File: binomial_containers.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (1370 lines) | stat: -rw-r--r-- 39,292 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
/*
 * Normaliz
 * Copyright (C) 2007-2022  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

#include <set>
#include <map>
#include <iostream>

#include "libnormaliz/binomial_containers.h"
#include "libnormaliz/list_and_map_operations.h"

namespace libnormaliz{

using std::cout;
using std::endl;
using std::pair;
using std::list;
using std::string;
using std::set;
using std::map;

bool do_test = false;

// -----------------------------------------------------
// binomial tree with winf_entered_nodes
// -----------------------------------------------------

// constructors:
binomial_tree_node::binomial_tree_node() {
    has_binomial = false;
}

/*
binomial_tree_node::binomial_tree_node(const binomial& b) {
    data.push_back(b);
    sorted = true;
}
*/


// copy constructor:
binomial_tree_node::binomial_tree_node(const binomial_tree_node& rhs) :
node_binomial(rhs.node_binomial) {
    for (auto child : rhs.children) {
        if (nullptr == child.second) {
            pair < pair<size_t, exponent_t>, binomial_tree_node*> n(child.first, nullptr);
            children.push_back(n);
        } else { // copy recursively
            binomial_tree_node* copy = new binomial_tree_node(*child.second);
            pair < pair<size_t, exponent_t>, binomial_tree_node*> n(child.first, copy);
            children.push_back(n);
        }
    }
}


// destructor:
binomial_tree_node::~binomial_tree_node() {
    for (auto child : children)
        delete child.second;
}

/*
bool binomial_tree_node::reduce_by_list(exponent_vec& to_reduce, const monomial_order mon_ord, bool auto_reduce){

        for(auto& B: data){
            winf_red_steps++;
            bool reduces = true;
            for(auto& i:support_key){
                if(to_reduce[i] < B[i]){
                    reduces = false;
                    break;
                }
            }

            if(auto_reduce){
                if(to_reduce == B.get_exponent_pos())
                    continue;
            }

            if(reduces){
                for(size_t j = 0; j < to_reduce.size(); ++j)
                    to_reduce[j] -= B[j];
                return true;
            }
        }
        return false;
}
*/

bool binomial_tree_node::reduce(exponent_vec& to_reduce, bool auto_reduce){

    winf_entered_nodes++;

    if(has_binomial){
        if(auto_reduce){
            if(to_reduce == node_binomial.get_exponent_pos()){
                return false;
            }
        }
        // cout << "TTTTTT " << to_reduce;
        // cout << "RRRRRR " << node_binomial;
        for(size_t i = 0; i < to_reduce.size(); ++i)
            to_reduce[i] -= node_binomial[i];
        winf_red_steps++;
        return true;
    }

    for(auto& C: children){
        if(to_reduce[C.first.first] >=  C.first.second && C.second->reduce(to_reduce, auto_reduce)){
            return true;
        }
    }
    return false;
}

bool binomial_tree_node::collect_neighbors(const exponent_vec& mon_start, const exponent_vec& mon_goal, const set<exponent_vec>& old_neighbors, set<exponent_vec>& new_neighbors){

    exponent_vec candidate;

    if(has_binomial){
        for(auto& min_bin: minimization_binomials){
            // cout << "In Schleife " << minimization_binomials.size() << endl;
            // if(minimization_binomials.size() > 1)
            //    cout << "In Schleife " << minimization_binomials.size() << endl;
            candidate = mon_start;
            for(size_t i = 0; i < candidate.size(); ++i){
                candidate[i] -= min_bin[i];
                assert(candidate[i] >= 0);
            }
            if(candidate == mon_goal)
                return true;
            if(old_neighbors.find(candidate) == old_neighbors.end())
                new_neighbors.insert(candidate);
        }
    }
    for(auto& C: children){
        if(mon_start[C.first.first] >=  C.first.second &&
                C.second->collect_neighbors(mon_start, mon_goal, old_neighbors, new_neighbors)){
            return true;
        }
    }
    return false;


}

void binomial_tree_node::pretty_print(std::ostream& out) {
    out << "begin node" << endl;
    node_binomial.pretty_print(cout);
    // out << "(";
    for (auto child : children) {
        if (nullptr == child.second)
            out << "nullptr";
        else {
            out << "| " << child.first.first  << " " << child.first.second << endl;
            child.second->pretty_print(out);
        }
    }
    // out << ")";
    out << "end node" << endl;
}


//////// class binomial_tree:

// constructor:
binomial_tree::binomial_tree() {
    // cout << "binomial_tree() called" << endl;
    root = new binomial_tree_node;
    root->has_binomial = false;
    minimization_tree= false;
}

binomial_tree::binomial_tree(const monomial_order& mo,const dynamic_bitset& sat_supp) {
    // cout << "binomial_tree() called" << endl;
    root = new binomial_tree_node;
    mon_ord = mo;
    sat_support = sat_supp;
    auto_reduce = false;
    minimization_tree= false;
}

void binomial_tree::set_minimization_tree(){
    minimization_tree = true;
}


// destructor:
binomial_tree::~binomial_tree() {
    // cout << "~binomial_tree() called" << endl;
    delete root;
}

// copy constructor (to avoid "double frees"):
binomial_tree::binomial_tree(const binomial_tree& rhs) {
    root = new binomial_tree_node(*(rhs.root));
}

// copy assignment operator (using "copy and swap" idiom):
binomial_tree& binomial_tree::operator =(const binomial_tree& rhs) {
    // cout << "operator =() called" << endl;
    binomial_tree copy = rhs;
    copy.swap(*this);
    return (*this);
}

// void binomial_tree::set_data(const int val) {
//     root->set_data(val);
// }

void binomial_tree::insert(const binomial& b) {
    binomial_tree_node* cur_node = root;
    for (size_t i = 0; i < b.size(); ++i) {
        if (0 < b[i]) { // only positive part matters
            size_t j = 0;
            while (   cur_node->children.size() > j
                   && (cur_node->children[j].first.first != i|| cur_node->children[j].first.second != b[i]) ) {
                ++j;
            }
            if (cur_node->children.size() > j) {
                // Child with first == (i, b[i]) exists and children[j] is that child.
                // (We have reached edge with label (i, b[i]).)
                cur_node = cur_node->children[j].second; // traverse
            } else { // There is no child with first == i yet. We create one.
                binomial_tree_node* next = new binomial_tree_node;
                cur_node->children.push_back(std::make_pair(std::make_pair(i,b[i]), next));
                cur_node = next;
                cur_node->has_binomial = false;
            }
        }
    }
    // now cur_node points to correct node (possibly newly created)
    cur_node -> has_binomial = true;
    if(!minimization_tree){
        cur_node-> node_binomial = b;
    }
    else{
        cur_node-> minimization_binomials.push_back(b);
    }
}

bool binomial_tree::reduce(binomial& to_reduce, bool& tail_criterion){

/*    if(to_reduce == test_vec){
        do_test = true;
        test_pos = to_reduce.get_exponent_pos();
        cout << "Aktiviere Test" << endl;
        to_reduce.pretty_print(cout);
        cout << "$$$$$$$$$$ " << endl;
    }
    else
        do_test = false; */

    // pos and neg are reduced separately against the tree
    exponent_vec pos(to_reduce.get_exponent_pos());
    exponent_vec neg(to_reduce.get_exponent_neg());

    exponent_vec pos_ori;
    if(auto_reduce)
        pos_ori = pos;

    tail_criterion = false;
    bool pos_changed = false;
    while(true){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        bool changed = root->reduce(pos, auto_reduce);
        if(changed)
            pos_changed = true;
        for (size_t i = 0; i < to_reduce.size(); ++i) {
            if (sat_support[i] && pos[i] != 0 && neg[i] != 0){
                tail_criterion = true;
                break;
            }
        }
        if(tail_criterion || !changed)
            break;
    }
    if(tail_criterion)
        return true;

    bool neg_changed = false;
    while(true){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        bool changed = root->reduce(neg, false);
        if(changed)
            neg_changed = true;
        for (size_t i = 0; i < to_reduce.size(); ++i) {
            if (sat_support[i] && pos[i] != 0 && neg[i] != 0){
                tail_criterion = true;
                break;
            }
        }
        if(tail_criterion || !changed)
            break;
    }
    if(tail_criterion)
        return true;

    if(neg_changed || pos_changed){
        for(size_t i = 0; i < to_reduce.size(); ++i)
            to_reduce[i] = pos[i] - neg[i];
        to_reduce.normalize(mon_ord);
    }

    return neg_changed || pos_changed;
}

bool binomial_tree::collect_neighbors(const exponent_vec& mon_start, const exponent_vec& mon_goal,
                        const set<exponent_vec>& old_neighbors, set<exponent_vec>& new_neighbors){
        return root-> collect_neighbors(mon_start, mon_goal, old_neighbors, new_neighbors);
}

void binomial_tree::clear() {
    root->node_binomial.clear();
    root->children.clear();
}

bool binomial_tree::is_trivial() const { // trivial == only root
    return std::all_of(root->children.begin(), root->children.end(),
                       [](const pair<pair<size_t, exponent_t>, binomial_tree_node*>& child) {
                           return (nullptr == child.second);
                       });
}

void binomial_tree::pretty_print(std::ostream& out) const {
    if (nullptr == root)
        out << "()";
    else
        root->pretty_print(out);
}

void binomial_tree::swap(binomial_tree& rhs) {
    // cout << "swap() called" << endl;
    std::swap(root, rhs.root);
}



