvV2lkdGhzWyA1MjUgNTI1IDAKMCAw
IDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAo1MjUgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg
MCAwIDAKMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDUyNSAwIDUyNSA1MjUgNTI1
IDUyNSA1MjUgNTI1IDUyNSAwIDUyNSA1MjUgMCA1MjUgNTI1CjUyNSAwIDUyNSA1MjUgNTI1IDUy
NV0KL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZy9TdWJ0eXBlL1R5cGUxPj4KZW5kb2JqCjIzIDAg
b2JqCjw8L0Jhc2VGb250L0ZUU0VQRCtDTVRJMTAvRm9udERlc2NyaXB0b3IgMjIgMCBSL1R5cGUv
Rm9udAovRmlyc3RDaGFyIDY4L0xhc3RDaGFyIDExOS9XaWR0aHNbIDc1NSAwIDY1MyAwIDAgMCAw
IDAgMCAwIDc0MyAwCjY3OCAwIDAgMCA3MTYgMCAwIDAgMCAwIDAgMCAwIDAgMCAwCjAgNTExIDAg
NDYwIDAgNDYwIDAgMCAwIDAgMCA0NjAgMCA4MTggNTYyIDUxMQowIDAgNDIyIDAgMzMyIDUzNyAw
IDY2NF0KL0VuY29kaW5nL1dpbkFuc2lFbmNvZGluZy9TdWJ0eXBlL1R5cGUxPj4KZW5kb2JqCjIx
IDAgb2JqCjw8L0Jhc2VGb250L1lHWlhQRStDTVNZNy9Gb250RGVzY3JpcHRvciAyMCAwIFIvVHlw
ZS9Gb250Ci9GaXJzdENoYXIgMC9MYXN0Q2hhciAwL1dpZHRoc1sKODkzXQovRW5jb2RpbmcgNDYg
MCBSL1N1YnR5cGUvVHlwZTE+PgplbmRvYmoKNDYgMCBvYmoKPDwvVHlwZS9FbmNvZGluZy9CYXNl
RW5jb2RpbmcvV2luQW5zaUVuY29kaW5nL0RpZmZlcmVuY2VzWwowL21pbnVzXT4+CmVuZG9iagox
OSAwIG9iago8PC9CYXNlRm9udC9TRlpST0wrQ01SNy9Gb250RGVzY3JpcHRvciAxOCAwIFIvVHlw
ZS9Gb250Ci9GaXJzdENoYXIgOC9MYXN0Q2hhciA2NS9XaWR0aHNbIDgxNSA4NzcgMCAwIDAgMCAw
IDAKMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDAgMCAwIDAgMCAwIDAgMCAwIDAg
MCAwIDAgMCAwCjAgNTY5IDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDg0M10KL0VuY29k
aW5nIDQ3IDAgUi9TdWJ0eXBlL1R5cGUxPj4KZW5kb2JqCjQ3IDAgb2JqCjw8L1R5cGUvRW5jb2Rp
bmcvQmFzZUVuY29kaW5nL1dpbkFuc2lFbmNvZGluZy9EaWZmZXJlbmNlc1sKOC9QaGkvUHNpXT4+
CmVuZG9iagoxNyAwIG9iago8PC9CYXNlRm9udC9BV0xaWkErQ01NSTcvRm9udERlc2NyaXB0b3Ig
MTYgMCBSL1R5cGUvRm9udAovRmlyc3RDaGFyIDY0L0xhc3RDaGFyIDExMC9XaWR0aHNbCjYxMCAw
IDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg
MCAwCjAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCA3MDZdCi9FbmNvZGluZyA0OCAwIFIvU3Vi
dHlwZS9UeXBlMT4+CmVuZG9iago0OCAwIG9iago8PC9UeXBlL0VuY29kaW5nL0Jhc2VFbmNvZGlu
Zy9XaW5BbnNpRW5jb2RpbmcvRGlmZmVyZW5jZXNbCjY0L3BhcnRpYWxkaWZmXT4+CmVuZG9iagox
NSAwIG9iago8PC9CYXNlRm9udC9JRUNKRVIrQ01TWTEwL0ZvbnREZXNjcmlwdG9yIDE0IDAgUi9U
eXBlL0ZvbnQKL0ZpcnN0Q2hhciAwL0xhc3RDaGFyIDkyL1dpZHRoc1sKNzc4IDAgMCAwIDAgMCAw
IDAgNzc4IDAgMCAwIDAgMCAwIDAKMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDEw
MDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwCjAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAg
MCAwIDAKMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDAgMCAwIDAgMCAwIDAgMCAw
IDAgMCA2NjddCi9FbmNvZGluZyA0OSAwIFIvU3VidHlwZS9UeXBlMT4+CmVuZG9iago0OSAwIG9i
