File: cone_dual_mode.cpp

package info (click to toggle)
regina-normal 5.1-6
  • links: PTS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 54,488 kB
  • sloc: cpp: 142,029; ansic: 19,218; xml: 9,844; objc: 7,729; perl: 1,190; python: 623; sh: 614; makefile: 34
file content (899 lines) | stat: -rw-r--r-- 35,476 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/*
 * Normaliz
 * Copyright (C) 2007-2014  Winfried Bruns, Bogdan Ichim, Christof Soeger
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

//---------------------------------------------------------------------------

#include <stdlib.h>
#include <vector>
#include <map>
#include <set>
#include <iostream>
#include <string>
#include <algorithm>

#include "libnormaliz/cone_dual_mode.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/list_operations.h"

//---------------------------------------------------------------------------

namespace libnormaliz {
using namespace std;

//---------------------------------------------------------------------------
//private
//---------------------------------------------------------------------------

template<typename Integer>
void Cone_Dual_Mode<Integer>::splice_them_sort(CandidateList< Integer>& Total, vector<CandidateList< Integer> >& Parts){

    CandidateList<Integer> New;
    New.verbose=verbose;
    New.dual=true;
    for(int i=0;i<omp_get_max_threads();i++)
        New.Candidates.splice(New.Candidates.end(),Parts[i].Candidates);
    New.sort_by_val();
    New.unique_vectors();
    Total.merge_by_val(New);
}

//---------------------------------------------------------------------------

template<typename Integer>
void Cone_Dual_Mode<Integer>::select_HB(CandidateList<Integer>& Cand, size_t guaranteed_HB_deg, 
                    CandidateList<Integer>& Irred, bool all_irreducible){

    if(all_irreducible){
        Irred.merge_by_val(Cand);
        return;
    }

    typename list<Candidate<Integer> >::iterator h;
    for(h=Cand.Candidates.begin(); h!=Cand.Candidates.end();){
        if(h->old_tot_deg<=guaranteed_HB_deg){
            Irred.Candidates.splice(Irred.Candidates.end(),Cand.Candidates,h++);
        }
        else{
            ++h;
        }
    }
    Irred.auto_reduce_sorted();  // necessary since the guaranteed HB degree only determines 
                          // in which degrees we can already decide whether an element belongs to the HB            
}


//---------------------------------------------------------------------------


//public
//---------------------------------------------------------------------------

template<typename Integer>
Cone_Dual_Mode<Integer>::Cone_Dual_Mode(const Matrix<Integer>& M){
    dim=M.nr_of_columns();
    if (dim!=M.rank()) {
        errorOutput()<<"Cone_Dual_Mode error: constraints do not define pointed cone!"<<endl;
        // M.pretty_print(errorOutput());
        throw BadInputException();
    }
    SupportHyperplanes = M;
    // support hyperplanes are already coprime (except for truncation/grading)
    // so just remove 0 rows
    SupportHyperplanes.remove_zero_rows();
    nr_sh = SupportHyperplanes.nr_of_rows();
    // hyp_size = dim + nr_sh;
    first_pointed = true;
    Intermediate_HB.dual=true;

    if (nr_sh != static_cast<size_t>(static_cast<key_t>(nr_sh))) {
        errorOutput()<<"Too many support hyperplanes to fit in range of key_t!"<<endl;
        throw FatalException();
    }
}

//---------------------------------------------------------------------------

template<typename Integer>
Matrix<Integer> Cone_Dual_Mode<Integer>::get_support_hyperplanes() const {
    return SupportHyperplanes;
}

//---------------------------------------------------------------------------

template<typename Integer>
Matrix<Integer> Cone_Dual_Mode<Integer>::get_generators()const{
    return Generators;
}

template<typename Integer>
vector<bool> Cone_Dual_Mode<Integer>::get_extreme_rays() const{
    return ExtremeRays;

}


size_t counter=0,counter1=0, counter2=0;

const size_t ReportBound=100000;

//---------------------------------------------------------------------------

// In the inhomogeneous case or when only degree 1 elements are to be found,
// we truncate the Hilbert basis at level 1. The level is the ordinaryl degree in
// for degree 1 elements and the degree of the homogenizing variable 
// in the inhomogeneous case.
//
// As soon as there are no positive or neutral (with respect to the current hyperplane)
// elements in the current Hilbert basis and truncate==true, new elements can only 
// be produced as sums of positive irreds of level 1 and negative irreds of level 0.
// In particular no new negative elements can be produced, and the only type of
// reduction on the positive side is the elimination of duplicates.
//
// If there are no elements on level 0 at all, then new elements cannot be produced anymore,
// and the production of new elements can be skipped.