// -----------------------------------------------------
//monomioal list
// -----------------------------------------------------

size_t nr_branches = 0;
size_t max_level;

void monomial_list::minimize_generating_monomials(){

    /*cout << "In MIN " << endl;
    pretty_print(cout);
    cout << "===== " << endl;*/

    if(size() <= 1)
        return;

    sort(); // ivisors precede potentail multiples
    for(auto M = begin(); M!= end(); ++M){
        for(auto N = std::next(M); N != end();){

            INTERRUPT_COMPUTATION_BY_EXCEPTION

            bool M_div_N = true;
            for(size_t k = 0; k < M->size(); ++k){
                if( (*M)[k] > (*N)[k]){
                    M_div_N = false;
                    break;
                }
            }
            if(M_div_N)
                N = erase(N);
            else
                ++N;
        }
    }
    /*cout << "Nach MIN " << endl;
    pretty_print(cout);
    cout << "===== " << endl;*/
}

monomial_list monomial_list::add_monmial(const int& indet, const int& power) const{

    monomial_list new_gen_set;
    for(auto& M: *this){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        if(M[indet] < power)
            new_gen_set.push_back(M);
    }

    exponent_vec add_gen(front().size());
    add_gen[indet] = power;
    new_gen_set.push_back(binomial(add_gen));
    new_gen_set.appearing_at_least_twice = appearing_at_least_twice;
    return new_gen_set;
}

bool mon_divides(const vector<long long>& M1, const vector<long long> M2){
    for(size_t i = 0; i< M1.size(); ++i){
        if(M1[i] > M2[i])
            return false;
    }
    return true;

}

monomial_list monomial_list::colon_by_monmial(const int& indet, const int& power){

    /* monomial_list test_gen_set = *this;
    for(auto& M: test_gen_set){
        if(M[indet] > power)
            M[indet] -= power;
        else
            M[indet] = 0;
    }
    test_gen_set.appearing_vars = appearing_vars;
    test_gen_set.minimize_generating_monomials();
    // return test_gen_set;
    */



    map<int, list<list<exponent_vec>::iterator> > by_degrees;
    for(auto it = begin(); it != end(); ++it){
        by_degrees[(*it)[indet]].push_back(it);

    }
    int previous = -1;
    vector<int> degrees_prsent;
    for(auto& BD: by_degrees){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        if(BD.first != previous){
            degrees_prsent.push_back(BD.first);
            previous = BD.first;
        }
    }

    for(int j = 0; j < degrees_prsent.size(); ++j){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        int m = degrees_prsent[j];
        for(auto& M: by_degrees[m]){
            if((*M)[indet] > power)
                (*M)[indet] -= power;
            else
                (*M)[indet] = 0;
        }
    }


    for(int j = 0; j < degrees_prsent.size(); ++j){
        int l  = degrees_prsent[j];
        if(l > power)
            break;
        for(auto& M1: by_degrees[l]){

            INTERRUPT_COMPUTATION_BY_EXCEPTION

            for(int k = 0; k < j; k++){
                int m = degrees_prsent[k];
                for(auto M2 = by_degrees[m].begin();
                                    M2 != by_degrees[m].end(); ){
                    if( mon_divides(*M1,*(*M2))){
                     M2 =  by_degrees[m].erase(M2);
                    }
                    else
                        M2++;
                }
            }
        }
    }

    monomial_list new_gen_set;
    new_gen_set.appearing_at_least_twice = appearing_at_least_twice;

    for(int j = 0; j < degrees_prsent.size(); ++j){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        int m = degrees_prsent[j];
        for(auto& P: by_degrees[m])
            new_gen_set.splice(new_gen_set.end(), *this, P);
    }

    new_gen_set.sort();

    /* if(test_gen_set.size() != new_gen_set.size()){
        cout << "indet " << indet << " power " << power << endl;
        cout << "TTTT " << test_gen_set.size() << " NNNN " << new_gen_set.size() << endl;
        cout << "degrees present " << degrees_prsent;
        for(auto& M: test_gen_set)
            cout << M;
        cout << "-------------" << endl;
        for(auto& M: new_gen_set)
                cout << M;
        cout << "-------------" << endl;

        for(int j = 0; j < degrees_prsent.size(); ++j){
            int m = degrees_prsent[j];
            cout << "mmmmm " << m << "ssssss " << by_degrees[m].size() << endl;
            for(auto& P: by_degrees[m])
                cout<< *P;;
            cout << "-------------" << endl;
        }


