File: anglestructures.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (298 lines) | stat: -rw-r--r-- 10,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "angle/anglestructures.h"
#include "enumerate/doubledescription.h"
#include "enumerate/treetraversal.h"
#include "maths/matrix.h"
#include "progress/progresstracker.h"
#include "surface/normalsurface.h"
#include "triangulation/dim3.h"
#include "utilities/xmlutils.h"
#include <thread>

namespace regina {

MatrixInt makeAngleEquations(const Triangulation<3>& tri) {
    size_t n = tri.size();
    size_t cols = 3 * n + 1;

    // We have one equation per non-boundary edge plus one per tetrahedron.
    long rows = long(tri.countEdges()) + long(tri.size());
    for (BoundaryComponent<3>* bc : tri.boundaryComponents())
        rows -= bc->countEdges();

    MatrixInt eqns(rows, cols);
    size_t row = 0;

    size_t index;
    for (Edge<3>* edge : tri.edges()) {
        if (edge->isBoundary())
            continue;
        for (auto& emb : *edge) {
            index = emb.tetrahedron()->index();
            if (emb.edge() < 3)
                eqns.entry(row, 3 * index + emb.edge()) += 1;
            else
                eqns.entry(row, 3 * index + 5 - emb.edge()) += 1;
        }
        eqns.entry(row, cols - 1) = -2;
        ++row;
    }
    for (index = 0; index < n; index++) {
        eqns.entry(row, 3 * index) = 1;
        eqns.entry(row, 3 * index + 1) = 1;
        eqns.entry(row, 3 * index + 2) = 1;
        eqns.entry(row, cols - 1) = -1;
        ++row;
    }

    return eqns;
}

void AngleStructures::swap(AngleStructures& other) {
    if (std::addressof(other) == this)
        return;

    PacketChangeSpan span1(*this);
    PacketChangeSpan span2(other);

    structures_.swap(other.structures_);
    triangulation_.swap(other.triangulation_);
    std::swap(tautOnly_, other.tautOnly_);
    std::swap(algorithm_, other.algorithm_);

    doesSpanStrict_.swap(other.doesSpanStrict_);
    doesSpanTaut_.swap(other.doesSpanTaut_);
}

void AngleStructures::enumerateInternal(ProgressTracker* tracker,
        Packet* treeParent) {
    // Clean up the algorithms flag.
    algorithm_ &= (AngleAlg::Tree | AngleAlg::DD);

    if (tautOnly_ && (! triangulation_->isEmpty())) {
        // We can support either algorithm, but tree traversal should be faster.
        algorithm_.ensureOne(AngleAlg::Tree, AngleAlg::DD);

        if (tracker)
            tracker->newStage("Enumerating taut angle structures");

        if (algorithm_.has(AngleAlg::Tree)) {
            // For now just stick to arbitrary precision arithmetic.
            // TODO: Use native integer types when the angle equation matrix
            // is sufficiently small / simple.
            TautEnumeration<LPConstraintNone, BanNone, Integer> search(
                *triangulation_);
            while (search.next(tracker)) {
                structures_.push_back(search.buildStructure());
                if (tracker && tracker->isCancelled())
                    break;
            }
        } else {
            // Use the double description method.
            MatrixInt eqns = regina::makeAngleEquations(*triangulation_);

            ValidityConstraints compat(3, triangulation_->size(), 1);
            compat.addLocal({ 0, 1, 2 });

            // Find the angle structures.
            DoubleDescription::enumerate<VectorInt>([this](VectorInt&& v) {
                    structures_.emplace_back(triangulation_, std::move(v));
                }, eqns, compat, tracker);
        }

        if (treeParent && ! (tracker && tracker->isCancelled()))
            treeParent->append(static_cast<PacketOf<AngleStructures>*>(this)->
                shared_from_this());

        if (tracker)
            tracker->setFinished();
    } else {
        // Use the double description method: it's all we support.
        algorithm_ = AngleAlg::DD;

        // For the empty triangulation, we fall through here regardless
        // of whether we want taut or all vertex angle structures (but
        // either way, the answer is the same - just one empty structure).
        //
        // For all other triangulations, we fall through here if we are
        // after all vertex angle structures.
        if (tracker)
            tracker->newStage("Enumerating vertex angle structures");

        // Form the matching equations.
        MatrixInt eqns = regina::makeAngleEquations(*triangulation_);