template<typename Integer>
void Cone_Dual_Mode<Integer>::cut_with_halfspace_hilbert_basis(const size_t& hyp_counter, 
         const bool lifting, vector<Integer>& old_lin_subspace_half, bool pointed){
    if (verbose==true) {
        verboseOutput()<<"==================================================" << endl;
        verboseOutput()<<"cut with halfspace "<<hyp_counter+1 <<" ..."<<endl;
    }
    
    truncate=inhomogeneous || do_only_Deg1_Elements;
    
    size_t i;
    int sign;

    CandidateList<Integer> Positive_Irred(true),Negative_Irred(true),Neutral_Irred(true); // for the Hilbert basis elements
    Positive_Irred.verbose=Negative_Irred.verbose=Neutral_Irred.verbose=verbose;
    list<Candidate<Integer>* > Pos_Gen0, Pos_Gen1, Neg_Gen0, Neg_Gen1;  // pointer lists for generation control
    size_t pos_gen0_size=0, pos_gen1_size=0, neg_gen0_size=0, neg_gen1_size=0;
        
    Integer orientation, scalar_product,diff,factor;
    vector <Integer> hyperplane=SupportHyperplanes[hyp_counter]; // the current hyperplane dividing the old cone
    typename list<Candidate<Integer> >::iterator h;

    if (lifting==true) {
        orientation=v_scalar_product<Integer>(hyperplane,old_lin_subspace_half);
        if(orientation<0){
            orientation=-orientation;
            v_scalar_multiplication<Integer>(old_lin_subspace_half,-1); //transforming into the generator of the positive half of the old max lin subsapce
        }
        // from now on orientation > 0 
        
        for (h = Intermediate_HB.Candidates.begin(); h != Intermediate_HB.Candidates.end(); ++h) { //reduction  modulo  the generators of the two halves of the old max lin subspace
            scalar_product=v_scalar_product(hyperplane,h->cand); //  allows us to declare "old" HB candiadtes as irreducible
            sign=1;                                                               
            if (scalar_product<0) {
                scalar_product=-scalar_product;
                sign=-1;
            }
            factor=scalar_product/orientation;  // we reduce all elements by the generator of the halfspace
            for (i = 0; i < dim; i++) {
                h->cand[i]=h->cand[i]-sign*factor*old_lin_subspace_half[i];
            }
        }
        
        //adding the generators of the halves of the old max lin subspaces to the the "positive" and the "negative" generators
        // ABSOLUTELY NECESSARY since we need a monoid system of generators of the full "old" cone

        Candidate<Integer> halfspace_gen_as_cand(old_lin_subspace_half,nr_sh);
        halfspace_gen_as_cand.mother=0;
        // halfspace_gen_as_cand.father=0;
        halfspace_gen_as_cand.old_tot_deg=0;
        (halfspace_gen_as_cand.values)[hyp_counter]=orientation; // value under the new linear form
        halfspace_gen_as_cand.sort_deg=convertTo<long>(orientation);
        assert(orientation!=0);
        Positive_Irred.push_back(halfspace_gen_as_cand);
        Pos_Gen0.push_back(&Positive_Irred.Candidates.front());
        pos_gen0_size=1;
        v_scalar_multiplication<Integer>(halfspace_gen_as_cand.cand,-1);    
        Negative_Irred.push_back(halfspace_gen_as_cand);
        Neg_Gen0.push_back(&Negative_Irred.Candidates.front());
        neg_gen0_size=1;
    } //end lifting
    
    long gen0_mindeg;  // minimal degree of a generator
    if(lifting)
        gen0_mindeg=0;  // sort_deg has already been set > 0 for half_space_gen
    else
        gen0_mindeg=Intermediate_HB.Candidates.begin()->sort_deg;
    typename list<Candidate<Integer> >::const_iterator hh;
    for(hh=Intermediate_HB.Candidates.begin();hh!=Intermediate_HB.Candidates.end();++hh)
        if(hh->sort_deg < gen0_mindeg)
            gen0_mindeg=hh->sort_deg;
        