        assert(false);
    }*/


    return new_gen_set;
}

int  monomial_list::find_pivot(int& indet) const{

    if(empty()){
        return -1;
    }

    size_t N = front().size();
    int max_nr_hits = 0;
    int max_hits_indet;
    int max_appear_power = 0;
    int min_appear_power = 0;
    for(size_t k = 0; k < N; ++k){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        if(!appearing_at_least_twice[k])
            continue;
        int min_power = 0;
        int max_power = 0;
        int number_hits = 0;
        for(auto& M: *this){
            if(M[k] == 0)
                continue;
            number_hits++;
            if(M[k] < min_power || min_power == 0)
                min_power = M[k];
            if(M[k] > max_power)
                max_power = M[k];
        }
        if(number_hits <= 1)
            appearing_at_least_twice[k] = false;
        if(number_hits > max_nr_hits){
            max_hits_indet = k;
            max_nr_hits = number_hits;
            min_appear_power = min_power;
            max_appear_power = max_power;

        }
    }
    if(max_nr_hits <= 1)
        return -1;

    indet = max_hits_indet;
    return (max_appear_power + min_appear_power)/2;
}

monomial_list::monomial_list(const binomial_list& BL){
    for(auto& B: BL){
        push_back(B.get_exponent_pos());
    }
    if(!BL.empty())
        appearing_at_least_twice.resize(BL.get_number_indets());
    appearing_at_least_twice.flip();
}

int level_bound_for_omp = 0;

vector<mpz_class> monomial_list::compute_HilbertSeries_inner(int level, const vector<long long>& grading){

    // cout << "LEVEL " << level << endl;

    if(level > max_level)
        max_level = level;
    nr_branches++;

    int indet;
    int d = find_pivot(indet);

    INTERRUPT_COMPUTATION_BY_EXCEPTION

    // if(check_complete_intersection()){
    if(d < 0){
        mpz_class One = 1;
        vector<mpz_class> numerator(1,One);
        for(auto& M: *this){
            long long deg = v_scalar_product(grading, M);
            mpz_class deg_mpz = convertTo<mpz_class>(deg);
            vector<mpz_class> shifted(numerator.size()+deg);
            for(size_t i = 0; i< numerator.size(); ++i)
                shifted[i+ deg] = numerator[i];
            numerator.resize(shifted.size());
            for(size_t i = 0; i< numerator.size(); ++i)
                numerator[i] = numerator[i] - shifted[i];
        }
        /* cout << "INTER " << " Level " << level << endl;
        pretty_print(cout);
        cout << "Inter num " << numerator << endl;*/
        return numerator;
    }

    //cout << "PIVOT " << indet << " -- " << d << endl;

    monomial_list sum = add_monmial(indet, d);

    // IMPORTANT: the elements of colon get spliced in from *this.
    // After this operation *this is eddentially destroyed.
    monomial_list colon = colon_by_monmial(indet, d);
    clear();
    // cout << "Vor Sum " << endl;
    // sum.pretty_print(cout);

    vector<mpz_class> numerator_sum;
    vector<mpz_class> numerator_colon;

#pragma omp parallel sections if(level <= level_bound_for_omp)
    {
#pragma omp section
    numerator_sum = sum.compute_HilbertSeries_inner(level +1,grading);
    /* cout << "Nach sum" << indet << " Power " << d  << " Level " << level << endl;
    sum.pretty_print(cout);
    cout << "SUM num " << numerator_sum;*/
#pragma omp section
    numerator_colon = colon.compute_HilbertSeries_inner(level +1,grading);
    }

    long long deg = d*grading[indet];
    /* cout << "COLON " << indet << " Power " << d << "deg " << deg  << " Level " << level << endl;
    colon.pretty_print(cout);*/
    vector<mpz_class> shifted(numerator_colon.size()+deg);
    for(size_t i = 0; i< numerator_colon.size(); ++i)
        shifted[i+ deg] = numerator_colon[i];
    // cout << "shifted " << shifted;

    int max_size = std::max(shifted.size(), numerator_sum.size());
    shifted.resize(max_size);
    numerator_sum.resize(max_size);
    for(size_t i = 0 ; i < numerator_sum.size(); ++i)
        numerator_sum[i] += shifted[i];

    /* cout << "TOTAL " << endl;
    pretty_print(cout);*/

    // cout << " total  num " << numerator_sum;

    return numerator_sum;
}

// -----------------------------------------------------
//binomioal list
// -----------------------------------------------------

binomial_list::binomial_list(const matrix_t& binomial_matrix) {
    degree_bound = -1;
    degree_bound_set = false;
    for (size_t i = 0; i < binomial_matrix.nr_of_rows(); ++i) {
        binomial bi(binomial_matrix[i]);
        push_back(bi);
    }
}

void binomial_list::set_degree_bound(const long deg_bound){
    assert(grading.size() > 0);
    degree_bound = deg_bound;
}

void binomial_list::set_grading(const vector<long long>& grad){
    grading = grad;
}

void binomial_list::set_verbose(bool verb){
    verbose = verb;
}

size_t binomial_list::get_number_indets() const {
    return (empty() ? 0 : front().size());
}

vector<mpz_class> binomial_list::compute_HilbertSeries(const vector<long long>& grad){

    grading = grad;