ago8PC9UeXBlL0VuY29kaW5nL0Jhc2VFbmNvZGluZy9XaW5BbnNpRW5jb2RpbmcvRGlmZmVyZW5j
ZXNbCjAvbWludXMKOC9jaXJjbGVwbHVzCjMzL2Fycm93cmlnaHQKOTIvaW50ZXJzZWN0aW9uXT4+
CmVuZG9iagoxMyAwIG9iago8PC9CYXNlRm9udC9PUklCWlMrQ01NSTEwL0ZvbnREZXNjcmlwdG9y
IDEyIDAgUi9UeXBlL0ZvbnQKL0ZpcnN0Q2hhciA1OC9MYXN0Q2hhciA4OC9XaWR0aHNbIDI3OCAw
IDAgMCAwIDAKMCA3NTAgNzU5IDAgMCAwIDAgMCA4MzEgMCAwIDAgMCAwIDAgMAowIDAgMCAwIDAg
MCAwIDAgODI4XQovRW5jb2RpbmcgNTAgMCBSL1N1YnR5cGUvVHlwZTE+PgplbmRvYmoKNTAgMCBv
YmoKPDwvVHlwZS9FbmNvZGluZy9CYXNlRW5jb2RpbmcvV2luQW5zaUVuY29kaW5nL0RpZmZlcmVu
Y2VzWwo1OC9wZXJpb2RdPj4KZW5kb2JqCjExIDAgb2JqCjw8L0Jhc2VGb250L1ZZVkdWTCtDTVIx
MC9Gb250RGVzY3JpcHRvciAxMCAwIFIvVHlwZS9Gb250Ci9GaXJzdENoYXIgMTEvTGFzdENoYXIg
MTIxL1dpZHRoc1sgNTgzIDU1NiAwIDAgMAowIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAw
CjAgMjc4IDAgMCAwIDAgMCAyNzggMzg5IDM4OSAwIDAgMjc4IDMzMyAyNzggMAowIDUwMCAwIDAg
NTAwIDUwMCAwIDAgMCAwIDI3OCAwIDAgMCAwIDAKMCA3NTAgMCAwIDc2NCA2ODEgNjUzIDAgMCAw
IDAgMCA2MjUgOTE3IDAgNzc4CjY4MSAwIDczNiA1NTYgNzIyIDAgMCAwIDc1MCA3NTAgMCAwIDAg
MCAwIDAKMCA1MDAgNTU2IDQ0NCA1NTYgNDQ0IDMwNiA1MDAgNTU2IDI3OCAwIDUyOCAyNzggODMz
IDU1NiA1MDAKNTU2IDUyOCAzOTIgMzk0IDM4OSA1NTYgNTI4IDcyMiA1MjggNTI4XQovRW5jb2Rp
bmcgNTEgMCBSL1N1YnR5cGUvVHlwZTE+PgplbmRvYmoKNTEgMCBvYmoKPDwvVHlwZS9FbmNvZGlu
Zy9CYXNlRW5jb2RpbmcvV2luQW5zaUVuY29kaW5nL0RpZmZlcmVuY2VzWwoxMS9mZi9maQozOS9x
dW90ZXJpZ2h0XT4+CmVuZG9iago5IDAgb2JqCjw8L0Jhc2VGb250L0tFRUVPVCtDTUJYMTIvRm9u
dERlc2NyaXB0b3IgOCAwIFIvVHlwZS9Gb250Ci9GaXJzdENoYXIgMzMvTGFzdENoYXIgMTE2L1dp
ZHRoc1sgMzQzIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMAowIDAgMCAwIDAgMCAwIDAgMCAw
IDAgMCAwIDAgMCAwCjAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAgMCAwIDAKMCAwIDgzOSAwIDAg
MCAwIDExNjIgMCAwIDAgMCAwIDAgMCAwCjAgNTQ3IDAgNTAwIDAgNTEzIDAgNTYzIDAgMzEzIDAg
MCAzMTMgOTM4IDYyNSA1NjMKMCAwIDAgMCA0MzhdCi9FbmNvZGluZy9XaW5BbnNpRW5jb2Rpbmcv
U3VidHlwZS9UeXBlMT4+CmVuZG9iagoyNCAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlwdG9yL0Zv
bnROYW1lL0RFQk9WRitDTVRUMTAvRm9udEJCb3hbMCAtMjI5IDUyNCA2MTddL0ZsYWdzIDUKL0Fz
Y2VudCA2MTcKL0NhcEhlaWdodCA2MTcKL0Rlc2NlbnQgLTIyOQovSXRhbGljQW5nbGUgMAovU3Rl
bVYgNzgKL0F2Z1dpZHRoIDUyNQovTWF4V2lkdGggNTI1Ci9NaXNzaW5nV2lkdGggNTI1Ci9DaGFy
U2V0KC9uL2Mvby9kL3AvZS9mL3IvZy9hdC9zL2gvdC9pL3UvaHlwaGVuL2svcGVyaW9kL2wvYSkv
Rm9udEZpbGUzIDI4IDAgUj4+CmVuZG9iagoyMiAwIG9iago8PC9UeXBlL0ZvbnREZXNjcmlwdG9y
L0ZvbnROYW1lL0ZUU0VQRCtDTVRJMTAvRm9udEJCb3hbMCAtMTEgODUyIDY5NF0vRmxhZ3MgNAov
QXNjZW50IDY5NAovQ2FwSGVpZ2h0IDY5NAovRGVzY2VudCAtMTEKL0l0YWxpY0FuZ2xlIDAKL1N0