    bool gen1_pos=false, gen1_neg=false;    
    bool no_pos_in_level0=pointed;
    bool all_positice_level=pointed;
    for (h = Intermediate_HB.Candidates.begin(); h != Intermediate_HB.Candidates.end(); ++h) { //dividing into negative and positive
        Integer new_val=v_scalar_product<Integer>(hyperplane,h->cand);
        long new_val_long=convertTo<long>(new_val);
        h->reducible=false;
        h->mother=0;
        // h->father=0;
        h->old_tot_deg=h->sort_deg;
        if (new_val>0) {
            gen1_pos=true;
            h->values[hyp_counter]=new_val;
            h->sort_deg+=new_val_long;
            Positive_Irred.Candidates.push_back(*h); // could be spliced
            Pos_Gen1.push_back(&Positive_Irred.Candidates.back());
            pos_gen1_size++;
            if(h->values[0]==0){
                no_pos_in_level0=false;
                all_positice_level=false;
            }
        }
        if (new_val<0) {
            gen1_neg=true;
            h->values[hyp_counter]=-new_val;
            h->sort_deg+=-new_val_long;
            Negative_Irred.Candidates.push_back(*h);
            Neg_Gen1.push_back(&Negative_Irred.Candidates.back());
            neg_gen1_size++;
            if(h->values[0]==0){
                all_positice_level=false;
            }
        }
        if (new_val==0) {
            Neutral_Irred.Candidates.push_back(*h);
            if(h->values[0]==0){
                no_pos_in_level0=false;
                all_positice_level=false;
            }
        }       
    }
   

    if((truncate && (no_pos_in_level0 && !all_positice_level))){
        if(verbose){
            verboseOutput() << "Eliminating negative generators of level > 0" << endl;
        }
        Neg_Gen1.clear();
        neg_gen1_size=0;
        for (h = Negative_Irred.Candidates.begin(); h != Negative_Irred.Candidates.end();){
            if(h->values[0]>0)
                h=Negative_Irred.Candidates.erase(h);
            else{
                Neg_Gen1.push_back(&(*h));
                neg_gen1_size++;   
                ++h;
            }
        }
    }
    
    std::exception_ptr tmp_exception;

    #pragma omp parallel num_threads(3)
    {

        #pragma omp single nowait
        {
#ifndef NCATCH
        try {
#endif
        check_range_list(Negative_Irred);
        Negative_Irred.sort_by_val();
        Negative_Irred.last_hyp=hyp_counter;
#ifndef NCATCH
        } catch(const std::exception& ) {
            tmp_exception = std::current_exception();
        }
#endif
        }

        #pragma omp single nowait
        {
#ifndef NCATCH
        try {
#endif
        check_range_list(Positive_Irred);
        Positive_Irred.sort_by_val();
        Positive_Irred.last_hyp=hyp_counter;
#ifndef NCATCH
        } catch(const std::exception& ) {
            tmp_exception = std::current_exception();
        }
#endif
        }

        #pragma omp single nowait
        {
        Neutral_Irred.sort_by_val();
        Neutral_Irred.last_hyp=hyp_counter;
        }
    }
    if (!(tmp_exception == 0)) std::rethrow_exception(tmp_exception);
    
    CandidateList<Integer> New_Positive_Irred(true),New_Negative_Irred(true),New_Neutral_Irred(true);
    New_Positive_Irred.verbose=New_Negative_Irred.verbose=New_Neutral_Irred.verbose=verbose;
    New_Negative_Irred.last_hyp=hyp_counter;  // for the newly generated vector in each thread
    New_Positive_Irred.last_hyp=hyp_counter;
    New_Neutral_Irred.last_hyp=hyp_counter;
    
    CandidateList<Integer> Positive_Depot(true),Negative_Depot(true),Neutral_Depot(true); // to store the new vectors after generation
    Positive_Depot.verbose=Negative_Depot.verbose=Neutral_Depot.verbose=verbose;
    
    vector<CandidateList<Integer> > New_Positive_thread(omp_get_max_threads()),
                      New_Negative_thread(omp_get_max_threads()),
                      New_Neutral_thread(omp_get_max_threads());
                      
     vector<CandidateTable<Integer> > Pos_Table, Neg_Table, Neutr_Table; // for reduction in each thread                   
                      
     for(long i=0;i<omp_get_max_threads();++i){
        New_Positive_thread[i].dual=true;
        New_Positive_thread[i].verbose=verbose;
        New_Negative_thread[i].dual=true;
        New_Negative_thread[i].verbose=verbose;
        New_Neutral_thread[i].dual=true;
        New_Neutral_thread[i].verbose=verbose;
    }
    
