1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
|
/*
* Copyright (C) 2007-2022 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifndef LIBNORMALIZ_NMZ_INTEGRATE_H
#define LIBNORMALIZ_NMZ_INTEGRATE_H
#ifdef NMZ_COCOA
#include "CoCoA/library.H"
#endif
#include <fstream>
#include <sstream>
#include <string>
#include <vector>
#include <gmpxx.h>
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/general.h"
#include "libnormaliz/HilbertSeries.h"
#include "libnormaliz/matrix.h"
namespace libnormaliz {
using namespace std;
#ifdef NMZ_COCOA
using namespace CoCoA;
// conversion from CoCoA types to GMP
inline mpz_class mpz(const BigInt& B) {
return (mpz_class(mpzref(B)));
}
inline mpq_class mpq(const BigRat& B) {
return (mpq_class(mpqref(B)));
}
inline mpz_class ourFactorial(const long& n) {
mpz_class fact = 1;
for (long i = 1; i <= n; ++i)
fact *= i;
return (fact);
}
typedef unsigned int key_type;
extern bool verbose_INT;
struct SIMPLINEXDATA_INT { // local data of excluded faces
dynamic_bitset GenInFace; // indicator for generators of simplex in face
long mult; // multiplicity of this face
size_t card; // the cardinality of the face
bool done; // indicates that this face has been done for a given offset
vector<long> denom;
vector<long> degrees;
vector<long> key;
};
class ourFactorization {
public:
vector<RingElem> myFactors;
vector<long> myMultiplicities;
RingElem myRemainingFactor;
ourFactorization(const vector<RingElem>& myFactors, const vector<long>& myMultiplicities, const RingElem& myRemainingFactor);
ourFactorization(const factorization<RingElem>& FF);
ourFactorization();
};
// end class
class CyclRatFunct {
// class for rational functions whose denominator is a product
// of cyclotomic polynomials
// We work with denominators that are products of factors 1-t^i
// which is of course equivalent
// the numerator is a polynomial in its ring
// the denominator is an integer vector that at index i
// gives the multiplicity of 1-t^i in the denominator
// (the entry at index 0 is not used and must always be equal to 0)
public:
RingElem num;
vector<long> denom;
void extendDenom(const vector<long>& target);
void addCRF(const CyclRatFunct& r);
void multCRF(const CyclRatFunct& r);
void simplifyCRF();
void set2(const RingElem& f, const vector<long>& d);
void set2(const RingElem& f);
void showCRF();
void showCoprimeCRF();
CyclRatFunct(const RingElem& c);
CyclRatFunct(const RingElem& c, const vector<long>& d);
};
// class end *****************************************************************
// manipulation of denominators
vector<long> lcmDenom(const vector<long>& df, const vector<long>& dg);
vector<long> prodDenom(const vector<long>& df, const vector<long>& dg);
vector<long> degrees2denom(const vector<long>& d);
vector<long> denom2degrees(const vector<long>& d);
RingElem denom2poly(const SparsePolyRing& P, const vector<long>& d);
vector<long> makeDenom(long k, long n);
inline ourFactorization::ourFactorization(const vector<RingElem>& myFactors,
const vector<long>& myMultiplicities,
const RingElem& myRemainingFactor) {
this->myFactors = myFactors;
this->myMultiplicities = myMultiplicities;
this->myRemainingFactor = myRemainingFactor;
}
inline ourFactorization::ourFactorization() {
}
/*
ourFactorization::ourFactorization(const factorization<RingElem>& FF) {
ourFactorization(FF.myFactors(), FF.myMultiplicities(), FF.myRemainingFactor());
}
RingElem binomial(const RingElem& f, long k)
// computes binomial coefficient (f choose k)
{
const SparsePolyRing& P = owner(f);
RingElem g(P);
g = 1;
for (int i = 0; i < k; i++)