ZW1WIDEyNwovTWlzc2luZ1dpZHRoIDM1NwovQ2hhclNldCgvbi9jL28vTi9lL0QvUC9yL0YvdC91
L1Qvay93L2EvbSkvRm9udEZpbGUzIDMwIDAgUj4+CmVuZG9iagoyMCAwIG9iago8PC9UeXBlL0Zv
bnREZXNjcmlwdG9yL0ZvbnROYW1lL1lHWlhQRStDTVNZNy9Gb250QkJveFswIDAgNzg0IDI3NV0v
RmxhZ3MgNAovQXNjZW50IDI3NQovQ2FwSGVpZ2h0IDI3NQovRGVzY2VudCAwCi9JdGFsaWNBbmds
ZSAwCi9TdGVtViAxMTcKL0NoYXJTZXQoL21pbnVzKS9Gb250RmlsZTMgMzIgMCBSPj4KZW5kb2Jq
CjE4IDAgb2JqCjw8L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvU0ZaUk9MK0NNUjcvRm9u
dEJCb3hbMCAwIDgwNiA3MTNdL0ZsYWdzIDQKL0FzY2VudCA3MTMKL0NhcEhlaWdodCA3MTMKL0Rl
c2NlbnQgMAovSXRhbGljQW5nbGUgMAovU3RlbVYgMTIwCi9NaXNzaW5nV2lkdGggMzg0Ci9DaGFy
U2V0KC9BL29uZS9Qc2kvUGhpKS9Gb250RmlsZTMgMzQgMCBSPj4KZW5kb2JqCjE2IDAgb2JqCjw8
L1R5cGUvRm9udERlc2NyaXB0b3IvRm9udE5hbWUvQVdMWlpBK0NNTUk3L0ZvbnRCQm94WzAgLTIw
IDY1OCA3MTRdL0ZsYWdzIDQKL0FzY2VudCA3MTQKL0NhcEhlaWdodCA3MTQKL0Rlc2NlbnQgLTIw
Ci9JdGFsaWNBbmdsZSAwCi9TdGVtViA5OAovTWlzc2luZ1dpZHRoIDMzMwovQ2hhclNldCgvbi9w
YXJ0aWFsZGlmZikvRm9udEZpbGUzIDM2IDAgUj4+CmVuZG9iagoxNCAwIG9iago8PC9UeXBlL0Zv
bnREZXNjcmlwdG9yL0ZvbnROYW1lL0lFQ0pFUitDTVNZMTAvRm9udEJCb3hbMCAtODMgOTQyIDU5
OF0vRmxhZ3MgNAovQXNjZW50IDU5OAovQ2FwSGVpZ2h0IDU5OAovRGVzY2VudCAtODMKL0l0YWxp
Y0FuZ2xlIDAKL1N0ZW1WIDE0MQovQ2hhclNldCgvaW50ZXJzZWN0aW9uL21pbnVzL2Fycm93cmln
aHQvY2lyY2xlcGx1cykvRm9udEZpbGUzIDM4IDAgUj4+CmVuZG9iagoxMiAwIG9iago8PC9UeXBl
L0ZvbnREZXNjcmlwdG9yL0ZvbnROYW1lL09SSUJaUytDTU1JMTAvRm9udEJCb3hbMCAwIDg4MSA3
MTZdL0ZsYWdzIDQKL0FzY2VudCA3MTYKL0NhcEhlaWdodCA3MTYKL0Rlc2NlbnQgMAovSXRhbGlj
QW5nbGUgMAovU3RlbVYgMTMyCi9NaXNzaW5nV2lkdGggMzMzCi9DaGFyU2V0KC9BL1gvQi9IL3Bl
cmlvZCkvRm9udEZpbGUzIDQwIDAgUj4+CmVuZG9iagoxMCAwIG9iago8PC9UeXBlL0ZvbnREZXNj
cmlwdG9yL0ZvbnROYW1lL1ZZVkdWTCtDTVIxMC9Gb250QkJveFswIC0yNTAgODc5IDc1MF0vRmxh
Z3MgNAovQXNjZW50IDc1MAovQ2FwSGVpZ2h0IDc1MAovRGVzY2VudCAtMjUwCi9JdGFsaWNBbmds
ZSAwCi9TdGVtViAxMzEKL01pc3NpbmdXaWR0aCAzMzMKL0NoYXJTZXQoL0wvQS95L24vb25lL2Mv
WC9NL28vZC9ZL3F1b3RlcmlnaHQvcC9lL3BhcmVubGVmdC9PL0QvcS9mL2ZmL3BhcmVucmlnaHQv
UC9mb3VyL0Uvci9nL2ZpdmUvRi9zL2gvUi9maS90L2kvY29tbWEvUy9leGNsYW0vdS9oeXBoZW4v
VC92L2svcGVyaW9kL3cvbC9hL2NvbG9uL3gvbS9iKS9Gb250RmlsZTMgNDIgMCBSPj4KZW5kb2Jq
CjggMCBvYmoKPDwvVHlwZS9Gb250RGVzY3JpcHRvci9Gb250TmFtZS9LRUVFT1QrQ01CWDEyL0Zv
bnRCQm94WzAgLTIwMSAxMTM5IDcwNl0vRmxhZ3MgNAovQXNjZW50IDcwNgovQ2FwSGVpZ2h0IDcw
NgovRGVzY2VudCAtMjAxCi9JdGFsaWNBbmdsZSAwCi9TdGVtViAxNzAKL01pc3NpbmdXaWR0aCAz
NzUKL0NoYXJTZXQoL24vYy9vL2UvZy9SL3QvaS9leGNsYW0vbC9hL20vVykvRm9udEZpbGUzIDQ0
IDAgUj4+CmVuZG9iagoyIDAgb2JqCjw8L1Byb2R1Y2VyKEVTUCBHaG9zdHNjcmlwdCA4MTUuMDMp
Ci9DcmVhdGlvbkRhdGUoRDoyMDA4MTAyMDE0MzYyMikKL01vZERhdGUoRDoyMDA4MTAyMDE0MzYy
