File: anglestructure.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (263 lines) | stat: -rw-r--r-- 9,792 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "angle/anglestructure.h"
#include "maths/matrix.h"
#include "triangulation/dim3.h"
#include "utilities/xmlutils.h"

namespace regina {

std::weak_ordering AngleStructure::operator <=> (const AngleStructure& rhs)
        const {
    if (triangulation_->size() != rhs.triangulation_->size())
        return triangulation_->size() <=> rhs.triangulation_->size();

#if defined(LEXCMP_FOUND)
    return std::lexicographical_compare_three_way(
        vector_.begin(), vector_.end(), rhs.vector_.begin(), rhs.vector_.end());
#else
    // The triangulations have the same size, and so both underlying vectors
    // should have the same length.
    auto i = vector_.begin();
    auto j = rhs.vector_.begin();
    for ( ; i != vector_.end(); ++i, ++j)
        if (auto c = (*i <=> *j); c != 0)
            return c;
    return std::strong_ordering::equal;
#endif
}

Rational AngleStructure::angle(size_t tetIndex, int edgePair) const {
    const Integer& num = vector_[3 * tetIndex + edgePair];
    const Integer& den = vector_[3 * triangulation_->size()];

    Integer gcd = den.gcd(num); // Guaranteed non-negative
    return Rational(num.divExact(gcd), den.divExact(gcd));
}

void AngleStructure::writeTextShort(std::ostream& out) const {
    size_t nTets = triangulation_->size();
    unsigned j;
    for (size_t tet = 0; tet < nTets; tet++) {
        if (tet > 0)
            out << " ; ";
        for (j=0; j<3; j++) {
            if (j > 0)
                out << ' ';
            out << angle(tet, j);
        }
    }
}

void AngleStructure::writeXMLData(std::ostream& out) const {
    // Write the vector length.
    size_t vecLen = vector_.size();
    out << "  <struct len=\"" << vecLen << "\"> ";

    // Write the non-zero elements.
    Integer entry;
    for (size_t i = 0; i < vecLen; i++) {
        entry = vector_[i];
        if (entry != 0)
            out << i << ' ' << entry << ' ';
    }

    // Write the closing tag.
    out << "</struct>\n";
}

void AngleStructure::calculateType() const {
    size_t size = vector_.size();
    if (size == 1) {
        // We have no tetrahedra, which means this angle structure has it all:
        // strict, taut and veering.
        flags_ |= flagStrict;
        flags_ |= flagTaut;
        flags_ |= flagVeering;
        flags_ |= flagCalculatedType;
        return;
    }

    bool taut = true;
    bool strict = true;

    // Run through the tetrahedra one by one.
    const Integer& scale = vector_[size - 1];
    size_t pair;
    for (size_t base = 0; base < size - 1; base += 3) {
        for (pair = 0; pair < 3; pair++) {
            if (vector_[base + pair] == scale) {
                // We have a pi; thus all three angles in this
                // tetrahedron are pi or zero.
                strict = false;
                break;
            } else if (vector_[base + pair] == 0)
                strict = false;
            else
                taut = false;
        }
        if ((! strict) && (! taut))
            break;
    }

    // Update the flags as appropriate.
    if (strict)
        flags_ |= flagStrict;
    else
        flags_ &= (~flagStrict);

    if (taut) {
        // This structure is taut.
        flags_ |= flagTaut;

        // Get a local reference to the triangulation so we do not have
        // to repeatedly bounce through the snapshot.
        const Triangulation<3>& tri(*triangulation_);

        // Is it veering also?
        bool veering = true;
        if (tri.isOrientable()) {
            long nEdges = tri.countEdges();
            int* edgeColour = new int[nEdges];
            std::fill(edgeColour, edgeColour + nEdges, (int)0);
            const Tetrahedron<3>* tet;
            int orient;
            long e;
            for (unsigned i = 0; i < tri.size();
                    ++i) {
                tet = tri.tetrahedron(i);
                orient = tet->orientation();
                if (vector_[3 * i] > 0) {
                    // Edges 0,5 are marked as pi.
                    // For a positively oriented tetrahedron:
                    // Edges 1,4 vs 2,3 are of colour +1 vs -1.
                    e = tet->edge(1)->index();
                    if (edgeColour[e] == -orient)
                        veering = false;
                    else
                        edgeColour[e] = orient;

                    e = tet->edge(4)->index();
                    if (edgeColour[e] == -orient)
                        veering = false;
                    else
                        edgeColour[e] = orient;

                    e = tet->edge(2)->index();
                    if (edgeColour[e] == orient)
                        veering = false;
                    else
                        edgeColour[e] = -orient;

                    e = tet->edge(3)->index();
                    if (edgeColour[e] == orient)
                        veering = false;
                    else
                        edgeColour[e] = -orient;
                } else if (vector_[3 * i + 1] > 0) {
                    // Edges 1,4 are marked as pi.
                    // For a positively oriented tetrahedron:
                    // Edges 2,3 vs 0,5 are of colour +1 vs -1.
                    e = tet->edge(2)->index();
                    if (edgeColour[e] == -orient)
                        veering = false;
                    else
                        edgeColour[e] = orient;

                    e = tet->edge(3)->index();
                    if (edgeColour[e] == -orient)
                        veering = false;
                    else
                        edgeColour[e] = orient;

                    e = tet->edge(0)->index();
                    if (edgeColour[e] == orient)
                        veering = false;
                    else
                        edgeColour[e] = -orient;

                    e = tet->edge(5)->index();
                    if (edgeColour[e] == orient)
                        veering = false;
                    else
                        edgeColour[e] = -orient;
                } else if (vector_[3 * i + 2] > 0) {
                    // Edges 2,3 are marked as pi.
                    // For a positively oriented tetrahedron:
                    // Edges 0,5 vs 1,4 are of colour +1 vs -1.
                    e = tet->edge(0)->index();
                    if (edgeColour[e] == -orient)
                        veering = false;
                    else
                        edgeColour[e] = orient;

                    e = tet->edge(5)->index();
                    if (edgeColour[e] == -orient)
                        veering = false;
                    else
                        edgeColour[e] = orient;

                    e = tet->edge(1)->index();
                    if (edgeColour[e] == orient)
                        veering = false;
                    else
                        edgeColour[e] = -orient;

                    e = tet->edge(4)->index();
                    if (edgeColour[e] == orient)
                        veering = false;
                    else
                        edgeColour[e] = -orient;
                }
                if (! veering)
                    break;
            }
            delete[] edgeColour;
        } else {
            // Only orientable triangulations can be veering.
            veering = false;
        }

        if (veering)
            flags_ |= flagVeering;
        else
            flags_ &= (~flagVeering);
    } else {
        // Not taut, and therefore not veering either.
        flags_ &= (~flagTaut);
        flags_ &= (~flagVeering);
    }

    flags_ |= flagCalculatedType;
}

} // namespace regina