    // cout << grading.size() << " -- " <<grading;
    monomial_list the_monomials(*this);
    /* cout << "START" << endl;
    the_monomials.pretty_print(cout);
    cout << "$$$$$$$$$$$$$$$" << endl;*/

    int mt = omp_get_max_threads(); // must limit the nested parallelization
    while(mt > 0){                  // otherwise we risk a crash
        level_bound_for_omp++;
        mt /= 2;
    }
    level_bound_for_omp++;
    // cout << "LLLLLLLLLLL " << level_bound_for_omp << endl;

    omp_set_nested(1);
    vector<mpz_class> Num = the_monomials.compute_HilbertSeries_inner(0,grading);
    omp_set_nested(0);
    // cout << "max level " << max_level << " branches " << nr_branches << endl;
    return Num;

}

void binomial_list::mo_sort() {
    // sort(binomial_compare_class()); // to reduce against changed elements
    if (mon_ord.get_type())
        sort(binomial_compare_wdegrevlex_class());
    else
        sort(binomial_compare_wdeglex_class());
}

void binomial_list::normalize() {
    for (auto b = begin(); end() != b; ++b)
        b->normalize(mon_ord);
}

void binomial_list::customize(binomial& b) {
    b.normalize(mon_ord);
    b.set_support_keys(sat_support);
}

void binomial_list::insert_back(const binomial& b) {
    push_back(b);
    customize(back());
}

// not in use at present
template<typename Iterator>
void binomial_list::intermediate_auto_reduce(binomial_tree& red_tree, Iterator& new_binom) {
    red_tree.auto_reduce = true;

    auto b = begin();
    while (end() != b) {
        binomial b_ori(*b);
        bool tail_criterion = false;
        bool changed = red_tree.reduce(*b, tail_criterion);
        if (!changed && !tail_criterion) { // *b irreducible
            ++b;
            continue;     // nothing changed
        }
        bool zero = tail_criterion || b->zero();
        if(!zero){
            insert_back(*b);
        }
        if(b == new_binom){
            new_binom++;
        }
        b = erase(b);
    }

    red_tree.auto_reduce = false;
}

void binomial_list::sort_by_nonzero_weight_and_normalize(){
    bool weight_temporarily_added = false;
    size_t nr_vars = get_number_indets();
    exponent_vec zero_test = vector<exponent_t>(nr_vars);
    if(mon_ord == zero_test){
        weight_temporarily_added = true;
        exponent_vec total_degree = vector<exponent_t>(nr_vars,1);
        mon_ord.set_weight(total_degree);
        normalize();
        mo_sort();
    }
    if(weight_temporarily_added){
        mon_ord.set_weight(zero_test);
        normalize();
    }
    else{
        normalize();
        mo_sort();
    }
}


void binomial_list::auto_reduce(binomial_tree& red_tree, const bool initial) {
    red_tree.auto_reduce = true;
    // list<binomial> new_bins;
    bool changed;
    do {
        // mo_sort(mo); // done in buchberger
        // unique();
        changed = false;
        auto b = begin();
        while (end() != b) {

            INTERRUPT_COMPUTATION_BY_EXCEPTION

            binomial b_ori(*b);
            bool tail_criterion = false;
            changed = red_tree.reduce(*b, tail_criterion);
            if (!changed && !tail_criterion) { // *b irreducible
                ++b;
                continue;     // nothing changed
            }
            if (tail_criterion || b->zero()) {  // reduction to zero
                b = erase(b); // leaves b pointing at next element
                continue;     // no need to set changed
            }
            changed = (b_ori != *b);
            if(!initial){ // we do not change the b_original input
                   // *b changed (and not erased)
                    b->set_support_keys(sat_support);
            }
            else
                *b = b_ori;
            ++b;
        }
    } while (changed && !initial);
    red_tree.auto_reduce = false;

    /*for(auto& B: new_bins){
        cout << "insert " << endl;
        red_tree.insert(B);
    }
    cout << "Done " << endl;*/

    //mo_sort();
    sort_by_nonzero_weight_and_normalize();
    unique();
}

// Premise: *b < *c, i.e. *b = min{*b, *c}
template<typename Iterator>
bool binomial_list::criterion_gm_left(const Iterator& b,
                        const Iterator& c) const {

    binomial lcm = c->lcm(b->get_exponent_pos());
    // cout << "LCM "; lcm.pretty_print(cout);
    for (auto it = begin(); it != b; ++it){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        winf_gm_steps++;
        bool divides = true;
        for(auto& i: it->pos_support_key){
            if((*it)[i] > lcm[i]){
                divides = false;
                break;
            }
        }
        if(divides){
            // cout << "DIV "; it->pretty_print(cout);
            winf_gm_left++;
            return true;
        }
    }
    return false;
}


template<typename Iterator>
bool binomial_list::make_and_reduce_s_poly(binomial& s_poly, const Iterator match,
                                const Iterator new_binom,
                                binomial_tree& red_tree){