Mik+PmVuZG9iagp4cmVmCjAgNTIKMDAwMDAwMDAwMCA2NTUzNSBmIAowMDAwMDE0NDA5IDAwMDAw
IG4gCjAwMDAwMzQ5NTUgMDAwMDAgbiAKMDAwMDAxNDM1MCAwMDAwMCBuIAowMDAwMDE0MTkwIDAw
MDAwIG4gCjAwMDAwMDAwMTUgMDAwMDAgbiAKMDAwMDAxNDE2OSAwMDAwMCBuIAowMDAwMDE0NDU3
IDAwMDAwIG4gCjAwMDAwMzQ3MTQgMDAwMDAgbiAKMDAwMDAzMjM5NiAwMDAwMCBuIAowMDAwMDM0
MzQ2IDAwMDAwIG4gCjAwMDAwMzE4MzEgMDAwMDAgbiAKMDAwMDAzNDEyNyAwMDAwMCBuIAowMDAw
MDMxNTI5IDAwMDAwIG4gCjAwMDAwMzM4OTYgMDAwMDAgbiAKMDAwMDAzMTA2NCAwMDAwMCBuIAow
MDAwMDMzNjc2IDAwMDAwIG4gCjAwMDAwMzA3MzEgMDAwMDAgbiAKMDAwMDAzMzQ2MCAwMDAwMCBu
IAowMDAwMDMwMzgwIDAwMDAwIG4gCjAwMDAwMzMyNjkgMDAwMDAgbiAKMDAwMDAzMDE1MSAwMDAw
MCBuIAowMDAwMDMzMDI5IDAwMDAwIG4gCjAwMDAwMjk4NjMgMDAwMDAgbiAKMDAwMDAzMjc0MSAw
MDAwMCBuIAowMDAwMDI5NTI1IDAwMDAwIG4gCjAwMDAwMTQ0OTggMDAwMDAgbiAKMDAwMDAxNDUy
OCAwMDAwMCBuIAowMDAwMDE0NjQ2IDAwMDAwIG4gCjAwMDAwMTY2NjcgMDAwMDAgbiAKMDAwMDAx
NjY4OCAwMDAwMCBuIAowMDAwMDE5MDE4IDAwMDAwIG4gCjAwMDAwMTkwMzkgMDAwMDAgbiAKMDAw
MDAxOTM1NyAwMDAwMCBuIAowMDAwMDE5Mzc3IDAwMDAwIG4gCjAwMDAwMjAxOTYgMDAwMDAgbiAK
MDAwMDAyMDIxNiAwMDAwMCBuIAowMDAwMDIwODcyIDAwMDAwIG4gCjAwMDAwMjA4OTIgMDAwMDAg
biAKMDAwMDAyMTU0NCAwMDAwMCBuIAowMDAwMDIxNTY0IDAwMDAwIG4gCjAwMDAwMjI2MDkgMDAw
MDAgbiAKMDAwMDAyMjYyOSAwMDAwMCBuIAowMDAwMDI3ODY1IDAwMDAwIG4gCjAwMDAwMjc4ODYg
MDAwMDAgbiAKMDAwMDAyOTUwNCAwMDAwMCBuIAowMDAwMDMwMjk0IDAwMDAwIG4gCjAwMDAwMzA2
NDMgMDAwMDAgbiAKMDAwMDAzMDk3MSAwMDAwMCBuIAowMDAwMDMxNDAwIDAwMDAwIG4gCjAwMDAw
MzE3NDMgMDAwMDAgbiAKMDAwMDAzMjI5NSAwMDAwMCBuIAp0cmFpbGVyCjw8IC9TaXplIDUyIC9S
b290IDEgMCBSIC9JbmZvIDIgMCBSCi9JRCBbKB0QuwW74n5gtuFGjZdNkm4pKB0QuwW74n5gtuFG
jZdNkm4pXQo+PgpzdGFydHhyZWYKMzUwNjYKJSVFT0YK
  </pdf>
</packet> <!-- LaTeX Document (PDF) -->
<packet label="Triangulations"
	type="Container" typeid="1"
	parent="Container">
<packet label="Figure 8 Knot Complement"
	type="Triangulation" typeid="3"
	parent="Triangulations">
  <tetrahedra ntet="2">
    <tet desc=""> 1 108 1 75 1 30 1 198 </tet>
    <tet desc=""> 0 108 0 75 0 30 0 198 </tet>
  </tetrahedra>
  <H1><abeliangroup rank="1"> </abeliangroup></H1>
<packet label="Tri-Quad Normal Surfaces"
	type="Normal Surface List" typeid="6"
	parent="Figure 8 Knot Complement">
  <params embedded="T" flavourid="0"
	flavour="Standard normal (tri-quad)"/>
  <surface len="14" name=""> 0 1 1 1 2 1 3 1 7 1 8 1 9 1 10 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="F"/>
	<compact value="T"/> </surface>
</packet> <!-- Tri_Quad Normal Surfaces (Normal Surface List) -->
<packet label="Quad Normal Surfaces"
	type="Normal Surface List" typeid="6"
	parent="Figure 8 Knot Complement">
  <params embedded="T" flavourid="1"
