1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Python Interface *
* *
* Copyright (c) 1999-2009, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, *
* MA 02110-1301, USA. *
* *
**************************************************************************/
/* end stub */
#include "maths/nmatrix2.h"
#include "subcomplex/nsatannulus.h"
#include "triangulation/ntetrahedron.h"
#include "triangulation/ntriangulation.h"
#include <boost/python.hpp>
using namespace boost::python;
using regina::NPerm;
using regina::NSatAnnulus;
using regina::NTetrahedron;
namespace {
NTetrahedron* tet_read(NSatAnnulus& a, int which) {
return a.tet[which];
}
void tet_write(NSatAnnulus& a, int which, NTetrahedron* value) {
a.tet[which] = value;
}
NPerm roles_read(NSatAnnulus& a, int which) {
return a.roles[which];
}
void roles_write(NSatAnnulus& a, int which, NPerm value) {
a.roles[which] = value;
}
boost::python::tuple isAdjacent_tuple(const NSatAnnulus& a,
const NSatAnnulus& other) {
bool refVert = false;
bool refHoriz = false;
bool ans = a.isAdjacent(other, &refVert, &refHoriz);
return make_tuple(ans, refVert, refHoriz);
}
}
void addNSatAnnulus() {
class_<NSatAnnulus>("NSatAnnulus")
.def(init<const NSatAnnulus&>())
.def(init<NTetrahedron*, NPerm, NTetrahedron*, NPerm>())
.def("tet", tet_read, return_internal_reference<>())
.def("roles", roles_read)
.def("setTet", tet_write)
.def("setRoles", roles_write)
.def(self == self)
.def(self != self)
.def("meetsBoundary", &NSatAnnulus::meetsBoundary)
.def("switchSides", &NSatAnnulus::switchSides)
.def("otherSide", &NSatAnnulus::otherSide)
.def("reflectVertical", &NSatAnnulus::reflectVertical)
.def("verticalReflection", &NSatAnnulus::verticalReflection)
.def("reflectHorizontal", &NSatAnnulus::reflectHorizontal)
.def("horizontalReflection", &NSatAnnulus::horizontalReflection)
.def("rotateHalfTurn", &NSatAnnulus::rotateHalfTurn)
.def("halfTurnRotation", &NSatAnnulus::halfTurnRotation)
.def("isAdjacent", isAdjacent_tuple)
.def("isJoined", &NSatAnnulus::isJoined)
.def("isTwoSidedTorus", &NSatAnnulus::isTwoSidedTorus)
.def("transform", &NSatAnnulus::transform)
.def("image", &NSatAnnulus::image)
.def("attachLST", &NSatAnnulus::attachLST)
;
}
|