    for(int k=0;k<omp_get_max_threads();++k){
        Pos_Table.push_back(CandidateTable<Integer>(Positive_Irred));
        Neg_Table.push_back(CandidateTable<Integer>(Negative_Irred));
        Neutr_Table.push_back(CandidateTable<Integer>(Neutral_Irred));
    }
    
    typename list<Candidate<Integer>* >::iterator n,p;
    Candidate<Integer> *p_cand, *n_cand;
    // typename list<Candidate<Integer> >::iterator c;
    
    bool not_done;
    if(lifting)
        not_done=gen1_pos || gen1_neg;
    else
        not_done=gen1_pos && gen1_neg;
        
    bool do_reduction=!(truncate && no_pos_in_level0);
    
    bool do_only_selection=truncate && all_positice_level;
    
    size_t round=0;        
    
    while(not_done && !do_only_selection) {

        //generating new elements
        round++;
        
        typename list<Candidate<Integer>* >::iterator pos_begin, pos_end, neg_begin, neg_end;
        size_t pos_size, neg_size;

        // Steps are:
        // 0: old pos vs. new neg
        // 1: new pos vs. old neg
        // 2: new pos vs. new neg
        for(size_t step=0;step<=2;step++)
        {
        
        if(step==0){
            pos_begin=Pos_Gen0.begin();
            pos_end=Pos_Gen0.end();
            neg_begin=Neg_Gen1.begin();
            neg_end=Neg_Gen1.end();
            pos_size=pos_gen0_size;
            neg_size=neg_gen1_size;      
        }
        
        if(step==1){
            pos_begin=Pos_Gen1.begin();
            pos_end=Pos_Gen1.end();
            neg_begin=Neg_Gen0.begin();
            neg_end=Neg_Gen0.end();
            pos_size=pos_gen1_size;
            neg_size=neg_gen0_size;;      
        }
        
        if(step==2){
            pos_begin=Pos_Gen1.begin();
            pos_end=Pos_Gen1.end();
            neg_begin=Neg_Gen1.begin();
            neg_end=Neg_Gen1.end();
            pos_size=pos_gen1_size;
            neg_size=neg_gen1_size;      
        }
        
        // cout << "Step " << step << " pos " << pos_size << " neg " << neg_size << endl;
        
        if(pos_size==0 || neg_size==0)
            continue;

        if (verbose) {
            // size_t neg_size=Negative_Irred.size();
            // size_t zsize=Neutral_Irred.size();
            if (pos_size*neg_size>=ReportBound)
                verboseOutput()<<"Positive: "<<pos_size<<"  Negative: "<<neg_size<< endl;
            else{
                if(round%100==0)
                    verboseOutput() << "Round " << round << endl;
            }
        }
        
        bool skip_remaining = false;

        const long VERBOSE_STEPS = 50;
        long step_x_size = pos_size-VERBOSE_STEPS;
        
        #pragma omp parallel private(p,n,diff,p_cand,n_cand)
        {
        Candidate<Integer> new_candidate(dim,nr_sh);
                
        size_t ppos=0;
        p = pos_begin;
        #pragma omp for schedule(dynamic)
        for(i = 0; i<pos_size; ++i){
            for(;i > ppos; ++ppos, ++p) ;
            for(;i < ppos; --ppos, --p) ;

            if (skip_remaining) continue;

#ifndef NCATCH
            try {
#endif
            
            if(verbose && pos_size*neg_size>=ReportBound){
                #pragma omp critical(VERBOSE)
                while ((long)(i*VERBOSE_STEPS) >= step_x_size) {
                    step_x_size += pos_size;
                    verboseOutput() << "." <<flush;
                }

            }
            
            p_cand=*p;
            
            Integer pos_val=p_cand->values[hyp_counter];

            for (n= neg_begin; n!= neg_end; ++n){
            
                n_cand=*n;
            
                if(truncate && p_cand->values[0]+n_cand->values[0] >=2) // in the inhomogeneous case we truncate at level 1
                    continue;

                Integer neg_val=n_cand->values[hyp_counter];
                diff=pos_val-neg_val;
                
                // prediction of reducibility
                
                if (diff >0 && n_cand->mother!=0 && 
                    ( 
                    n_cand->mother<=pos_val // sum of p_cand and n_cand would be irreducible by mother + the vector on the opposite side
                    || (p_cand->mother >= n_cand->mother && p_cand->mother-n_cand->mother <=diff) // sum would reducible ny mother + mother
                    ) 
                    ){  
                    // #pragma omp atomic     
                    // counter1++;
                    continue;
                }
                