	flavour="Quad normal"/>
  <surface len="6" name=""> 0 2 5 1
	<realbdry value="F"/>
	<compact value="F"/> </surface>
  <surface len="6" name=""> 1 2 5 1
	<realbdry value="F"/>
	<compact value="F"/> </surface>
  <surface len="6" name=""> 2 1 3 2
	<realbdry value="F"/>
	<compact value="F"/> </surface>
  <surface len="6" name=""> 2 1 4 2
	<realbdry value="F"/>
	<compact value="F"/> </surface>
</packet> <!-- Quad Normal Surfaces (Normal Surface List) -->
<packet label="Angle Structures"
	type="Angle Structure List" typeid="9"
	parent="Figure 8 Knot Complement">
  <struct len="7"> 0 1 4 1 6 1 <flags value="6"/></struct>
  <struct len="7"> 1 1 3 1 6 1 <flags value="6"/></struct>
  <struct len="7"> 2 1 5 1 6 1 <flags value="6"/></struct>
  <struct len="7"> 2 2 3 1 4 1 6 2 <flags value="4"/></struct>
  <struct len="7"> 0 1 1 1 5 2 6 2 <flags value="4"/></struct>
  <allowstrict value="T"/>
  <allowtaut value="T"/>
</packet> <!-- Angle Structures (Angle Structure List) -->
</packet> <!-- Figure 8 Knot Complement (Triangulation) -->
<packet label="Layered Solid Torus"
	type="Triangulation" typeid="3"
	parent="Triangulations">
  <tetrahedra ntet="4">
    <tet desc=""> 1 54 1 156 -1 -1 -1 -1 </tet>
    <tet desc=""> 2 54 2 156 0 135 0 120 </tet>
    <tet desc=""> 3 39 3 216 1 135 1 120 </tet>
    <tet desc=""> 3 57 3 147 2 216 2 39 </tet>
  </tetrahedra>
  <H1><abeliangroup rank="1"> </abeliangroup></H1>
<packet label="Normal Surfaces"
	type="Normal Surface List" typeid="6"
	parent="Layered Solid Torus">
  <params embedded="T" flavourid="0"
	flavour="Standard normal (tri-quad)"/>
  <surface len="28" name=""> 6 1 12 1 18 1 26 1
	<euler value="-1"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 2 1 3 1 4 1 7 1 8 1 9 1 10 1 14 1 15 1 18 1 26 2
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 5 2 9 1 10 1 11 1 14 1 15 1 18 1 26 2
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 0 2 1 2 6 1 7 1 8 1 13 1 14 1 15 1 26 1
	<euler value="0"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 0 1 1 1 2 1 3 1 7 1 8 1 9 1 10 1 14 1 15 1 18 1 26 2
	<euler value="-1"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 2 1 3 1 4 1 7 1 8 1 9 1 10 1 14 1 15 1 16 1 17 1 21 1 22 1 23 1 24 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 5 2 9 1 10 1 11 1 14 1 15 1 16 1 17 1 21 1 22 1 23 1 24 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 0 1 1 1 2 1 3 1 7 1 8 1 9 1 10 1 14 1 15 1 16 1 17 1 21 1 22 1 23 1 24 1
