File: lattice_ideal.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (1019 lines) | stat: -rw-r--r-- 34,112 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
/*
 * Normaliz
 * Copyright (C) 2007-2022  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

#include <fstream>

#include "libnormaliz/lattice_ideal.h"
#include "libnormaliz/cone.h"
#include "libnormaliz/list_and_map_operations.h"
#include "libnormaliz/project_and_lift.h"

namespace  libnormaliz{

typedef long long Integer;
typedef mpz_class BigInt;

Integer find_nonzero_degree(const Matrix<Integer>& M,
                                       const vector<Integer>& grading, const long min_degree){
    bool first = true;
    Integer degree_found = -1;
    for(size_t i = 0; i < M.nr_of_rows(); ++i){
        Integer PD = pos_degree(M[i], grading);
        if(PD < min_degree)
            continue;
        if(first || PD < degree_found){
            first = false;
            degree_found = PD;
        }
    }
    return degree_found;
}

void sort_by_pos_degree(Matrix<Integer>& M, const vector<Integer>& grading){
    list<pair<long long, size_t> > to_be_sorted;
    for(size_t i = 0; i < M.nr_of_rows(); ++i){
        // cout << i << "  " << pos_degree(M[i], grading) << endl;
        to_be_sorted.push_back(make_pair(pos_degree(M[i], grading),i));
    }
    to_be_sorted.sort();
    vector<key_t> perm;
    for(auto& s:to_be_sorted)
        perm.push_back(s.second);
    // cout << perm;
    M.order_rows_by_perm(perm);
}


// degree_bound = - 2: find first degree with elements of degree >= min_degree
// not used at present
Matrix<Integer> select_by_degree(const Matrix<Integer>& M,
                                       const vector<Integer>& grading, long degree_bound, const long min_degree){
    if(degree_bound == -2){
        degree_bound = find_nonzero_degree(M, grading, min_degree);
    }
    vector<key_t> satisfies_degree_bound;
    for(size_t i = 0; i < M.nr_of_rows(); ++i){
        Integer PD = pos_degree(M[i], grading);
        if(degree_bound != -1 && PD > degree_bound)
            continue;
        if(PD  < min_degree)
            continue;
        satisfies_degree_bound.push_back(i);
    }
    return M.submatrix(satisfies_degree_bound);
}


//---------------------------------------------------------------
//         MarkovProjectAndLift
//---------------------------------------------------------------

MarkovProjectAndLift::MarkovProjectAndLift(Matrix<Integer>& LatticeIdeal, const bool verb){

    verbose = verb;
    degree_bound = -1;

    // cout << "Given lattice ideal in Laurent polynomial ring" << endl;
    // LatticeIdeal.pretty_print(cout);
    LattiiceIdealInput = LatticeIdeal;

    Matrix<Integer> LItranspose = LatticeIdeal.transpose();
    Matrix<Integer> Weights(0,LItranspose.nr_of_columns());
    Weights.append(vector<Integer> (LItranspose.nr_of_columns(),1));
    vector<bool> absolute(1,1);

    // GCC 12 and 13 give the following warning when initialising StartPerm as
    // a vector of bools:
    //   warning: 'void* __builtin_memmove(void*, const void*, long unsigned
    //   int)' writing between 9 and <very large number> bytes into a region
    //   of size 8 overflows the destination [-Wstringop-overflow=]
    #if defined(__GNUC__) && __GNUC__ >= 12 && __GNUC__ <= 13 && !defined(__clang__)
    #pragma GCC diagnostic push
    #pragma GCC diagnostic ignored "-Wstringop-overflow"
    #endif
    StartPerm = LItranspose.perm_by_weights(Weights, absolute);
    #if defined(__GNUC__) && __GNUC__ >= 12 && __GNUC__ <= 13 && !defined(__clang__)
    #pragma GCC diagnostic pop
    #endif
    LItranspose.order_rows_by_perm(StartPerm);
    if(verbose){
        verboseOutput() << "---------------------------------------------------" << endl;
        verboseOutput() << "Starting project-and-lift for Markov basis" << endl << endl;
        verboseOutput() << "Columns reordered "<< StartPerm << endl;
    }
    LatticeIdeal = LItranspose.transpose();

    // LatticeIdeal.pretty_print(cout);