                                
                if ( diff <0 && p_cand->mother!=0 && 
                    (
                    p_cand->mother<=neg_val
                    || (n_cand->mother >= p_cand->mother && n_cand->mother-p_cand->mother <= -diff)
                    )
                    ){  
                    // #pragma omp atomic     // sum would be irreducible by mother + the vector on the opposite side
                    // counter1++;
                    continue;
                }
                
                if(diff==0 && p_cand->mother!=0 && n_cand->mother == p_cand->mother){
                    // #pragma omp atomic
                    // counter1++;
                    continue;
                }
                
                // #pragma omp atomic
                // counter++;
                
                new_candidate.old_tot_deg=p_cand->old_tot_deg+n_cand->old_tot_deg;
                v_add_result(new_candidate.values,hyp_counter,p_cand->values,n_cand->values);   // new_candidate=v_add

                if (diff>0) {
                    new_candidate.values[hyp_counter]=diff;
                    new_candidate.sort_deg=p_cand->sort_deg+n_cand->sort_deg-2*convertTo<long>(neg_val);
                    if(do_reduction && (Pos_Table[omp_get_thread_num()].is_reducible_unordered(new_candidate) ||
                                Neutr_Table[omp_get_thread_num()].is_reducible_unordered(new_candidate)))
                        continue;
                    v_add_result(new_candidate.cand,dim,p_cand->cand,n_cand->cand);
                    new_candidate.mother=pos_val;
                    // new_candidate.father=neg_val;                    
                    New_Positive_thread[omp_get_thread_num()].push_back(new_candidate);
                }
                if (diff<0) {                    
                    if(!do_reduction) // don't need new negative elements anymore
                        continue;
                    new_candidate.values[hyp_counter]=-diff;
                    new_candidate.sort_deg=p_cand->sort_deg+n_cand->sort_deg-2*convertTo<long>(pos_val);
                    if(Neg_Table[omp_get_thread_num()].is_reducible_unordered(new_candidate)) {
                        continue;
                    }
                    if(Neutr_Table[omp_get_thread_num()].is_reducible_unordered(new_candidate)) {
                        continue;
                    }
                    v_add_result(new_candidate.cand,dim,p_cand->cand,n_cand->cand);
                    new_candidate.mother=neg_val;
                    // new_candidate.father=pos_val;
                    New_Negative_thread[omp_get_thread_num()].push_back(new_candidate);
                }
                if (diff==0) {                  
                    new_candidate.values[hyp_counter]=0;
                    new_candidate.sort_deg=p_cand->sort_deg+n_cand->sort_deg-2*convertTo<long>(pos_val);  //pos_val==neg_val
                    if(do_reduction && Neutr_Table[omp_get_thread_num()].is_reducible_unordered(new_candidate)) {
                        continue;
                    }
                    v_add_result(new_candidate.cand,dim,p_cand->cand,n_cand->cand);
                    // new_candidate.mother=0; // irrelevant
                    New_Neutral_thread[omp_get_thread_num()].push_back(new_candidate);
                }
            }
#ifndef NCATCH
        } catch(const std::exception& ) {
            tmp_exception = std::current_exception();
            skip_remaining = true;
            #pragma omp flush(skip_remaining)
        }
#endif
        } //end generation of new elements
        
        #pragma omp single
        {
        if(verbose && pos_size*neg_size>=ReportBound)
            verboseOutput() << endl;
        }

        } //END PARALLEL

        if (!(tmp_exception == 0)) std::rethrow_exception(tmp_exception);

        } // steps

        Pos_Gen0.splice(Pos_Gen0.end(),Pos_Gen1); // the new generation has becomeold
        pos_gen0_size+=pos_gen1_size;
        pos_gen1_size=0;
        Neg_Gen0.splice(Neg_Gen0.end(),Neg_Gen1);
        neg_gen0_size+=neg_gen1_size;
        neg_gen1_size=0;

        splice_them_sort(Neutral_Depot,New_Neutral_thread); // sort by sort_deg and values   
        
        splice_them_sort(Positive_Depot,New_Positive_thread);

        splice_them_sort(Negative_Depot,New_Negative_thread);
        
        if(Positive_Depot.empty() && Negative_Depot.empty())
            not_done=false;
            