g *= (f - i) / (i + 1);
return (g);
}
*/
inline RingElem ascFact(const RingElem& f, long k)
// computes (f+1)*...*(f+k)
{
const SparsePolyRing& P = owner(f);
RingElem g(P);
g = 1;
for (int i = 0; i < k; i++)
g *= (f + i + 1);
return (g);
}
/*
RingElem descFact(const RingElem& f, long k)
// computes f*(f-1)*...*(f-k+1)
{
const SparsePolyRing& P = owner(f);
RingElem g(P);
g = 1;
for (int i = 0; i < k; i++)
g *= (f - i);
return (g);
}
*/
inline bool compareLength(const RingElem& p, const RingElem& q) {
return (NumTerms(p) > NumTerms(q));
}
inline vector<RingElem> ourCoeffs(const RingElem& F, const long j) {
// our version of expanding a poly nomial wrt to indeterminate j
// The return value is the vector of coefficients of x[j]^i
vector<RingElem> c;
const SparsePolyRing& P = owner(F);
RingElem x = indets(P)[j];
if (F == 0) {
c.push_back(zero(P));
return (c);
}
vector<long> v(NumIndets(P));
long k, cs;
SparsePolyIter i = BeginIter(F);
for (; !IsEnded(i); ++i) {
exponents(v, PP(i));
k = v[j];
cs = c.size();
if (k > cs - 1)
c.resize(k + 1, zero(P));
v[j] = 0;
// c[k]+=monomial(P,coeff(i),v);
PushBack(c[k], coeff(i), v);
}
return (c);
}
inline RingElem mySubstitution(const RingElem& F, const vector<RingElem>& w) {
const SparsePolyRing& R = owner(F);
RingElem G(zero(R));
RingElem H(one(R));
vector<long> v(NumIndets(R));
vector<long> Z(NumIndets(R));
SparsePolyIter i = BeginIter(F);
for (; !IsEnded(i); ++i) {
exponents(v, PP(i));
H = zero(R);
PushBack(H, coeff(i), Z);
for (size_t j = 0; j < v.size(); ++j)
H *= power(w[j], v[j]);
G += H;
}
return G;
}
template <typename Number>
vector<long> MxV(const vector<vector<Number> >& M, vector<Number> V) {
// matrix*vector
vector<Number> P(M.size());
for (size_t i = 0; i < M.size(); ++i) {
long s = 0;
for (size_t j = 0; j < V.size(); ++j)
s += M[i][j] * V[j];
P[i] = s;
}
return (P);
}
template <typename Number>
vector<RingElem> VxM(const vector<RingElem>& V, const vector<vector<Number> >& M) {
// vector*matrix
const SparsePolyRing& R = owner(V[0]);
RingElem s(zero(R));
vector<RingElem> P(M[0].size(), zero(R));
for (size_t j = 0; j < M[0].size(); ++j) {
s = 0;
for (size_t i = 0; i < M.size(); ++i)
s += V[i] * M[i][j];
P[j] = s;
}
return (P);
}
/*
RingElem affineLinearSubstitution(const RingElem& F,const vector<vector<long> >& A,
const vector<long>& b, const long& denom){
// NOT IN USE
size_t i;
const SparsePolyRing& R=owner(F);
size_t m=A.size();
// long n=A[0].size();
vector<RingElem> v(m,zero(R));
RingElem g(zero(R));
for(i=0;i<m;i++)
{
g=b[i];
g=g/denom;
v[i]=g+indets(R)[i+1];
}
vector<RingElem> w=VxM(v,A);
vector<RingElem> w1(w.size()+1,zero(R));
w1[0]=indets(R)[0];
for(i=1;i<w1.size();++i)
w1[i]=w[i-1];
RingHom phi=PolyAlgebraHom(R,R,w1);
RingElem G=phi(F);
return(G);
}
*/
// bool DDD = false;
inline vector<long> shiftVars(const vector<long>& v, const vector<long>& key) {
// selects components of v and reorders them according to key
vector<long> w(v.size(), 0);
for (size_t i = 0; i < key.size(); ++i) {
w[i] = v[key[i]];
}
return (w);
}
inline void makeLocalDegreesAndKey(const dynamic_bitset& indicator,
const vector<long>& degrees,
vector<long>& localDeg,
vector<long>& key) {
localDeg.clear();
key.clear();
key.push_back(0);
for (size_t i = 0; i < indicator.size(); ++i)
if (indicator.test(i))
key.push_back(i + 1);
for (size_t i = 0; i < key.size() - 1; ++i)
localDeg.push_back(degrees[key[i + 1] - 1]);
}
inline void makeStartEnd(const vector<long>& localDeg, vector<long>& St, vector<long>& End) {
vector<long> denom = degrees2denom(localDeg); // first we must find the blocks of equal degree