    LatticeBasis = LatticeIdeal;
    nr_vars = LatticeBasis.nr_of_columns();
    rank = LatticeBasis.row_echelon_reduce();
    // cout << "Row echelon form of lattice basis" << endl;
    //LatticeBasis.debug_print();
    // cout << "rank " << rank << endl;
    LatticeBasis.resize(rank);
    start_column_key();
    make_normal_form();
    Compute_lift_map();
    /* cout << "Transformation to top" << endl;
    TransformToTop.pretty_print(cout);
    cout << "denom " << denom << endl; */
}

void MarkovProjectAndLift::start_column_key(){

    Lifted.resize(nr_vars);
    TestedUnbounded.resize(nr_vars);

    for(size_t i = 0; i < rank; ++i){
        for(size_t j = 0; j < nr_vars; ++j){
            if(LatticeBasis[i][j] != 0){
                ColumnKey.push_back(j);
                Lifted[j] = true;
                TestedUnbounded[j] = true;
                break;
            }
        }
    }

    if(verbose){
        verboseOutput() << "Projection to new coordinates" << endl;
    verboseOutput() << ColumnKey;;
    }
}

// makes kind of a Hermite normal form
void MarkovProjectAndLift::make_normal_form(){

    for(size_t i=1; i < rank; ++i){
        for(size_t j = 0; j < i; ++j){
            if(LatticeBasis[j][ColumnKey[i]] <= 0)
                continue;
            Integer fact = LatticeBasis[j][ColumnKey[i]]/LatticeBasis[i][ColumnKey[i]];
            if(LatticeBasis[j][ColumnKey[i]] % LatticeBasis[i][ColumnKey[i]] != 0)
                fact++;
            for(size_t k = i; k < nr_vars; ++k)
                LatticeBasis[j][k] -= fact* LatticeBasis[i][k];
        }
    }
    // LatticeBasis.debug_print();
    // cout << "Lattice basis after transformation " << endl;
    // LatticeBasis.pretty_print(cout);

    LatticeBasisTranspose = LatticeBasis.transpose();
}

void MarkovProjectAndLift::columns_to_old_order(){

    Matrix<Integer> Copy = CurrentMarkov;
    for(size_t i = 0; i < Copy.nr_of_rows(); ++i){
        for(size_t j = 0; j < nr_vars; ++j)
            CurrentMarkov[i] [ StartPerm[ ColumnKey[j]] ] = Copy[i][j];
    }

    if(MinimalMarkov.nr_of_rows() == 0){
        MinimalMarkov.resize(0, nr_vars); // should have correc t format
        return;
    }

    Copy = MinimalMarkov;
    for(size_t i = 0; i < Copy.nr_of_rows(); ++i){
        for(size_t j = 0; j < nr_vars; ++j)
            MinimalMarkov[i] [ StartPerm[ ColumnKey[j]] ] = Copy[i][j];
    }
}

void MarkovProjectAndLift::Compute_lift_map(){

    Matrix<Integer> rxr(rank,rank);
    for(size_t i = 0; i< rank; ++i)
        for(size_t j = 0; j < rank; ++j)
        rxr[i][j] = LatticeBasis[i][ColumnKey[j]];

    TransformToTop = rxr.solve(LatticeBasis, denom);

    /* Matrix<Integer> Check = rxr.multiplication(TransformToTop);
    Check.scalar_division(denom);
    cout << "========================7" << endl;
    Check.pretty_print(cout);*/

}

void MarkovProjectAndLift::add_new_coordinate_to_Markov(){

    size_t new_coord = LatticeBasisReorderedTranspose.nr_of_rows() - 1;

    vector<Integer> new_column(CurrentMarkov.nr_of_rows());
    for(size_t i = 0; i < new_column.size(); ++i){
        Integer new_entry = 0;
        for(size_t j = 0; j < rank; ++j){
            new_entry += CurrentMarkov[i][j]*TransformToTop[j][ColumnKey[new_coord]];
        }
        new_column[i] = new_entry/denom;
    }
    CurrentMarkov.insert_column(new_coord, new_column);
}

bool MarkovProjectAndLift::compute_current_weight(){

    /* cout << "Truncated lattice basis for coordinate " << new_coord << endl;
    TruncBasis.pretty_print(cout); */

    size_t new_coord = LatticeBasisReordered.nr_of_columns()-1;

    // bool save_global_verbose = libnormaliz::verbose;
    // libnormaliz::verbose = false;
    Matrix<BigInt> LBR_Big;
    convert(LBR_Big, LatticeBasisReordered);
    suppressNextConstructorVerbose();
    Cone<BigInt> WeightCone(Type::equations, LBR_Big); // intersects with positive orthant
    WeightCone.setVerbose(false);
    // libnormaliz::verbose = save_global_verbose;
    Matrix<BigInt> ER_big = WeightCone.getExtremeRaysMatrix();
    Matrix<Integer> ExtRays;
    convert(ExtRays, ER_big);
    vector<Integer> GradingOnCurrentQuotient(new_coord+1,0);
    CurrentWeight = vector<Integer>(new_coord+1,0);
    for(size_t i = 0; i < ExtRays.nr_of_rows(); ++i){
        CurrentWeight = v_add(CurrentWeight, ExtRays[i]);
        if(ExtRays[i].back() == 0)
            GradingOnCurrentQuotient = v_add(GradingOnCurrentQuotient,ExtRays[i]);
    }
    v_make_prime(CurrentWeight);
        bool good_for_bounded = (CurrentWeight.back() > 0);
    LiftedWeight = CurrentWeight;
    CurrentWeight.resize(new_coord); // shotened by lat coordinate