	<euler value="1"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 6 2 12 2 16 1 17 1 18 1 21 1 22 1 23 1 24 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 4 2 13 2 19 2 23 1 24 1 25 1
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 0 2 1 2 13 2 19 2 23 1 24 1 25 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="28" name=""> 0 4 1 4 6 3 7 3 8 3 13 1 14 1 15 1 20 2 21 1 22 1 27 1
	<euler value="1"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
</packet> <!-- Normal Surfaces (Normal Surface List) -->
<packet label="Almost Normal Surfaces"
	type="Normal Surface List" typeid="6"
	parent="Layered Solid Torus">
  <params embedded="T" flavourid="102"
	flavour="Standard almost normal (tri-quad-oct)"/>
  <surface len="40" name=""> 2 1 3 1 4 1 10 1 11 1 12 1 13 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 7 1 10 1 11 1 12 1 13 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 2 3 2 12 2 13 2 15 2 22 2 23 2 29 2 30 2 31 2 32 3 33 3 34 1
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 2 1 3 1 10 1 11 1 12 1 13 1 20 1 21 1 24 1 35 2
	<euler value="-1"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 2 1 2 16 2 25 2 32 1 33 1 34 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 5 2 12 1 13 1 14 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 2 3 2 5 2 12 2 13 2 19 2 20 2 21 2 22 3 23 3 24 1 30 3 31 3 32 3 33 3
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 5 1 18 1 20 1 21 1 35 1
	<euler value="-2"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 2 1 2 5 4 12 2 13 2 18 2 20 2 21 2 22 2 23 2 25 2 30 2 31 2 32 3 33 3 34 1
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 2 3 2 9 2 10 2 11 2 12 3 13 3 14 1 20 3 21 3 22 3 23 3 30 3 31 3 32 3 33 3
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 2 1 2 6 2 10 1 11 1 17 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 6 2 15 2 22 1 23 1 24 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 2 3 2 8 2 10 2 11 2 12 2 13 2 15 2 20 2 21 2 22 3 23 3 24 1 30 3 31 3 32 3 33 3
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 6 1 15 1 22 1 23 1 38 1
	<euler value="-1"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 2 1 2 6 5 10 2 11 2 15 3 22 1 23 1 28 2 30 2 31 2 32 1 33 1 36 1
	<euler value="-2"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 4 1 4 6 2 10 2 11 2 16 2 20 1 21 1 27 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 2 1 2 6 1 10 1 11 1 16 1 20 1 21 1 35 1
	<euler value="0"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 8 1 10 1 11 1 16 1 20 1 21 1 35 1