if (denom.size() == 0)
return;
St.push_back(1);
for (size_t i = 0; i < denom.size(); ++i)
if (denom[i] != 0) {
End.push_back(St[St.size() - 1] + denom[i] - 1);
if (i < denom.size() - 1)
St.push_back(End[End.size() - 1] + 1);
}
/* if(St.size()!=End.size()){
for (size_t i=0;i<denom.size(); ++i){
verboseOutput() << denom.size() << endl;
verboseOutput() << denom[i] << " ";
verboseOutput() << endl;
}
}*/
}
inline vector<long> orderExposInner(vector<long>& vin, const vector<long>& St, vector<long>& End) {
vector<long> v = vin;
long p, s, pend, pst;
bool ordered;
if (St.size() != End.size()) {
verboseOutput() << St.size() << " " << End.size() << " " << vin.size() << endl;
verboseOutput() << St[0] << endl;
for (size_t i = 0; i < vin.size(); ++i) {
verboseOutput() << vin[i] << " ";
}
verboseOutput() << endl;
assert(false);
}
for (size_t j = 0; j < St.size(); ++j) { // now we go over the blocks
pst = St[j];
pend = End[j];
while (1) {
ordered = true;
for (p = pst; p < pend; ++p) {
if (v[p] < v[p + 1]) {
ordered = false;
s = v[p];
v[p] = v[p + 1];
v[p + 1] = s;
}
}
if (ordered)
break;
pend--;
}
}
return (v);
}
inline RingElem orderExpos(const RingElem& F, const vector<long>& degrees, const dynamic_bitset& indicator, bool compactify) {
// orders the exponent vectors v of the terms of F
// the exponents v[i] and v[j], i < j, are swapped if
// (1) degrees[i]==degrees[j] and (2) v[i] < v[j]
// so that the exponents are descending in each degree block
// the ordered exponent vectors are inserted into a map
// and their coefficients are added
// at the end the polynomial is rebuilt from the map
// If compactify==true, the exponents will be shifted to the left in order to keep the correspondence
// of variables to degrees
// compactification not used at present (occurs only in restrictToFaces)
const SparsePolyRing& P = owner(F);
vector<long> v(NumIndets(P));
vector<long> key, localDeg;
key.reserve(v.size() + 1);
localDeg.reserve(degrees.size() + 1);
if (compactify) {
makeLocalDegreesAndKey(indicator, degrees, localDeg, key);
}
else {
localDeg = degrees;
}
vector<long> St, End;
makeStartEnd(localDeg, St, End);
// now the main job
map<vector<long>, RingElem> orderedMons; // will take the ordered exponent vectors
SparsePolyIter mon = BeginIter(F); // go over the given polynomial
for (; !IsEnded(mon); ++mon) {
exponents(v, PP(mon)); // this function gives the exponent vector back as v
if (compactify)
v = shiftVars(v, key);
v = orderExposInner(v, St, End);
auto ord_mon = orderedMons.find(v); // insert into map or add coefficient
if (ord_mon != orderedMons.end()) {
ord_mon->second += coeff(mon);
}
else {
orderedMons.insert(pair<vector<long>, RingElem>(v, coeff(mon)));
}
}
// now we must reconstruct the polynomial
// we use that the natural order of vectors in C++ STL is inverse
// to lex. Therefore push_front
RingElem r(zero(P));
// JAA verboseOutput() << "Loop start " << orderedMons.size() << endl;
// JAA size_t counter=0;
for (const auto& ord_mon : orderedMons) {
// JAA verboseOutput() << counter++ << ord_mon.first << endl;
// JAA try {
PushFront(r, ord_mon.second, ord_mon.first);
// JAA }
// JAA catch(const std::exception& exc){verboseOutput() << "Caught exception: " << exc.what() << endl;}
}
// JAA verboseOutput() << "Loop end" << endl;
return (r);
}
inline void restrictToFaces(const RingElem& G,
RingElem& GOrder,
vector<RingElem>& GRest,
const vector<long> degrees,
const vector<SIMPLINEXDATA_INT>& inExSimplData) {
// Computesd the restrictions of G to the faces in inclusion-exclusion.