    GradingOnCurrentQuotient.resize(new_coord);

    // cout << "Grading on current quotient for saturation support" << endl;
    // cout << GradingOnCurrentQuotient;

    // cout << "Current weight for monomial order" << endl;
    // cout << CurrentWeight;

    CurrentSatturationSupport.resize(new_coord);
    for(size_t i = 0; i < new_coord; ++i){
        if(GradingOnCurrentQuotient[i] > 0)
            CurrentSatturationSupport[i] = true;
        else
            CurrentSatturationSupport[i] = false; // to be on the safe side
    }

    // must remove the last entry for Buchberger
    return good_for_bounded;
}

void MarkovProjectAndLift::update_bookkeeping(const size_t& coord_to_lift){

    Lifted[coord_to_lift] = true;
    ColumnKey.push_back(coord_to_lift);
    LatticeBasisReordered.append_column(LatticeBasisTranspose[coord_to_lift]);
    LatticeBasisReorderedTranspose.append(LatticeBasisTranspose[coord_to_lift]);
}

bool MarkovProjectAndLift::lift_next_not_yet_lifted(bool allow_revlex){

    dynamic_bitset NotLifted = ~Lifted;
    if(!NotLifted.any())
        return false;

    update_bookkeeping(NotLifted.find_first());

    bool good_for_bounded = compute_current_weight();
    if(!good_for_bounded){ // can happen in "straight" mode
        lift_single_unbounded(vector<Integer>());
        return true;
    }
    if(verbose)
        verboseOutput() << "Lift step " << ColumnKey.size() - 1 << " bounded to sorted coordinate "
                << ColumnKey.back() <<  ", original coordinate "
                << StartPerm[ ColumnKey.back() ] << endl;

    bool full_support_of_weight = allow_revlex;
    if(allow_revlex){
        for(size_t i = 0; i< CurrentWeight.size(); ++ i){
            if(CurrentWeight[i] == 0){
                full_support_of_weight = false;
                break;
            }
        }
    }
    CurrentOrder = full_support_of_weight;
    binomial_list grp(CurrentMarkov);
    grp.set_verbose(verbose);
    // cout << CurrentWeight; // *****************
    grp.buchberger(CurrentWeight, full_support_of_weight, CurrentSatturationSupport);
    CurrentMarkov = grp.to_matrix();
    if(verbose)
        verboseOutput() << "Size of current Markov after Buchberger " << CurrentMarkov.nr_of_rows() << endl;
    add_new_coordinate_to_Markov();

    if(verbose)
        verboseOutput() << "Dim reached " << CurrentMarkov.nr_of_columns() << endl;
    if(verbose)
        verboseOutput() << "---------------------------------------------------" << endl;


    if(CurrentMarkov.nr_of_columns() < nr_vars)
        return true;

    for(size_t i = 0; i < LiftedWeight.size(); ++i){
        if(LiftedWeight[i] == 0)
            return true;
    }


    // now full dimension and positively graded
    // can minimize

    if(verbose)
        verboseOutput() << "Computing minimal Markov basis" << endl;
    binomial_list gr(CurrentMarkov);
    gr.set_verbose(verbose);
    bool graph_success;
    if(degree_bound >= 0){
        gr.set_grading(grading);
        gr.set_degree_bound(degree_bound);
    }
    else{
        gr.set_grading(LiftedWeight);
    }
    binomial_list min_markov = gr.graph_minimize(graph_success);
    if(!graph_success){
        min_markov = gr.bb_and_minimize(LiftedWeight);
    }
    MinimalMarkov = min_markov.to_matrix();