        // Find the angle structures.
        DoubleDescription::enumerate<VectorInt>([this](VectorInt&& v) {
                structures_.emplace_back(triangulation_, std::move(v));
            }, eqns, ValidityConstraints::none, tracker);

        // All done!
        if (treeParent && ! (tracker && tracker->isCancelled()))
            treeParent->append(static_cast<PacketOf<AngleStructures>*>(this)->
                shared_from_this());

        if (tracker)
            tracker->setFinished();
    }
}

void AngleStructures::writeTextShort(std::ostream& o) const {
    o << structures_.size() << " vertex angle structure";
    if (structures_.size() != 1)
        o << 's';
    o << " (" << (tautOnly_ ? "taut only" : "no restrictions")  << ')';
}

void AngleStructures::writeTextLong(std::ostream& o) const {
    writeTextShort(o);
    o << ":\n";

    for (const AngleStructure& a : structures_) {
        a.writeTextShort(o);
        o << '\n';
    }
}

void AngleStructures::calculateSpanStrict() const {
    if (structures_.empty()) {
        doesSpanStrict_ = false;
        return;
    }

    size_t nTets = triangulation().size();
    if (nTets == 0) {
        doesSpanStrict_ = true;
        return;
    }

    // We run into trouble if there's a 0 or pi angle that never changes.
    auto* fixedAngles = new Rational[nTets * 3];
    size_t nFixed = 0;

    // Get the list of bad unchanging angles from the first structure.
    auto it = structures_.begin();
    const AngleStructure& first = *it;

    Rational angle;
    for (size_t tet = 0; tet < nTets; tet++)
        for (int edges = 0; edges < 3; edges++) {
            angle = first.angle(tet, edges);
            if (angle == Rational::zero || angle == Rational::one) {
                fixedAngles[3 * tet + edges] = angle;
                nFixed++;
            } else
                fixedAngles[3 * tet + edges] = Rational::undefined;
        }

    if (nFixed == 0) {
        doesSpanStrict_ = true;
        delete[] fixedAngles;
        return;
    }

    // Run through the rest of the structures to see if these bad angles
    // do ever change.
    for (it++; it != structures_.end(); it++) {
        const AngleStructure& s = *it;
        for (size_t tet = 0; tet < nTets; tet++)
            for (int edges = 0; edges < 3; edges++) {
                if (fixedAngles[3 * tet + edges] == Rational::undefined)
                    continue;
                if (s.angle(tet, edges) != fixedAngles[3 * tet + edges]) {
                    // Here's a bad angle that finally changed.
                    fixedAngles[3 * tet + edges] = Rational::undefined;
                    nFixed--;
                    if (nFixed == 0) {
                        doesSpanStrict_ = true;
                        delete[] fixedAngles;
                        return;
                    }
                }
            }
    }

    // Some of the bad angles never changed.
    doesSpanStrict_ = false;
    delete[] fixedAngles;
}

void AngleStructures::calculateSpanTaut() const {
    for (const AngleStructure& s : structures_) {
        if (s.isTaut()) {
            doesSpanTaut_ = true;
            return;
        }
    }
    doesSpanTaut_ = false;
}

bool AngleStructures::operator == (const AngleStructures& other) const {
    size_t n = structures_.size();
    if (n != other.structures_.size())
        return false;
    if (structures_.empty())
        return other.structures_.empty();
    if (other.structures_.empty())
        return false;

    // Both lists have the same size and are non-empty.
    // Our algorithm will be to sort and then compare.
    auto* lhs = new const AngleStructure*[n];
    auto* rhs = new const AngleStructure*[n];

    const AngleStructure** ptr = lhs;
    for (const auto& s : structures_)
        *ptr++ = std::addressof(s);

    ptr = rhs;
    for (const auto& s : other.structures_)
        *ptr++ = std::addressof(s);

    auto cmp = [](const AngleStructure* x, const AngleStructure* y) {
        return (*x) < (*y);
    };
    std::sort(lhs, lhs + n, cmp);
    std::sort(rhs, rhs + n, cmp);

    bool ans = std::equal(lhs, lhs + n, rhs,
            [](const AngleStructure* x, const AngleStructure* y) {
        return (*x) == (*y);
    });

    delete[] lhs;
    delete[] rhs;
    return ans;
}

} // namespace regina