// All terms are simultaneously compactified and exponentwise ordered
// Polynomials returned in GRest
// Ordering is also applied to G itself, returned in GOrder
// Note: degrees are given for the full simplex. Therefore "local" degrees must be made
// (depend only on face and not on offset, but generation here is cheap)
const SparsePolyRing& P = owner(G);
vector<long> v(NumIndets(P));
vector<long> w(NumIndets(P));
vector<long> localDeg;
localDeg.reserve(v.size());
size_t dim = NumIndets(P) - 1;
// first we make the facewise data that are needed for the compactification and otrdering
// of exponent vectors
vector<vector<long> > St(inExSimplData.size()), End(inExSimplData.size()), key(inExSimplData.size());
vector<long> active;
for (size_t i = 0; i < inExSimplData.size(); ++i)
if (!inExSimplData[i].done) {
active.push_back(i);
makeLocalDegreesAndKey(inExSimplData[i].GenInFace, degrees, localDeg, key[i]);
makeStartEnd(localDeg, St[i], End[i]);
}
// now the same for the full simplex (localDeg=degrees)
dynamic_bitset fullSimpl(dim);
fullSimpl.set();
vector<long> StSimpl, EndSimpl;
makeStartEnd(degrees, StSimpl, EndSimpl);
vector<map<vector<long>, RingElem> > orderedMons(inExSimplData.size()); // will take the ordered exponent vectors
map<vector<long>, RingElem> orderedMonsSimpl;
dynamic_bitset indicator(dim);
// now we go over the terms of G
SparsePolyIter term = BeginIter(G);
// PPMonoid TT = PPM(owner(G));
for (; !IsEnded(term); ++term) {
// PPMonoidElem mon(PP(term));
exponents(v, PP(term));
w = v;
indicator.reset();
for (size_t j = 0; j < dim; ++j)
if (v[j + 1] != 0) // we must add 1 since the 0-th indeterminate is irrelevant here
indicator.set(j);
for (size_t i = 0; i < active.size(); ++i) {
int j = active[i];
if (indicator.is_subset_of(inExSimplData[j].GenInFace)) {
w = shiftVars(v, key[j]);
w = orderExposInner(w, St[j], End[j]);
// w=shiftVars(v,key[j]);
auto ord_mon = orderedMons[j].find(w); // insert into map or add coefficient
if (ord_mon != orderedMons[j].end()) {
ord_mon->second += coeff(term);
}
else {
orderedMons[j].insert(pair<vector<long>, RingElem>(w, coeff(term)));
}
}
} // for i
v = orderExposInner(v, StSimpl, EndSimpl);
auto ord_mon = orderedMonsSimpl.find(v); // insert into map or add coefficient
if (ord_mon != orderedMonsSimpl.end()) {
ord_mon->second += coeff(term);
}
else {
orderedMonsSimpl.insert(pair<vector<long>, RingElem>(v, coeff(term)));
}
} // loop over term
// now we must make the resulting polynomials from the maps
for (size_t i = 0; i < active.size(); ++i) {
int j = active[i];
for (const auto& ord_mon : orderedMons[j]) {
PushFront(GRest[j], ord_mon.second, ord_mon.first);
}
// verboseOutput() << "GRest[j] " << j << " " << NumTerms(GRest[j]) << endl;
}
for (const auto& ord_mon : orderedMonsSimpl) {
PushFront(GOrder, ord_mon.second, ord_mon.first);
}
}
// long nrActiveFaces = 0;
// long nrActiveFacesOld = 0;
inline void all_contained_faces(const RingElem& G,
RingElem& GOrder,
const vector<long>& degrees,
dynamic_bitset& indicator,
long Deg,
vector<SIMPLINEXDATA_INT>& inExSimplData,
deque<pair<vector<long>, RingElem> >& facePolysThread) {
const SparsePolyRing& R = owner(G);
vector<RingElem> GRest;
// size_t dim=indicator.size();
for (size_t i = 0; i < inExSimplData.size(); ++i) {
GRest.push_back(zero(R));
if (!indicator.is_subset_of(inExSimplData[i].GenInFace))
inExSimplData[i].done = true; // done if face cannot contribute to result for this offset
else
inExSimplData[i].done = false; // not done otherwise
}
restrictToFaces(G, GOrder, GRest, degrees, inExSimplData);
for (size_t j = 0; j < inExSimplData.size(); ++j) {