    /*binomial_list min_markovGB = gr.bb_and_minimizeGB(LiftedWeight);
    Matrix<long long> MinimalMarkovGB(0, LiftedWeight.size());
    MinimalMarkovGB = min_markovGB.to_matrix();
    cout << "CCCCCCCCCCCC " << min_markov.size() << " GGGGGGGGGG " << min_markovGB.size() << endl;

    vector<long long> OurDegrees;
    for(size_t i = 0; i< MinimalMarkov.nr_of_rows(); ++i){
        OurDegrees.push_back(pos_degree(MinimalMarkov[i], LiftedWeight));
    }
    map<long long, size_t> DegMap = count_in_map<long long, size_t>(OurDegrees);
    cout << "Grading " << LiftedWeight;
    cout << "CCCCCC " << DegMap;
    cout << endl;

    vector<long long> OurDegreesGB;
    for(size_t i = 0; i< MinimalMarkovGB.nr_of_rows(); ++i){
        OurDegreesGB.push_back(pos_degree(MinimalMarkovGB[i], LiftedWeight));
    };
    map<long long, size_t> DegMapGB = count_in_map<long long, size_t>(OurDegreesGB);
    cout << "GGGGGG  " <<  DegMapGB;
    cout << endl;

    cout << endl << "CCCCCC " << DegMap.size() << " GGGGGG " << DegMapGB.size() << endl;

    for(auto& D: DegMap){
        if(D.second != DegMapGB[D.first])
            cout << D.first << " " << D.second << "  ------  " << DegMapGB[D.first] << endl;
    }

    cout << endl << "=========================================================" << endl;*/

    if(verbose)
        verboseOutput() << "Size of minimal Markov basis " << MinimalMarkov.nr_of_rows() << endl;

    if(verbose)
        verboseOutput() << "---------------------------------------------------" << endl;

    return true;
}

bool MarkovProjectAndLift::find_and_lift_next_unbounded(){

    dynamic_bitset NotLifted = ~TestedUnbounded;
    if(!NotLifted.any())
        return false;

    size_t first_coord_to_test = NotLifted.find_first();

    //  Find  cone of coefficient vectors that give nonnegative linear combination of alltice basis
    // within the already done columns
    // bool save_global_verbose = libnormaliz::verbose;
    // libnormaliz::verbose = false;
    Matrix<BigInt> LBRT_Big;
    convert(LBRT_Big, LatticeBasisReorderedTranspose);
    suppressNextConstructorVerbose();
    Cone<BigInt> CheckBounded(Type::inequalities, LBRT_Big);  // TODO Use Normaliz dynamic -- we must add
    //  one inequality only to last inequalities
    CheckBounded.setVerbose(false);
    //libnormaliz::verbose = save_global_verbose;
    Matrix<BigInt> ER_big = CheckBounded.getExtremeRaysMatrix();
    Matrix<Integer> ExtRays;
    convert(ExtRays, ER_big);

    // Now find next column that admits positive value under one of the extreme rays
    size_t good_ext_ray = ExtRays.nr_of_rows();
    size_t new_column;

    for(size_t i = first_coord_to_test; i < nr_vars; ++i){ // we need one extreme ray that gives positive value on next column

        if(Lifted[i])
            continue;
        TestedUnbounded[i] = true;

        if(verbose)
            verboseOutput() << "checking coordinate " << i << endl;
        for(size_t k = 0; k < ExtRays.nr_of_rows(); ++k){
            if(v_scalar_product(ExtRays[k], LatticeBasisTranspose[i]) > 0){
                good_ext_ray = k;
                break;
            }
        }
        if(good_ext_ray < ExtRays.nr_of_rows()){
            new_column = i;
            break;
        }
    }

    if(good_ext_ray == ExtRays.nr_of_rows()){ // no unbounded lift possible
        return false;
    }

    update_bookkeeping(new_column);

    if(verbose)
        verboseOutput() << "Lift step " << ColumnKey.size() - 1 <<  " un-bounded to sorted coordinate "
                << ColumnKey.back()  <<  ", original coordinate " << StartPerm[ ColumnKey.back() ] << endl;

    vector<Integer> new_vector = LatticeBasisReorderedTranspose.MxV(ExtRays[good_ext_ray]);
    lift_single_unbounded(new_vector);

    return true;
}

// we need a second method for finding the new Markov element for unbounded lifting
// if this comes out of the blue (and not from find_and_lift_next_unbounded)
vector<Integer> MarkovProjectAndLift::find_new_element_for_unbounded(){

    Matrix<BigInt> UnitMat(LatticeBasisReordered.nr_of_columns());
    Matrix<BigInt> LBR_Big;
    convert(LBR_Big, LatticeBasisReordered);
    suppressNextConstructorVerbose();
    Cone<BigInt> WeightCone(Type::cone, LBR_Big, Type::inequalities, UnitMat);
    WeightCone.setVerbose(false);
    Matrix<BigInt> ER_big = WeightCone.getExtremeRaysMatrix();
    Matrix<Integer> ExtRays;
    convert(ExtRays, ER_big);
    assert(ExtRays.nr_of_rows()> 0);
    size_t good_ext_ray = ExtRays.nr_of_rows();
    for(size_t i=0; i < ExtRays.nr_of_rows(); ++i){
        if(ExtRays[i].back() > 0){
            good_ext_ray = i;
            break;
        }
    }
    assert(good_ext_ray < ExtRays.nr_of_rows());

    return ExtRays[good_ext_ray];
}

void MarkovProjectAndLift::lift_single_unbounded(const vector<Integer>& new_vector){