        // Attention: the element with smallest old_tot_deg need not be the first in the list which is ordered by sort_deg
        size_t gen1_mindeg=0;  // minimal old_tot_deg of a new element used for generation
        bool first=true;
        typename list<Candidate<Integer> >::iterator c;
        for(c = Positive_Depot.Candidates.begin();c!=Positive_Depot.Candidates.end();++c){
            if(first){
                first=false;
                gen1_mindeg=c->old_tot_deg;
            }
            if(c->old_tot_deg<gen1_mindeg)
                gen1_mindeg=c->old_tot_deg;
        }
        
        for(c = Negative_Depot.Candidates.begin();c!=Negative_Depot.Candidates.end();++c){
            if(first){
                first=false;
                gen1_mindeg=c->old_tot_deg;
            }
            if(c->old_tot_deg<gen1_mindeg)
                gen1_mindeg=c->old_tot_deg;

        }
        
        size_t min_deg_new=gen0_mindeg+gen1_mindeg;
        if(not_done)
            assert(min_deg_new>0);

        size_t all_known_deg=min_deg_new-1;
        size_t guaranteed_HB_deg=2*all_known_deg+1;  // the degree up to which we can decide whether an element belongs to the HB
        
        if(not_done){
            select_HB(Neutral_Depot,guaranteed_HB_deg,New_Neutral_Irred,!do_reduction);         
        }
        else{
            Neutral_Depot.auto_reduce_sorted();                    // in this case new elements will not be produced anymore
            Neutral_Irred.merge_by_val(Neutral_Depot);      // and there is nothing to do for positive or negative elements
                                                        // but the remaining neutral elements must be auto-reduced.             
       }
       
       CandidateTable<Integer> New_Pos_Table(true,hyp_counter), New_Neg_Table(true,hyp_counter), New_Neutr_Table(true,hyp_counter); 
                 // for new elements

       if (!New_Neutral_Irred.empty()) {
            if(do_reduction){
                Positive_Depot.reduce_by(New_Neutral_Irred);
                Neutral_Depot.reduce_by(New_Neutral_Irred);
            }
            Negative_Depot.reduce_by(New_Neutral_Irred);
            list<Candidate<Integer>* > New_Elements;
            Neutral_Irred.merge_by_val(New_Neutral_Irred,New_Elements); 
            typename list<Candidate<Integer>* >::iterator c;
            for(c=New_Elements.begin(); c!=New_Elements.end(); ++c){
                New_Neutr_Table.ValPointers.push_back(pair< size_t, vector<Integer>* >((*c)->sort_deg,&((*c)->values)));
            }
            New_Elements.clear();
        } 
       
        select_HB(Positive_Depot,guaranteed_HB_deg,New_Positive_Irred,!do_reduction);

        select_HB(Negative_Depot,guaranteed_HB_deg,New_Negative_Irred,!do_reduction);
                                                                 
        if (!New_Positive_Irred.empty()) {
            if(do_reduction)
                Positive_Depot.reduce_by(New_Positive_Irred);
            check_range_list(New_Positive_Irred);  // check for danger of overflow
            Positive_Irred.merge_by_val(New_Positive_Irred,Pos_Gen1);
            typename list<Candidate<Integer>* >::iterator c;
            for(c=Pos_Gen1.begin(); c!=Pos_Gen1.end(); ++c){
                New_Pos_Table.ValPointers.push_back(pair< size_t, vector<Integer>* >((*c)->sort_deg,&((*c)->values)));
                pos_gen1_size++;
            }
        }

        if (!New_Negative_Irred.empty()) {
            Negative_Depot.reduce_by(New_Negative_Irred);
            check_range_list(New_Negative_Irred);
            Negative_Irred.merge_by_val(New_Negative_Irred,Neg_Gen1);
            typename list<Candidate<Integer>* >::iterator c;
            for(c=Neg_Gen1.begin(); c!=Neg_Gen1.end(); ++c){
                New_Neg_Table.ValPointers.push_back(pair< size_t, vector<Integer>* >((*c)->sort_deg,&((*c)->values)));
                neg_gen1_size++;
            }
        }
    
        CandidateTable<Integer> Help(true,hyp_counter);
        
        for(int k=0;k<omp_get_max_threads();++k){
            Help=New_Pos_Table;
            Pos_Table[k].ValPointers.splice(Pos_Table[k].ValPointers.end(),Help.ValPointers);
            Help=New_Neg_Table;
            Neg_Table[k].ValPointers.splice(Neg_Table[k].ValPointers.end(),Help.ValPointers);
            Help=New_Neutr_Table;
            Neutr_Table[k].ValPointers.splice(Neutr_Table[k].ValPointers.end(),Help.ValPointers);
        }