if (inExSimplData[j].done)
continue;
// #pragma omp atomic
// nrActiveFaces++;
// verboseOutput() << "Push back " << NumTerms(GRest[j]);
GRest[j] = power(indets(R)[0], Deg) * inExSimplData[j].mult *
GRest[j]; // shift by degree of offset amd multiply by mult of face
facePolysThread.push_back(pair<vector<long>, RingElem>(inExSimplData[j].degrees, GRest[j]));
// verboseOutput() << " Now " << facePolysThread.size() << endl;
}
}
template <typename Number>
RingElem affineLinearSubstitutionFL(const ourFactorization& FF,
const vector<vector<Number> >& A,
const vector<Number>& b,
const Number& denom,
const SparsePolyRing& R,
const vector<Number>& degrees,
const BigInt& lcmDets,
vector<SIMPLINEXDATA_INT>& inExSimplData,
deque<pair<vector<Number>, RingElem> >& facePolysThread) {
// applies linear substitution y --> lcmDets*A(y+b/denom) to all factors in FF
// and returns the product of the modified factorsafter ordering the exponent vectors
size_t i;
size_t m = A.size();
size_t dim = m; // TO DO: eliminate this duplication
vector<RingElem> v(m, zero(R));
RingElem g(zero(R));
for (i = 0; i < m; i++) {
g = b[i] * (lcmDets / denom);
v[i] = g + lcmDets * indets(R)[i + 1];
}
vector<RingElem> w = VxM(v, A);
vector<RingElem> w1(w.size() + 1, zero(R));
w1[0] = RingElem(R, lcmDets);
for (i = 1; i < w1.size(); ++i)
w1[i] = w[i - 1];
// RingHom phi=PolyAlgebraHom(R,R,w1);
RingElem G1(zero(R));
list<RingElem> sortedFactors;
for (i = 0; i < FF.myFactors.size(); ++i) {
// G1=phi(FF.myFactors[i]);
G1 = mySubstitution(FF.myFactors[i], w1);
for (int nn = 0; nn < FF.myMultiplicities[i]; ++nn)
sortedFactors.push_back(G1);
}
sortedFactors.sort(compareLength);
RingElem G(one(R));
for (const auto& sf : sortedFactors)
G *= sf;
if (inExSimplData.size() == 0) { // not really necessary, but a slight shortcut
dynamic_bitset dummyInd;
return (orderExpos(G, degrees, dummyInd, false));
}
// if(inExSimplData.size()!=0){
long Deg = 0;
dynamic_bitset indicator(dim); // indicates the non-zero components of b
indicator.reset();
for (size_t i = 0; i < dim; ++i)
if (b[i] != 0) {
indicator.set(i);
Deg += degrees[i] * b[i];
}
Deg /= denom;
RingElem Gorder(zero(R));
all_contained_faces(G, Gorder, degrees, indicator, Deg, inExSimplData, facePolysThread);
return (Gorder);
// }
}
inline vector<RingElem> homogComps(const RingElem& F) {
// returns the vector of homogeneous components of F
// w.r.t. standard grading
const SparsePolyRing& P = owner(F);
long dim = NumIndets(P);
vector<long> v(dim);
vector<RingElem> c(deg(F) + 1, zero(P));
long j, k;
// TODO there is a leading_term() function coming in cocoalib
// TODO maybe there will be even a "splice_leading_term"
SparsePolyIter i = BeginIter(F);
for (; !IsEnded(i); ++i) {
exponents(v, PP(i));
k = 0;
for (j = 0; j < dim; j++)
k += v[j];
PushBack(c[k], coeff(i), v);
}
return (c);
}
inline RingElem homogenize(const RingElem& F) {
// homogenizes F wrt the zeroth variable and returns the
// homogenized polynomial
SparsePolyRing P = owner(F);
int d = deg(F);
vector<RingElem> c(d + 1, zero(P));
c = homogComps(F);
RingElem h(zero(P));
for (int i = 0; i <= d; ++i)
h += c[i] * power(indets(P)[0], d - i);
return (h);
}
inline RingElem makeZZCoeff(const RingElem& F, const SparsePolyRing& RZZ) {
// F is a polynomial over RingQQ with integral coefficients
// This function converts it into a polynomial over RingZZ
SparsePolyIter mon = BeginIter(F); // go over the given polynomial
RingElem G(zero(RZZ));
for (; !IsEnded(mon); ++mon) {
// cout << num(coeff(mon)) << endl;
vector<long> v;
exponents(v, PP(mon));
PushBack(G, num(coeff(mon)), v);
}
return (G);