    // add new coordinate to CurrentMarkov
    add_new_coordinate_to_Markov();

    vector<Integer> vector_to_add;

    if(new_vector.size() > 0){
        vector_to_add = new_vector;
    }
    else{
        vector_to_add = find_new_element_for_unbounded();
    }

    // extend CurrentMarkov by new vector
    CurrentMarkov.append(vector_to_add);

    if(verbose)
        verboseOutput()<< "Size of current Markov after unbounded lift " << CurrentMarkov.nr_of_rows() << endl;
    if(verbose)
        verboseOutput() << "---------------------------------------------------" << endl;
}

void MarkovProjectAndLift::lift_unbounded(){

    if(verbose)
        verboseOutput() << "searching unbounded coordinates" << endl;

    while(find_and_lift_next_unbounded()){
    }
}

void MarkovProjectAndLift::lift_not_yet_lifted(bool allow_revlex){

    while(lift_next_not_yet_lifted(allow_revlex)){
    }
}

void MarkovProjectAndLift::find_projection(){

    bool diagonal_is_ones = true;

    for(size_t i = 0; i< rank; ++i){  // TODO doe we need this condition?
        if(LatticeBasis[i][ColumnKey[i]] != 1){
            diagonal_is_ones = false;
            break;
        }
    }

    vector<int> ExtensionKey;

    if(diagonal_is_ones){
        for(size_t j = 0; j < nr_vars; ++j){
            bool column_non_positive = true;
            for(size_t i = 0; i < rank; ++i){
                if(LatticeBasis[i][j] > 0){
                    column_non_positive = false;
                    break;
                }
            }
            if(column_non_positive){
                ColumnKey.push_back(j);
                Lifted[j] = true;
                TestedUnbounded[j] = true;
                ExtensionKey.push_back(j);
            }
        }
    }

    if(ExtensionKey.size() > 0)
        if(verbose)
            verboseOutput() << "Extending projection to new coordinates " << ExtensionKey;

    CurrentMarkov = LatticeBasisTranspose.submatrix(ColumnKey).transpose();
    LatticeBasisReordered = CurrentMarkov;
    LatticeBasisReorderedTranspose = LatticeBasisReordered.transpose();

    // cout << "Markov basis at projrection " << endl;
    // CurrentMarkov.pretty_print(cout);
}



void MarkovProjectAndLift::compute(Matrix<long long>& Mark, Matrix<long long>& MinMark){

    find_projection();
    lift_unbounded(); // straight no longer used
    lift_not_yet_lifted(true); // revlex allowed
    columns_to_old_order();

    // cout << "Pand L " << CurrentMarkov.nr_of_rows() << " -- " << MinimalMarkov.nr_of_rows() << endl;

    swap(CurrentMarkov, Mark);
    swap(MinimalMarkov, MinMark);
}

void MarkovProjectAndLift::set_degree_bound(const long deg_bound) {
    assert(grading.size() > 0);
    degree_bound = deg_bound;
}

void MarkovProjectAndLift::set_grading(const vector<long long>& grad) {
    grading = grad;
}

//---------------------------------------------------------------
// lattice ideal
//---------------------------------------------------------------

LatticeIdeal::LatticeIdeal(const Matrix<long long>& Input, const vector<Integer>& given_grading, const bool verb){
    verbose = verb;
    Grading = given_grading;
    OurInput = Input;
    is_positively_graded = false;
    nr_vars = Input.nr_of_columns();
    degree_bound= -1;
    min_degree = -1;
}

bool LatticeIdeal::isComputed(ConeProperty::Enum prop) const {
    return is_Computed.test(prop);
}

void LatticeIdeal::set_degree_bound(const long deg_bound) {
    assert(Grading.size() > 0); // make sonly sense with grading
    degree_bound = deg_bound;
    setComputed(ConeProperty::MarkovBasis, false);
    setComputed(ConeProperty::GroebnerBasis, false);
}

void LatticeIdeal::set_gb_weight(const vector<long long>& given_weight){
    gb_weight = given_weight;
}

void LatticeIdeal::set_min_degree(const long deg) {
    assert(Grading.size() > 0); // make sonly sense with grading
    min_degree = deg;
    setComputed(ConeProperty::MarkovBasis, false);
    setComputed(ConeProperty::GroebnerBasis, false);
}

void LatticeIdeal::setComputed(ConeProperty::Enum prop) {
    is_Computed.set(prop);
}

void LatticeIdeal::setComputed(ConeProperty::Enum prop, bool value) {
    is_Computed.set(prop, value);
}