    INTERRUPT_COMPUTATION_BY_EXCEPTION

    winf_s_poly++;

    /* if(match->criterion_tail(*new_binom)){
        cout << "TAIL " << endl;
    }

    if(match->positive_coprime(*new_binom)){
        cout << "COPRIME" << endl;
    }

    if(criterion_gm_left(match, new_binom)){
        cout << "GEB MÖL" << endl;
    } */

    if ( (match->criterion_tail(*new_binom)) // non-coprime tails
                || (match->positive_coprime(*new_binom)) // coprime heads
                || (criterion_gm_left(match, new_binom))  )         // GM "left"
        return true;

    s_poly = *match - *new_binom;
    if(degree_bound_set && pos_degree(s_poly, grading) > degree_bound)
        return true;

    winf_red++;
    s_poly.normalize(mon_ord);

    bool tail_criterion = false;
    red_tree.reduce(s_poly, tail_criterion);

    if(tail_criterion)
        winf_red_tail++;
    if(s_poly.zero())
        winf_red_zero ++;
    if (!tail_criterion &&  !s_poly.zero()){
        return false;
    }
    return true;
}

void binomial_list::start_bb(binomial_tree& red_tree){



    sort_by_nonzero_weight_and_normalize();
    for(auto& B: *this){
        B.set_support_keys(sat_support);
        red_tree.insert(B);
    }
    /* pretty_print(cout);
    cout << "--------------" << endl;
    red_tree.pretty_print(cout);
    cout << "--------------" << endl;
    exit(0);*/
    auto_reduce(red_tree, true); // true == initialb_ori

        if(verbose)
            verboseOutput() << "After initial auto-reduction " << size() << endl;
}


void binomial_list::buchberger(const exponent_vec& weight_vec,
                               const bool degrevlex_mode,
                               const dynamic_bitset& sat_supp) {

    mon_ord = monomial_order(degrevlex_mode, weight_vec);
    sat_support  = sat_supp;

    if(degree_bound >= 0){
        degree_bound_set = true;
        assert(grading.size() > 0);

        for(auto b = begin(); b != end(); ){
            if(pos_degree(*b, grading) > degree_bound)
                b = erase(b);
            else
                ++b;
        }
    }

    /* size_t Bind = 0;
    bool too_many = false;
    for(auto&B: *this){
        size_t Cind = 0;
        for(auto& C: *this){
            if(Cind == Bind)
                continue;
            bool does_not_divide = false;
            for(size_t i = 0; i< B.size(); ++i){
                if(C[i] <= 0)
                    continue;
                if(C[i] > B[i]){
                    does_not_divide = true;
                    break;
                }
            }
            if(!does_not_divide){
                too_many = true;
                std::cout << endl;
                B.pretty_print(std::cout);
                std::cout << "divisible " << Bind << " -- " << Cind;
                if(Bind < Cind && B == C)
                    std::cout << "equal";
                std::cout << std::endl;
                break;
            }
            Cind++;
        }
        Bind++;
    }*/

    StartTime();

    size_t inserted = 0;
    binomial_tree red_tree(mon_ord, sat_supp); // our reduction tree
    start_bb(red_tree); // inserts the input into red_tree and auto-reduces it

    size_t nr_vars = sat_supp.size();

    binomial s_poly(nr_vars);

    auto new_binom = begin(); // to be matched with the preceding binomials
    while(true){

        // cout << " new_binom "; new_binom -> pretty_print(cout);
        for(auto match = begin(); match != new_binom; ++match){
        // cout << " match "; match -> pretty_print(cout);
            bool is_zero = make_and_reduce_s_poly(s_poly,match, new_binom, red_tree);
            if(!is_zero){
                // s_poly.set_support_keys(sat_supp);
                // cout << "s_poly "; s_poly.pretty_print(cout);
                red_tree.insert(s_poly);
                insert_back(s_poly);
                inserted++;
            }
        }
        ++new_binom;
        // takes much time and does little
        /* if(inserted >= 1000){
            inserted = 0;
            intermediate_auto_reduce(red_tree, new_binom);
        }*/
        if(new_binom == end())
            break;
    }

        if(verbose)
            verboseOutput() << "Before final auto-reduction " << size() << endl;

    auto_reduce(red_tree);
    mo_sort();

    /*  binomial_list lead_mons = extract_pos_monomials();
    lead_mons.minimize_generating_monomials();
    assert(lead_mons.size() == size());*/