}
inline RingElem makeQQCoeff(const RingElem& F, const SparsePolyRing& R) {
// F is a polynomial over RingZZ
// This function converts it into a polynomial over RingQQ
SparsePolyIter mon = BeginIter(F); // go over the given polynomial
RingElem G(zero(R));
for (; !IsEnded(mon); ++mon) {
PushBack(G, RingElem(RingQQ(), coeff(mon)), PP(mon));
}
return (G);
}
inline CyclRatFunct genFunct(const vector<vector<CyclRatFunct> >& GFP, const RingElem& F, const vector<long>& degrees)
// writes \sum_{x\in\ZZ_+^n} f(x,t) T^x
// under the specialization T_i --> t^g_i
// as a rational function in t
{
const SparsePolyRing& P = owner(F);
RingElem t = indets(P)[0];
CyclRatFunct s(F); // F/1
CyclRatFunct g(zero(P)), h(zero(P));
long nd = degrees.size();
long i, k, mg;
vector<RingElem> c;
for (k = 1; k <= nd; k++) {
c = ourCoeffs(s.num, k); // we split the numerator according
// to powers of var k
mg = c.size(); // max degree+1 in var k
h.set2(zero(P));
for (i = 0; i < mg; i++) // now we replace the powers of var k
{ // by the corresponding rational function,
// multiply, and sum the products
h.num = (1 - power(t, degrees[k - 1])) * h.num + GFP[degrees[k - 1]][i].num * c[i];
h.denom = GFP[degrees[k - 1]][i].denom;
}
s.num = h.num;
s.denom = prodDenom(s.denom, h.denom);
}
return (s);
}
inline vector<RingElem> power2ascFact(const SparsePolyRing& P, const long& k)
// computes the representation of the power x^n as the linear combination
// of (x+1)_n,...,(x+1)_0
// return value is the vector of coefficients (they belong to ZZ)
{
RingElem t = indets(P)[0];
const vector<long> ONE(NumIndets(P));
RingElem f(P), g(P), h(P);
f = power(t, k);
long m;
vector<RingElem> c(k + 1, zero(P));
while (f != 0) {
m = deg(f);
h = monomial(P, LC(f), ONE);
c[m] = h;
f -= h * ascFact(t, m);
}
return (c);
}
inline CyclRatFunct genFunctPower1(const SparsePolyRing& P, long k, long n)
// computes the generating function for
// \sum_j j^n (t^k)^j
{
vector<RingElem> a = power2ascFact(P, n);
RingElem b(P);
vector<long> u;
CyclRatFunct g(zero(P)), h(zero(P));
long i, s = a.size();
for (i = 0; i < s; ++i) {
u = makeDenom(k, i + 1);
b = a[i] * factorial(i);
g.set2(b, u);
h.addCRF(g);
}
return (h);
}
inline void CyclRatFunct::extendDenom(const vector<long>& target)
// extends the denominator to target
// by multiplying the numrerator with the remaining factor
{
RingElem t = indets(owner(num))[0];
long i, ns = target.size(), nf = denom.size();
for (i = 1; i < ns; ++i) {
if (i > nf - 1)
num *= power(1 - power(t, i), (target[i]));
else if (target[i] > denom[i])
num *= power(1 - power(t, i), (target[i] - denom[i]));
}
denom = target;
}
inline vector<long> lcmDenom(const vector<long>& df, const vector<long>& dg) {
// computes the lcm of ztwo denominators as used in CyclRatFunct
// (1-t^i and 1-t^j, i != j, are considered as coprime)
size_t nf = df.size(), ng = dg.size(), i;
size_t n = max(nf, ng);
vector<long> dh = df;
dh.resize(n);
for (i = 1; i < n; ++i)
if (i < ng && dh[i] < dg[i])
dh[i] = dg[i];
return (dh);
}
inline vector<long> prodDenom(const vector<long>& df, const vector<long>& dg) {
// as above, but computes the profduct
size_t nf = df.size(), ng = dg.size(), i;
size_t n = max(nf, ng);
vector<long> dh = df;
dh.resize(n);
for (i = 1; i < n; ++i)
if (i < ng)
dh[i] += dg[i];
return (dh);
}
inline vector<long> degrees2denom(const vector<long>& d) {
// converts a vector of degrees to a "denominator"
// listing at position i the multiplicity of i in d
long m = 0;
size_t i;
if (d.size() == 0)
return vector<long>(0);
for (i = 0; i < d.size(); ++i)
m = max(m, d[i]);
vector<long> e(m + 1);