Matrix<Integer>  LatticeIdeal::getMarkovBasis(){
    if(!isComputed(ConeProperty::MarkovBasis))
        compute(ConeProperty::MarkovBasis);
    /* vector<long long> OurDegrees;
    for(size_t i = 0; i< MinimalMarkov.nr_of_rows(); ++i){
        OurDegrees.push_back(pos_degree(MinimalMarkov[i], Grading));
    }
    map<long long, size_t> DegMap;
    cout << "Grading " << Grading;
    cout << "GGGG " << count_in_map<long long, size_t>(OurDegrees);
    */
    if(MinimalMarkov.nr_of_rows() >0 ){
        if(degree_bound >= 0 || min_degree >= 0){
            sort_by_pos_degree(MinimalMarkov, Grading);
            return select_by_degree(MinimalMarkov, Grading, degree_bound, min_degree);
        }
        else
            return MinimalMarkov;
    }
    else
        return Markov;
}

Matrix<Integer>  LatticeIdeal::getGroebnerBasis(){
    if(!isComputed(ConeProperty::GroebnerBasis))
        compute(ConeProperty::GroebnerBasis);
    if(degree_bound >= 0  || min_degree >= 0){
        sort_by_pos_degree(Groebner, Grading);
        return select_by_degree(Groebner, Grading, degree_bound, min_degree);
    }
    else
        return Groebner;
}

HilbertSeries  LatticeIdeal::getHilbertSeries(){
    if(!isComputed(ConeProperty::HilbertSeries))
        compute(ConeProperty::HilbertSeries);
    return HilbSer;
}

void LatticeIdeal::computeMarkov(){

    MarkovProjectAndLift PandL(OurInput, verbose);
    if(Grading.size() > 0 && degree_bound != -1){
        PandL.set_grading(Grading);
        PandL.set_degree_bound(degree_bound);
    }
    PandL.compute(Markov, MinimalMarkov);
    if(MinimalMarkov.nr_of_rows() > 0){
        is_positively_graded = true;
    }
    // cout << "Mark " << Markov.nr_of_rows() << " MinMark " << MinimalMarkov.nr_of_rows() << endl;
    // Markov.pretty_print(cout);
}

void LatticeIdeal::computeGroebner(ConeProperties ToCompute){

    // cout << "GRÖBNER " << ToCompute << endl;

    string FinalGB = "RevLex";
    vector<Integer> all_one(Markov.nr_of_columns(),1);
    if(gb_weight.size() > 0){
        all_one = gb_weight;
        FinalGB = "weighted " + FinalGB;
    }
    bool use_rev_lex = true;

    if(ToCompute.test(ConeProperty::Lex)){
        FinalGB = "Lex";
        use_rev_lex = false;
        all_one = vector<Integer> (nr_vars,0);
        if(gb_weight.size() > 0){
            all_one = gb_weight;
          FinalGB = "weighted " + FinalGB;
        }
    }
    if(ToCompute.test(ConeProperty::DegLex)){
        use_rev_lex = false;
        FinalGB = "Deglex";
    }
    if(verbose)
        verboseOutput()<< "Final Gröbner basis " << FinalGB << endl;

    dynamic_bitset CurrentSatturationSupport(nr_vars);
    if(is_positively_graded)
        CurrentSatturationSupport.flip();

    // cout << CurrentSatturationSupport.size() << "   " << CurrentSatturationSupport  << endl;
    reset_statistics();

    binomial_list grp(Markov);
    grp.set_verbose(verbose);
    if(degree_bound != -1){ // so far no effect
        assert(Grading.size() > 0);
        grp.set_grading(Grading);
        grp.set_degree_bound(degree_bound);
    }
    grp.buchberger(all_one, use_rev_lex, CurrentSatturationSupport);

    Groebner = grp.to_matrix();

    // Groebner = select_by_degree(Groebner, Grading, degree_bound, min_degree);
    if(verbose)
        verboseOutput() << "Gröbner basis elements " << Groebner.nr_of_rows() << endl;
    // cout << "GGGGGG " << Groebner.nr_of_rows() << endl;
    if(verbose)
        verboseOutput()<<"---------------------------------------------------" << endl;
}

void LatticeIdeal::computeHilbertSeries(){

    assert(degree_bound == -1);
    assert(Grading.size() > 0);