    /* too_many =false;
    Bind = 0;
    for(auto&B: *this){
        size_t Cind = 0;
        for(auto& C: *this){
            if(Cind == Bind)
                continue;
            bool does_not_divide = false;
            for(size_t i = 0; i< B.size(); ++i){
                if(C[i] <= 0)
                    continue;
                if(C[i] > B[i]){
                    does_not_divide = true;
                    break;
                }
            }
            if(!does_not_divide){
                too_many = true;
                std::cout << endl;
                B.pretty_print(std::cout);
                C.pretty_print(std::cout);
                std::cout << "divisible " << Bind << " -- " << Cind;
                if(Bind < Cind && B == C)
                    std::cout << "equal";
                std::cout << std::endl;
                break;
            }
            Cind++;
        }
        Bind++;
    }

    if(too_many){
        pretty_print(std::cout);
        red_tree.pretty_print(cout);
        exit(0);

    }*/

    MeasureTime(verbose, "Buchberger");
}

matrix_t binomial_list::to_matrix() const {
    matrix_t bmat(0, get_number_indets());
    for (auto b : *this)
        bmat.append(b);
    return bmat;
}

void binomial_list::pretty_print(std::ostream& out,
                                 const bool with_row_nr) const {
    to_matrix().pretty_print(out, with_row_nr);
}

string binomial_list::to_polystring() const {
    string ps;
    for (auto b = begin(); end() != b; ++b) {
        ps += b->to_polystring();
        if (end() != std::next(b))
            ps += ",\n";
    }
    return ps;
}

void s_poly_insert(binomial_list& G, binomial_list_by_degrees& B){

    if(G.size() <=1)
        return;

    binomial s_poly(G.get_number_indets());

    auto last = G.end();
    last --;
    binomial last_bin =G.back();
    last_bin.set_support_keys(G.sat_support);

    for(auto match = G.begin(); match != last; ++match){

        INTERRUPT_COMPUTATION_BY_EXCEPTION

        winf_s_poly++;

        if ( (match->criterion_tail(last_bin)) // non-coprime tails
            || (match->positive_coprime(last_bin)) // coprime heads
            || (G.criterion_gm_left(match, last))  )         // GM "left"
            continue;

        s_poly = last_bin - *match;
        if(G.degree_bound_set && pos_degree(s_poly, G.grading) > G.degree_bound)
            continue;
        s_poly.normalize(G.mon_ord);
        size_t deg = libnormaliz::v_scalar_product(B.grading, s_poly.get_exponent_pos());
        s_poly.set_support_keys(G.sat_support);
        B.insert(make_pair(deg, s_poly));
    }
}

// minimizatiom by trying to connect lead and tail in tghe graph whose edges are defined by
// previous minimal geneartors
binomial_list binomial_list::graph_minimize(bool& success){

    assert(grading.size() > 0);
    vector<long long> weight = grading;
    StartTime();
    success = true;

    if(size() <= 1)
        return *this;

    // settings for *this
    sat_support = dynamic_bitset(weight.size());
    sat_support.flip(); // we have a positive weight and can take revlex
    mon_ord = monomial_order(true, weight);

    binomial_tree Min_red_tree(mon_ord, sat_support);
    Min_red_tree.set_minimization_tree();

    binomial_list Vmin; // minimal Markov
    binomial_list Vstopped; //returned in case of failure

    binomial_list_by_degrees  W(*this); // ordered version of *this
    set<exponent_vec> G_set;

    size_t min_degree = W.begin()->first;

    // We startb from a reduced Gröbner basis
    // Binomials of minimal degree belong to a minimal system of generators
    // For any binomial b we need b and -b in the reduction tree.
    binomial b1;
    for(auto& b: W){
        if(b.first > min_degree)
            break;
        b1 = b.second;
        Vmin.push_back(b1);
        b1.set_support_keys(sat_support);
        Min_red_tree.insert(b1);
        for(size_t i = 0; i < b1.size(); ++i)
            b1[i] = -b1[i];
        b1.set_support_keys(sat_support);
        Min_red_tree.insert(b1);
    }

    size_t nnn = 0;
    for(auto& b: W){

        INTERRUPT_COMPUTATION_BY_EXCEPTION
        nnn++;
        // cout << "********************************** " << nnn << endl;
        bool is_minimal = true;
        if(b.first == min_degree)
            continue;
        b1 = b.second;
        b1.set_support_keys(sat_support);
        exponent_vec bpos = b1.get_exponent_pos();
        exponent_vec bneg = b1.get_exponent_neg();
        set<exponent_vec> old_neighbors;
        set<exponent_vec> new_neighbors;
        // old_neighbors.insert(bpos);
        new_neighbors.insert(bpos);
        while(!new_neighbors.empty()){