	<euler value="-2"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 4 1 4 6 1 10 1 11 1 16 3 20 1 21 1 25 2 32 1 33 1 39 1
	<euler value="-1"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 4 1 4 6 3 10 3 11 3 16 1 20 1 21 1 26 2 30 1 31 1 36 1
	<euler value="1"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 8 3 10 3 11 3 16 1 20 1 21 1 26 2 30 1 31 1 36 1
	<euler value="-5"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 3 1 3 2 1 3 1 6 1 10 2 11 2 18 1 20 1 21 1 26 2 30 1 31 1 36 1
	<euler value="-1"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 6 1 6 6 4 10 4 11 4 16 2 20 2 21 2 26 2 30 1 31 1 37 1
	<euler value="0"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 4 2 16 2 25 2 32 1 33 1 34 1
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 1 3 1 4 1 10 1 11 1 12 1 13 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 7 1 10 1 11 1 12 1 13 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 5 2 12 1 13 1 14 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 1 3 1 5 1 12 1 13 1 19 1 20 1 21 1 24 2 35 3
	<euler value="-4"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 2 3 2 9 2 10 2 11 2 12 3 13 3 14 1 20 3 21 3 24 3 35 6
	<euler value="-8"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 2 1 2 6 2 10 1 11 1 17 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 6 1 15 1 24 1 35 1
	<euler value="-1"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 2 1 3 1 8 1 10 1 11 1 12 1 13 1 15 1 20 1 21 1 24 2 35 3
	<euler value="-4"/>
	<orbl value="false"/>
	<twosided value="false"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface len="40" name=""> 0 1 1 1 2 1 3 1 10 1 11 1 12 1 13 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="1"/>
	<orbl value="true"/>
	<twosided value="true"/>
	<connected value="true"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
</packet> <!-- Almost Normal Surfaces (Normal Surface List) -->
</packet> <!-- Layered Solid Torus (Triangulation) -->
<packet label="Poincaré Homology Sphere"
	type="Triangulation" typeid="3"
	parent="Triangulations">
  <tetrahedra ntet="5">
    <tet desc=""> 1 120 2 147 3 78 4 39 </tet>
    <tet desc=""> 0 156 2 54 3 147 4 78 </tet>
    <tet desc=""> 0 57 1 135 3 45 4 147 </tet>
    <tet desc=""> 0 78 1 57 2 99 4 201 </tet>
    <tet desc=""> 0 39 1 78 2 57 3 210 </tet>
  </tetrahedra>
  <fundgroup>
<group generators="2">
  <reln> 0^-1 1^1 0^1 1^1 0^-1 1^-1 </reln>
  <reln> 0^-1 1^1 0^1 1^-2 0^1 1^1 </reln>
</group>
  </fundgroup>
  <H1><abeliangroup rank="0"> </abeliangroup></H1>
  <H1Rel><abeliangroup rank="0"> </abeliangroup></H1Rel>