    StartTime();
    // cout << "Final quotient psoitively graded" << endl;
    binomial_list bl_HilbertSeries(Markov);
    vector<mpz_class> numerator = bl_HilbertSeries.compute_HilbertSeries(Grading);
    vector<long> Grading_long;
    convert(Grading_long, Grading);
    HilbSer = HilbertSeries(numerator, Grading_long);
    HilbSer.simplify();
    /* if(verbose){
        verboseOutput() << "Hilbert series numerator  " << HilbSer.getNum();
        verboseOutput() << "Hilbert series denominator " <<  HilbSer.getDenom();
    }*/
    MeasureTime(verbose, "Hilbert series");

    if(verbose)
        verboseOutput() << "---------------------------------------------------" << endl;
}

ConeProperties LatticeIdeal::compute(ConeProperties ToCompute){

    ToCompute.reset(is_Computed);
    if(!ToCompute.any())
        return ToCompute;

    if(ToCompute.test(ConeProperty::HilbertSeries))
        ToCompute.set(ConeProperty::MarkovBasis);

    if(ToCompute.test(ConeProperty::GroebnerBasis))
        ToCompute.set(ConeProperty::MarkovBasis);

    ToCompute.reset(is_Computed);
    if(!ToCompute.any())
        return ToCompute;

    if(ToCompute.test(ConeProperty::MarkovBasis)){
        computeMarkov();
        setComputed(ConeProperty::MarkovBasis);
        ToCompute.reset(is_Computed);
    }

    if(ToCompute.test(ConeProperty::GroebnerBasis)){
        computeGroebner(ToCompute);
        setComputed(ConeProperty::GroebnerBasis);
        ToCompute.reset(is_Computed);
    }

    if(ToCompute.test(ConeProperty::HilbertSeries)){
        computeHilbertSeries();
        setComputed(ConeProperty::HilbertSeries);
        ToCompute.reset(is_Computed);
    }

    return ToCompute;
}

//----------------------------------------------------------------
// HilbertBasisMonoid
//----------------------------------------------------------------

HilbertBasisMonoid::HilbertBasisMonoid(const Matrix<long long>& Gens, const Matrix<long long>& Supps){

    vector< pair< vector <long long>, vector<long long> > > GensWithValues;

    dim = Gens.nr_of_columns();
    nr_supps = Supps.nr_of_rows();
    nr_gens = Gens.nr_of_rows();
    GensWithValues.resize(nr_gens);


    // We order the generators by the lexicographic order of their values under supps
    for(size_t i = 0; i< nr_gens; ++i){
        GensWithValues[i].second = Gens[i];
        GensWithValues[i].first.resize(nr_supps+1);
        for(size_t j = 0; j < nr_supps; ++j){
            GensWithValues[i].first[j] = v_scalar_product(Supps[j], Gens[i]);
        }
        GensWithValues[i].first[nr_supps] = i; // we register the index w.r.t. Gens
    }

     /* for(size_t i = 0; i< nr_gens; ++i){
        cout << GensWithValues[i].first;
        cout << "               " << GensWithValues[i].second;
    }
    cout << "---------------" << endl; */

    sort(GensWithValues.begin(), GensWithValues.end());
    // we register the permutation
    for(size_t u = 0; u < nr_gens; ++u){
        ExternalKey.push_back(GensWithValues[u].first.back());

    }

    Gens_ordered.resize(0,dim);
    GensVal_ordered.resize(0, nr_supps);
    vector<long long> transfer;
    for(size_t u = 0; u < GensWithValues.size(); ++u){
        Gens_ordered.append(GensWithValues[u].second);
        transfer = GensWithValues[u].first;
        // remove the last component used for registeing the order
        transfer.resize(nr_supps);
        GensVal_ordered.append(transfer);
    }

    HilbertBasis.resize(0, dim);
    Representations.resize(0,nr_gens);
    internal_max_deg_ind.resize(nr_gens);
}

// compute Hilbert bbasis and representations via equation method
// not used at present
void HilbertBasisMonoid::computeHB_Equ(){

    // we skip zero vectors and put the first nonzero into Hilbert basis
    size_t u = 0;
    for(size_t i = 0; i < nr_gens; ++i){
        if(Gens_ordered[i] != vector<long long>(dim,0)){
            HilbertBasis.append(Gens_ordered[i]);
            InternalHilbBasKey.push_back(i);
            HilbertBasisKey.push_back(ExternalKey[u]);
            u++;
            break;
        }
        u++;
    }

    for(; u < nr_gens; ++u){

        // we assemble the inequalities for project_and_lift
        Matrix<long long> Help = Gens_ordered.submatrix(InternalHilbBasKey);
        Help = Help.transpose();
        Help.insert_column(0,0);
        Matrix<long long> Inequs = Help;
        Help.scalar_multiplication(-1); // equations split into uwo inequalities
        Inequs.append(Help);
        Inequs.append(Matrix<long long>(Inequs.nr_of_columns()) ); // nonnegativity

