File: arrow.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (331 lines) | stat: -rw-r--r-- 11,480 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "maths/arrow.h"

namespace regina {

namespace {
    void incEntry(Arrow::DiagramSequence& d, size_t pos) {
        if (d.size() > pos) {
            ++d[pos];
        } else {
            Arrow::DiagramSequence seq(pos + 1);
            std::copy(d.begin(), d.end(), seq.begin());
            std::fill(seq.begin() + d.size(), seq.end() - 1, 0);
            seq[pos] = 1;
            d = std::move(seq);
        }
    }

    Arrow::DiagramSequence sum(const Arrow::DiagramSequence& a,
            const Arrow::DiagramSequence& b) {
        // Note: no entries will be zeroed out, because entries in a diagram
        // sequence are non-negative.
        if (a.size() >= b.size()) {
            Arrow::DiagramSequence ans(a.size());
            for (size_t i = 0; i < b.size(); ++i)
                ans[i] = a[i] + b[i];
            std::copy(a.begin() + b.size(), a.end(), ans.begin() + b.size());
            return ans;
        } else {
            Arrow::DiagramSequence ans(b.size());
            for (size_t i = 0; i < a.size(); ++i)
                ans[i] = a[i] + b[i];
            std::copy(b.begin() + a.size(), b.end(), ans.begin() + a.size());
            return ans;
        }
    }
}

const Laurent<Integer>& Arrow::operator [] (const DiagramSequence& d) const {
    if ((! d.empty()) && d[d.size() - 1] == 0)
        throw InvalidArgument("The given diagram sequence should not "
            "end with a zero");

    auto it = terms_.find(d);
    if (it == terms_.end())
        return RingTraits<Laurent<Integer>>::zero;
    else
        return it->second;
}

void Arrow::set(const DiagramSequence& d, const Laurent<Integer>& value) {
    if ((! d.empty()) && d[d.size() - 1] == 0)
        throw InvalidArgument("The given diagram sequence should not "
            "end with a zero");

    if (value.isZero()) {
        terms_.erase(d);
    } else {
        auto result = terms_.emplace(d, value);
        if (! result.second) {
            // A coefficient was already present.  Change it.
            result.first->second = value;
        }
    }
}

void Arrow::set(const DiagramSequence& d, Laurent<Integer>&& value) {
    if ((! d.empty()) && d[d.size() - 1] == 0)
        throw InvalidArgument("The given diagram sequence should not "
            "end with a zero");

    if (value.isZero()) {
        terms_.erase(d);
    } else {
        // Verified: the code below does indeed move value (not copy it).
        auto result = terms_.try_emplace(d, std::move(value));
        if (! result.second) {
            // A coefficient was already present.  Change it.
            // In this scenario, try_emplace() will not have moved the value out
            // yet, and so value is still usable as an rvalue reference.
            result.first->second = std::move(value);
        }
    }
}

void Arrow::multDiagram(size_t index) {
    if (index == 0)
        throw InvalidArgument("The index of a diagram variable must be "
            "strictly positive");

    // Awkwardly, this operation changes the _keys_ in our map.
    std::map<DiagramSequence, Laurent<Integer>> staging;
    auto it = terms_.begin();
    while (it != terms_.end()) {
        auto h = terms_.extract(it++);
        incEntry(h.key(), index - 1);
        // Give an insertion hint: we are extracting elements in sorted order,
        // and so we will be inserting them in sorted order also.
        staging.insert(staging.end(), std::move(h));
    }

    staging.swap(terms_);
}

Arrow& Arrow::operator += (const Arrow& other) {
    // This works even if &other == this, since in this case there are
    // no insertions or deletions.
    for (const auto& entry : other.terms_) {
        auto result = terms_.emplace(entry);
        if (! result.second)
            result.first->second += entry.second;
    }

    // We might have zeroed out some terms.
    removeZeroes();
    return *this;
}

Arrow& Arrow::operator -= (const Arrow& other) {
    // This works even if &other == this, since in this case there are
    // no insertions or deletions.
    for (const auto& entry : other.terms_) {
        auto result = terms_.emplace(entry);
        if (result.second)
            result.first->second.negate();
        else
            result.first->second -= entry.second;
    }