  <H1Bdry><abeliangroup rank="0"> </abeliangroup></H1Bdry>
  <H2><abeliangroup rank="0"> </abeliangroup></H2>
  <zeroeff value="T"/>
  <splitsfce value="F"/>
</packet> <!-- Poincaré Homology Sphere (Triangulation) -->
<packet label="RP2xS1"
	type="Triangulation" typeid="3"
	parent="Triangulations">
  <tetrahedra ntet="3">
    <tet desc=""> 1 228 1 228 2 141 2 120 </tet>
    <tet desc=""> 0 228 0 228 2 39 2 210 </tet>
    <tet desc=""> 0 114 0 156 1 39 1 201 </tet>
  </tetrahedra>
  <fundgroup>
<group generators="2">
  <reln> 0^1 1^-1 0^1 1^1 </reln>
  <reln> 0^1 1^-1 0^-1 1^1 </reln>
</group>
  </fundgroup>
  <H1><abeliangroup rank="1"> 2 </abeliangroup></H1>
  <H1Rel><abeliangroup rank="1"> 2 </abeliangroup></H1Rel>
  <H1Bdry><abeliangroup rank="0"> </abeliangroup></H1Bdry>
  <H2><abeliangroup rank="0"> 2 </abeliangroup></H2>
<packet label="Note"
	type="Text" typeid="2"
	parent="RP2xS1">
  <text>There are in fact two triangulations of this 3-manifold with three tetrahedra.</text>
</packet> <!-- Note (Text) -->
</packet> <!-- RP2xS1 (Triangulation) -->
</packet> <!-- Triangulations (Container) -->
<packet label="Tori, Annuli and Discs"
	type="Surface Filter" typeid="8"
	parent="Container">
  <filter type="Combination filter" typeid="2">
    <op type="or"/>
  </filter>
<packet label="Tori and Annuli"
	type="Surface Filter" typeid="8"
	parent="Tori, Annuli and Discs">
  <filter type="Filter by basic properties" typeid="1">
    <euler> 0 </euler>
    <orbl value="T-"/>
    <compact value="T-"/>
  </filter>
</packet> <!-- Tori and Annuli (Surface Filter) -->
<packet label="Discs"
	type="Surface Filter" typeid="8"
	parent="Tori, Annuli and Discs">
  <filter type="Filter by basic properties" typeid="1">
    <euler> 1 </euler>
    <orbl value="T-"/>
    <compact value="T-"/>
    <realbdry value="T-"/>
  </filter>
</packet> <!-- Discs (Surface Filter) -->
</packet> <!-- Tori, Annuli and Discs (Surface Filter) -->
<packet label="Homology Summary"
	type="Script" typeid="7"
	parent="Container">
  <var name="tri" value="Triangulations"/>
  <line></line>
  <line># See the Regina handbook for more elaborate sample Python sessions.</line>
  <line></line>
  <line># Output the homology of each triangulation.</line>
  <line>t = tri.getFirstTreeChild()</line>
  <line>while t != None:</line>
  <line>	print t.getPacketLabel() + &quot;:&quot;, t.getHomologyH1()</line>
  <line>	t = t.getNextTreeSibling()</line>
</packet> <!-- Homology Summary (Script) -->
</packet> <!-- Container (Container) -->
</reginadata>