    }  // while(not_done)
    
    if (verbose) {
        verboseOutput()<<"Final sizes: Pos " << pos_gen0_size << " Neg " << neg_gen0_size  << " Neutral " << Neutral_Irred.size() <<endl;
    }
    
    

    Intermediate_HB.clear();
    Intermediate_HB.Candidates.splice(Intermediate_HB.Candidates.begin(),Positive_Irred.Candidates);
    Intermediate_HB.Candidates.splice(Intermediate_HB.Candidates.end(),Neutral_Irred.Candidates);    
    Intermediate_HB.sort_by_val();       
}

//---------------------------------------------------------------------------

template<typename Integer>
Matrix<Integer> Cone_Dual_Mode<Integer>::cut_with_halfspace(const size_t& hyp_counter, const Matrix<Integer>& Basis_Max_Subspace){
    size_t i,rank_subspace=Basis_Max_Subspace.nr_of_rows();

    vector <Integer> restriction,lin_form=SupportHyperplanes[hyp_counter],old_lin_subspace_half;
    bool lifting=false;
    Matrix<Integer> New_Basis_Max_Subspace=Basis_Max_Subspace; // the new maximal subspace is the intersection of the old with the new haperplane
    if (rank_subspace!=0) {
        restriction=Basis_Max_Subspace.MxV(lin_form);  // the restriction of the new linear form to Max_Subspace
        for (i = 0; i <rank_subspace; i++)
            if (restriction[i]!=0)
                break;
        if (i!=rank_subspace) {    // the new hyperplane does not contain the intersection of the previous hyperplanes
                                   // so we must intersect the new hyperplane and Max_Subspace
            lifting=true;

            Matrix<Integer> M(1,rank_subspace); // this is the restriction of the new linear form to Max_Subspace
            M[0]=restriction;                   // encoded as a matrix
            
            size_t dummy_rank;
            Matrix<Integer> NewBasisOldMaxSubspace=M.AlmostHermite(dummy_rank).transpose(); // compute kernel of restriction and complementary subspace            
            
            Matrix<Integer> NewBasisOldMaxSubspaceAmbient=NewBasisOldMaxSubspace.multiplication(Basis_Max_Subspace); 
            // in coordinates of the ambient space

            old_lin_subspace_half=NewBasisOldMaxSubspaceAmbient[0];            
            
            // old_lin_subspace_half refers to the fact that the complementary space is subdivided into
            // two halfspaces generated by old_lin_subspace_half and -old_lin_subspace_half (taken care of in cut_with_halfspace_hilbert_basis)
            
            Matrix<Integer> temp(rank_subspace-1,dim);
            for(size_t k=1;k<rank_subspace;++k)            
                temp[k-1]=NewBasisOldMaxSubspaceAmbient[k];
            New_Basis_Max_Subspace=temp;
        }
    }
    bool pointed=(Basis_Max_Subspace.nr_of_rows()==0);

    cut_with_halfspace_hilbert_basis(hyp_counter, lifting,old_lin_subspace_half,pointed);

    return New_Basis_Max_Subspace;
}

//---------------------------------------------------------------------------

template<typename Integer>
void Cone_Dual_Mode<Integer>::hilbert_basis_dual(){

    assert(dim>0);         
    if (verbose==true) {
        verboseOutput()<<"************************************************************\n";
        verboseOutput()<<"computing Hilbert basis";
        if(truncate)
            verboseOutput() << " (truncated)";
        verboseOutput() << " ..." << endl;
    }
    
    if(Generators.nr_of_rows()!=ExtremeRays.size()){
        errorOutput() << "Mismatch of extreme rays and generators in cone dual mode. THIS SHOULD NOT HAPPEN." << endl;
        throw FatalException(); 
    }
    
    size_t hyp_counter;      // current hyperplane
    Matrix<Integer> Basis_Max_Subspace(dim);      //identity matrix
    for (hyp_counter = 0; hyp_counter < nr_sh; hyp_counter++) {
        Basis_Max_Subspace=cut_with_halfspace(hyp_counter,Basis_Max_Subspace);
    }
    
    if(ExtremeRays.size()==0){  // no precomputed generators
        extreme_rays_rank();
        relevant_support_hyperplanes();
        ExtremeRayList.clear();
        