        // Now we compute the representations
        // we must insert element and -element into column 0
        // since we have split the nequations into ineqiualities

        for(size_t j = 0; j< dim; ++j){
            Inequs[j][0] = -Gens_ordered[u][j];
            Inequs[j+ dim][0] = Gens_ordered[u][j];
        }

        vector<dynamic_bitset> dummy_Ind;
        size_t dummy_rank = 0;

        ProjectAndLift<long long, long long> PL(Inequs, dummy_Ind, dummy_rank);
        PL.set_primitive();
        PL.set_LLL(false);
        PL.set_verbose(false);
        PL.compute(false,false,false); // single point, no float, not only counting
        vector<long long> sol;
        PL.put_single_point_into(sol);
        if(sol.size() == 0){
            HilbertBasis.append(Gens_ordered[u]);
            InternalHilbBasKey.push_back(u);
            HilbertBasisKey.push_back(ExternalKey[u]);
        }
        else{
            vector<long long> rel(nr_gens);
            for(size_t j=1; j < sol.size(); ++j){
                rel[HilbertBasisKey[j-1]] = - sol[j];
            }
            rel[ExternalKey[u]] = 1;
            Representations.append(rel);
        }
    }
}

// compute Hilbert bbasis and representations by the subtrction  method
// with backtracking

void HilbertBasisMonoid::computeHB_Sub(){

    pair<bool, vector<long long> > answer;
    vector<long long> rep(nr_gens);
    for(size_t u = 0; u < nr_gens; ++u){
        if(Gens_ordered[u] == vector<long long>(dim,0))
            continue;
        //if(!internal_max_deg_ind[u])
        answer = subtract_recursively(GensVal_ordered[u],0, rep,0);
        // if(!internal_max_deg_ind[u] && !answer.first){ // an element of the Hilbert basis
        if(!answer.first){
            InternalHilbBasKey.push_back(u);
            HilbertBasisKey.push_back(ExternalKey[u]);
            HilbertBasis.append(Gens_ordered[u]);
        }
        else{ // reducibloe
            vector<long long> rep_ext(nr_gens);
            for(size_t j = 0; j < nr_gens; ++j)
                rep_ext[ExternalKey[j]] = answer.second[j];
            rep_ext[ExternalKey[u]] = 1;
            Representations.append(rep_ext);
        }
    }
}

pair<bool, vector<long long> > HilbertBasisMonoid::subtract_recursively(vector<long long> val, size_t start, vector<long long> rep, int level){

    if(val == vector<long long>(nr_supps))
        return make_pair(true,rep);
    for(size_t uu = start; uu < InternalHilbBasKey.size(); ++uu){
        key_t i = InternalHilbBasKey[uu];
        bool subtractible = true;
        for(size_t j = 0; j < nr_supps; ++j){
            if(val[j] - GensVal_ordered[i][j] < 0){
                    subtractible = false;;
                    break;
            }
            if(!subtractible)
                continue;
        }
        if(subtractible){
            vector<long long> new_val = val;
            vector<long long> new_rep = rep;
            for(size_t j = 0; j < nr_supps; ++j){
                new_val[j] -= GensVal_ordered[i][j];
            }
            new_rep[i]--;
            pair<bool, vector<long long> > answer = subtract_recursively(new_val,uu,new_rep, level + 1);
                        if(answer.first){
                return answer;
            }
        }
    }
    return make_pair(false, rep);
}

void HilbertBasisMonoid::set_max_deg_ind(const dynamic_bitset& mdi){
        max_deg_ind = mdi;
}


void HilbertBasisMonoid::compute_HilbertBasis(){
    if(max_deg_ind.size() > 0){
        assert(max_deg_ind.size() == nr_gens);
        for(size_t i = 0; i < max_deg_ind.size(); ++i)
            internal_max_deg_ind[i] = max_deg_ind[ExternalKey[i]];
    }

    computeHB_Sub();
    // computeHB_Equ();
}

void HilbertBasisMonoid::put_HilbertBasis_into(Matrix<long long>& HB){
    swap(HB, HilbertBasis);
}

void HilbertBasisMonoid::put_Representations_into(Matrix<long long>& Rep){
    swap(Rep, Representations);
}

void HilbertBasisMonoid::put_HilbertBasisKey_into(vector<key_t>& Ind){
        sort(HilbertBasisKey.begin(), HilbertBasisKey.end());
        swap(Ind, HilbertBasisKey);
}

} // namespace