for (i = 0; i < d.size(); ++i)
e[d[i]]++;
return (e);
}
inline vector<long> denom2degrees(const vector<long>& d) {
// the converse operation
vector<long> denomDeg;
for (size_t i = 0; i < d.size(); ++i)
for (long j = 0; j < d[i]; ++j)
denomDeg.push_back(i);
return (denomDeg);
}
inline RingElem denom2poly(const SparsePolyRing& P, const vector<long>& d) {
// converts a denominator into a real polynomial
// the variable for the denominator is x[0]
RingElem t = indets(P)[0];
RingElem f(one(P));
for (size_t i = 1; i < d.size(); ++i)
f *= power(1 - power(t, i), d[i]);
return (f);
}
inline vector<long> makeDenom(long k, long n)
// makes the denominator (1-t^k)^n
{
vector<long> d(k + 1);
d[k] = n;
return (d);
}
inline void CyclRatFunct::addCRF(const CyclRatFunct& r) {
// adds r to *this, r is preserved in its given form
CyclRatFunct s(zero(owner(num)));
const vector<long> lcmden(lcmDenom(denom, r.denom));
s = r;
s.extendDenom(lcmden);
extendDenom(lcmden);
num += s.num;
}
/*
void CyclRatFunct::multCRF(const CyclRatFunct& r) {
// nmultiplies *this by r
num *= r.num;
denom = prodDenom(denom, r.denom);
}
*/
inline void CyclRatFunct::showCRF() {
if (!verbose_INT)
return;
verboseOutput() << num << endl;
for (size_t i = 1; i < denom.size(); ++i)
verboseOutput() << denom[i] << " ";
verboseOutput() << endl;
}
inline void CyclRatFunct::showCoprimeCRF() {
// shows *this also with coprime numerator and denominator
// makes only sense if only x[0] appears in the numerator (not checked)
if (!verbose_INT)
return;
verboseOutput() << "--------------------------------------------" << endl << endl;
verboseOutput() << "Given form" << endl << endl;
showCRF();
verboseOutput() << endl;
const SparsePolyRing& R = owner(num);
SparsePolyRing P = NewPolyRing_DMPI(RingQQ(), symbols("t"));
vector<RingElem> Im(NumIndets(R), zero(P));
Im[0] = indets(P)[0];
RingHom phi = PolyAlgebraHom(R, P, Im);
RingElem f(phi(num));
RingElem g(denom2poly(P, denom));
RingElem h = CoCoA::gcd(f, g);
f /= h;
g /= h;
verboseOutput() << "Coprime numerator (for denom with remaining factor 1)" << endl << endl;
factorization<RingElem> gf = factor(g);
verboseOutput() << f / gf.myRemainingFactor() << endl << endl << "Factorization of denominator" << endl << endl;
size_t nf = gf.myFactors().size();
for (size_t i = 0; i < nf; ++i)
verboseOutput() << gf.myFactors()[i] << " mult " << gf.myMultiplicities()[i] << endl;
verboseOutput() << "--------------------------------------------" << endl;
}
inline void CyclRatFunct::simplifyCRF() {
// cancels factors 1-t^i from the denominator that appear there explicitly
// (and not just as factors of 1-t^j for some j)
const SparsePolyRing& R = owner(num);
long nd = denom.size();
for (long i = 1; i < nd; i++) {
while (denom[i] > 0) {
if (!IsDivisible(num, 1 - power(indets(R)[0], i)))
break;
num /= 1 - power(indets(R)[0], i);
denom[i]--;
}
}
}
inline void CyclRatFunct::set2(const RingElem& f, const vector<long>& d) {
num = f;
denom = d;
}
inline void CyclRatFunct::set2(const RingElem& f) {
num = f;
denom.resize(1, 0);
}
inline CyclRatFunct::CyclRatFunct(const RingElem& c)
: num(c)
// constructor starting from a RingElem
// initialization necessary because RingElem has no default
// constructor
{
denom.resize(1, 0);
}
inline CyclRatFunct::CyclRatFunct(const RingElem& c, const vector<long>& d) : num(c), denom(d) {
}
//--------------------------------------
struct PolynomialData {
ourFactorization FF;
bool homogeneous;
long degree;
vector<BigInt> Factorial;
vector<BigInt> FactQuot;
long dimension;
RingElem F;
};
#endif // NMZ_COCOA
} // end namespace libnormaliz
#endif // NMZ_INTEGRATE_H
|