    // We might have zeroed out some terms.
    removeZeroes();
    return *this;
}

Arrow operator * (const Arrow& lhs, const Arrow& rhs) {
    if (lhs.isZero() || rhs.isZero())
        return {};

    Arrow ans;
    for (const auto& x : lhs.terms_)
        for (const auto& y : rhs.terms_) {
            auto key = sum(x.first, y.first);
            auto value = x.second * y.second;
            auto result = ans.terms_.try_emplace(std::move(key),
                std::move(value));
            if (! result.second) {
                // We might have zeroed out this term.
                if ((result.first->second += std::move(value)).isZero())
                    ans.terms_.erase(result.first);
            }
        }
    return ans;
}

void Arrow::writeTextShort(std::ostream& out, bool utf8) const {
    if (isZero()) {
        out << '0';
        return;
    }

    if (terms_.size() == 1) {
        auto it = terms_.begin();
        if (it->first.empty()) {
            // This polynomial does not use any diagram variables at all.
            // Just write the Laurent polynomial, without the usual brackets.
            it->second.writeTextShort(out, utf8, "A");
            return;
        }
    }

    for (auto it = terms_.begin(); it != terms_.end(); ++it) {
        const auto& laurent = it->second;

        if (laurent.minExp() == laurent.maxExp()) {
            // We are just adding some multiple of a single power of A.
            long exp = laurent.minExp();
            auto coeff = laurent[exp];

            if (coeff < 0) {
                if (it == terms_.begin()) {
                    if (utf8)
                        out << "\u2212";
                    else
                        out << '-';
                } else {
                    if (utf8)
                        out << " \u2212 ";
                    else
                        out << " - ";
                }

                coeff.negate();
            } else {
                if (it != terms_.begin())
                    out << " + ";
            }

            if (it->first.empty() && exp == 0) {
                // There are no variables to write at all.
                out << coeff;
                continue;
            }

            // There are some variables (A and/or K_i) to write.
            if (coeff != 1)
                out << coeff << ' ';
            if (exp != 0) {
                out << 'A';
                if (exp != 1) {
                    if (utf8)
                        out << regina::superscript(exp);
                    else
                        out << '^' << exp;
                }

                if (it->first.empty())
                    continue;
                out << ' ';
            }
            // All that's left is to write the sequence of K_i (with no
            // leading space).  We do this below.
        } else {
            if (it != terms_.begin())
                out << " + ";

            out << '(';
            it->second.writeTextShort(out, utf8, "A");
            out << ')';

            if (it->first.empty())
                continue;
            out << ' ';
        }

        bool firstK = true;
        for (size_t i = 0; i < it->first.size(); ++i) {
            size_t exp = it->first[i];
            if (exp == 0)
                continue;

            if (firstK)
                firstK = false;
            else
                out << ' ';
            if (utf8) {
                out << 'K' << regina::subscript(i + 1);
                if (exp != 1)
                    out << regina::superscript(exp);
            } else {
                out << "K_" << (i + 1);
                if (exp != 1)
                    out << '^' << exp;
            }
        }
    }
}

void Arrow::tightEncode(std::ostream& out) const {
    // Write the Laurent polynomials (which must be non-zero) before the
    // diagram sequences.  This way we can use the zero Laurent polynomial
    // as an unambiguous terminator.
    for (const auto& t : terms_) {
        t.second.tightEncode(out);

        regina::tightEncode(out, t.first.size());
        for (auto i : t.first)
            regina::tightEncode(out, i);
    }

    RingTraits<Laurent<Integer>>::zero.tightEncode(out);
}

Arrow Arrow::tightDecode(std::istream& input) {
    Arrow ans;

    while (true) {
        auto coeff = Laurent<Integer>::tightDecode(input);
        if (coeff.isZero())
            return ans;

        size_t len = regina::tightDecode<size_t>(input);
        DiagramSequence seq(len);
        for (size_t& i : seq)
            i = regina::tightDecode<size_t>(input);
        if (len > 0 && seq[len - 1] == 0)
            throw InvalidInput("The tight encoding includes a diagram "
                "sequence ending in zero");

        ans.terms_.emplace(std::move(seq), std::move(coeff));
    }
}

void Arrow::removeZeroes() {
    auto it = terms_.begin();
    while (it != terms_.end())
        if (it->second.isZero())
            it = terms_.erase(it); // C++11: returns next element.
        else
            ++it;
}

}