            INTERRUPT_COMPUTATION_BY_EXCEPTION

            exponent_vec next = *new_neighbors.begin();
            old_neighbors.insert(next);
            if(old_neighbors.size() > 2000){
                success = false;
                MeasureTime(verbose, "graph_minimize stopped");
                return Vstopped;
            }
            /* if( old_neighbors.size() % 100000 == 0)
                cout << "OOOOO " << old_neighbors.size() << endl;*/
            new_neighbors.erase(next);
            if(Min_red_tree.collect_neighbors(next, bneg, old_neighbors, new_neighbors)){
                is_minimal =false;
                break;
            }
            if(new_neighbors.size() > 2000){
                MeasureTime(verbose, "graph_minimize stopped");
                success = false;
                return Vstopped;
            }
        }
        if(is_minimal){
                Vmin.push_back(b1);
            b1.set_support_keys(sat_support);
            Min_red_tree.insert(b1);
            for(size_t i = 0; i < b1.size(); ++i)
                b1[i] = -b1[i];
            b1.set_support_keys(sat_support);
            Min_red_tree.insert(b1);
        }
    }

    MeasureTime(verbose, "graph_minimize");

    return Vmin;
}


// realizes the algorithm in Kreuzer-Robbiano CCA II, Theorem 4.6.7
// notation as used there
// not used anymore
 binomial_list binomial_list::bb_and_minimize(const vector<long long>& weight){
 //binomial_list binomial_list::bb_and_minimize(const vector<long long>& weight, bool starting_from_GB, binomial_list& G){

    StartTime();

    // assert(G.empty());

    if(size() <= 1)
        return *this;

    bool starting_from_GB = true;

    // settings for *this
    sat_support = dynamic_bitset(weight.size());
    sat_support.flip(); // we have a positive weight and can take revlex
    mon_ord = monomial_order(true, weight);
    normalize();

    binomial_list G; // the GB built by degrees
    G.mon_ord = mon_ord;
    G.sat_support = sat_support;
    G.grading = grading;
    G.degree_bound = degree_bound;
    if(degree_bound >= 0)
        G.degree_bound_set = true;

    binomial_tree G_red_tree(mon_ord, sat_support);

    binomial_list Vmin; // minimal Markov

    binomial_list_by_degrees  W(*this); // ordered version of *this
    binomial_list_by_degrees B(weight);
    set<exponent_vec> G_set;

    long long min_degree;

    while(!W.empty()){

        if(B.empty()){
            min_degree = W.begin()->first;
        }
        if(!B.empty()){
            min_degree = std::min(W.begin()->first,B.begin()->first);
        }

        binomial b;

        while(!B.empty() && min_degree == B.begin()->first){

            INTERRUPT_COMPUTATION_BY_EXCEPTION

            b = B.begin()->second;
            B.erase(B.begin());
            b.set_support_keys(sat_support);

            bool tail_criterion = false;
            G_red_tree.reduce(b, tail_criterion);
            if(tail_criterion)
                winf_red_tail++;
            if(!tail_criterion && b.zero())
                winf_red_zero ++;
            if (tail_criterion || b.zero())
                continue;
            G.insert_back(b);
            G_red_tree.insert(b);
            G_set.insert(b.get_exponent_pos());
            s_poly_insert(G, B);
        }

        while(!W.empty() && min_degree == W.begin()->first){

            INTERRUPT_COMPUTATION_BY_EXCEPTION

            b = W.begin()->second;
            W.erase(W.begin());

            if(starting_from_GB && G_set.find(b.get_exponent_pos())!= G_set.end())
                continue;
            G.insert_back(b);
            G_red_tree.insert(b);
            Vmin.push_back(b);
            s_poly_insert(G, B);
        }
    }

    MeasureTime(verbose, "bb_and_minimize");

    return Vmin;
}

// -----------------------------------------------------
// binomial list by degrees
// -----------------------------------------------------

binomial_list_by_degrees::binomial_list_by_degrees(const binomial_list& BL){

    grading = BL.mon_ord.get_weight();  // we want bto keep the order in BL as much as possible
    vector<long long> bounding_grad = BL.grading;
    long long degree_bound = BL.degree_bound;

    bool no_degree_bound = true;
    if(degree_bound > -1)
        no_degree_bound = false;
    if(!BL.empty())
        assert(grading.size() == BL.front().size());
    for(auto& b: BL){
        if(no_degree_bound || pos_degree(b, bounding_grad) <= degree_bound)
            bin_insert(b);
    }
}


binomial_list_by_degrees::binomial_list_by_degrees(const vector<long long>& grad){

    grading = grad;
}

void binomial_list_by_degrees::bin_insert(const binomial& b){
    int deg = libnormaliz::v_scalar_product(grading,b.get_exponent_pos());
    insert(make_pair(deg,b));
}

} // namespace