    }
    else{  // must produce the relevant support hyperplanes from the generators
           // since the Hilbert basis may have been truncated
        vector<Integer> test(SupportHyperplanes.nr_of_rows());
        vector<key_t> key;
        vector <key_t> relevant_sh;
        size_t realdim=Generators.rank();
        for(key_t h=0;h<SupportHyperplanes.nr_of_rows();++h){
            key.clear();
            vector<Integer> test=Generators.MxV(SupportHyperplanes[h]);
            for(key_t i=0;i<test.size();++i)
                if(test[i]==0)
                    key.push_back(i);
            if (key.size() >= realdim-1 && Generators.submatrix(key).rank() >= realdim-1)
                relevant_sh.push_back(h);
        }    
        SupportHyperplanes = SupportHyperplanes.submatrix(relevant_sh);
    }
        
    /* if(verbose)
       verboseOutput() << "matches = " << counter << endl << "avoided = " << counter1 << endl << 
            "comparisons = " << redcounter << endl << "comp/match " << (float) redcounter/(float) counter << endl;
       // verboseOutput() << "matches = " << counter << endl << "avoided = " << counter1 << endl; //  << "add avoided " << counter2 << endl;
    */
       
    Intermediate_HB.extract(Hilbert_Basis);
    
    if(verbose) {
        verboseOutput() << "Hilbert basis ";
        if(truncate)
            verboseOutput() << "(truncated) ";
        verboseOutput() << Hilbert_Basis.size() << endl;
    }
}

//---------------------------------------------------------------------------

template<typename Integer>
void Cone_Dual_Mode<Integer>::extreme_rays_rank(){
    if (verbose) {
        verboseOutput() << "Find extreme rays" << endl;
    }
    
    typename list < Candidate <Integer> >::iterator c;
    vector <key_t> zero_list;
    size_t i,k;
    for (c=Intermediate_HB.Candidates.begin(); c!=Intermediate_HB.Candidates.end(); ++c){
        zero_list.clear();
        for (i = 0; i < nr_sh; i++) {
            if(c->values[i]==0) {
                zero_list.push_back(i);
            }
        }
        k=zero_list.size();
        if (k>=dim-1) {

            // Matrix<Integer> Test=SupportHyperplanes.submatrix(zero_list);
            if (SupportHyperplanes.rank_submatrix(zero_list)>=dim-1) {
                ExtremeRayList.push_back(&(*c));
            }
        }
    }
    size_t s = ExtremeRayList.size();
    Generators = Matrix<Integer>(s,dim);
   
    typename  list< Candidate<Integer>* >::const_iterator l;
    for (i=0, l=ExtremeRayList.begin(); l != ExtremeRayList.end(); ++l, ++i) {
        Generators[i]= (*l)->cand;
    }
    ExtremeRays=vector<bool>(s,true);
}

//---------------------------------------------------------------------------

template<typename Integer>
void Cone_Dual_Mode<Integer>::relevant_support_hyperplanes(){
    if (verbose) {
        verboseOutput() << "Find relevant support hyperplanes" << endl;
    }
    list <key_t> zero_list;
    typename list<Candidate<Integer>* >::iterator gen_it;
    vector <key_t> relevant_sh;
    relevant_sh.reserve(nr_sh);
    size_t i,k;
    
    size_t realdim = Generators.rank();

    for (i = 0; i < nr_sh; ++i) {
        Matrix<Integer> Test(0,dim);
        k = 0;
        for (gen_it = ExtremeRayList.begin(); gen_it != ExtremeRayList.end(); ++gen_it) {
            if ((*gen_it)->values[i]==0) {
                Test.append((*gen_it)->cand);
                k++;
            }
        }
        if (k >= realdim-1 && Test.rank()>=realdim-1) {
            relevant_sh.push_back(i);
        }
    }
    SupportHyperplanes = SupportHyperplanes.submatrix(relevant_sh);
}

//---------------------------------------------------------------------------

template<typename Integer>
void Cone_Dual_Mode<Integer>::to_sublattice(const Sublattice_Representation<Integer>& SR) {
    assert(SR.getDim() == dim);

    dim = SR.getRank();
    // hyp_size = dim+nr_sh;
    SupportHyperplanes = SR.to_sublattice_dual(SupportHyperplanes);
    typename list<vector<Integer> >::iterator it;
    vector<Integer> tmp;
    
    Generators = SR.to_sublattice(Generators);

    for (it = Hilbert_Basis.begin(); it != Hilbert_Basis.end(); ) {
        tmp = SR.to_sublattice(*it);
        it = Hilbert_Basis.erase(it);
        Hilbert_Basis.insert(it,tmp);
    }
}

} //end namespace libnormaliz