File: arrow.h

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (1005 lines) | stat: -rw-r--r-- 36,282 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#ifndef __REGINA_ARROW_H
#ifndef __DOXYGEN
#define __REGINA_ARROW_H
#endif

/*! \file maths/arrow.h
 *  \brief Implements the multivariate polynomial type used for
 *  arrow polynomials of links.
 */

#include "maths/laurent.h"
#include "utilities/sequence.h"
#include <map>

namespace regina {

/**
 * Represents a multivariate polynomial of the type used by arrow polynomials
 * of links.
 *
 * An arrow polynomial is a polynomial in the "ordinary variable" `A` and a
 * finite number of "diagram variables" `K_1,K_2,...`.  The ordinary variable
 * may appear with any integer exponents, including negative exponents (as in a
 * Laurent polynomial).  The diagram variables may only appear with non-negative
 * integer exponents (as in an ordinary polynomial).  All of the variables
 * commute, and all of the coefficients are integers.
 *
 * This class is implemented as a collection of Laurent polynomials in `A`,
 * each attached to a different product of diagram variables
 * `(K_1)^(a_1) (K_2)^(a_2) ...`.  We represent each such product of diagram
 * variables by the sequence of non-negative integers `a_1,a_2,...`, where the
 * final integer is strictly positive; for the trivial product with no diagram
 * variables at all we use the empty sequence.  In the notes below we call
 * such a sequence a _diagram sequence_.
 *
 * This class implements C++ move semantics and adheres to the C++ Swappable
 * requirement.  It is designed to avoid deep copies wherever possible,
 * even when passing or returning objects by value.
 *
 * \ingroup maths
 */
class Arrow : public ShortOutput<Arrow, true>, public TightEncodable<Arrow> {
    public:
        using Coefficient = Integer;
            /**< The type of each coefficient of the polynomial. */
        using DiagramSequence = LightweightSequence<size_t>;
            /**< The type used to represent a product of diagram variables. */

    private:
        std::map<DiagramSequence, Laurent<Integer>> terms_;
            /**< Stores the individual Laurent polynomials in `A` that are
                 attached to each product of diagram variables.  Only the
                 non-zero terms should be stored here. */

    public:
        /**
         * Creates the zero polynomial.
         */
        Arrow() = default;

        /**
         * Creates a new copy of the given polynomial.
         *
         * This constructor induces a deep copy of the given polynomial.
         */
        Arrow(const Arrow&) = default;

        /**
         * Moves the contents of the given polynomial to this new polynomial.
         * This is a fast (constant time) operation.
         *
         * The polynomial that was passed will no longer be usable.
         */
        Arrow(Arrow&&) noexcept = default;

        /**
         * Creates a new polynomial from the given collection of diagram
         * sequences and non-zero Laurent polynomials in \a A.
         *
         * The data should be presented as a collection of pairs of the form
         * `(seq, laurent)`, where `seq` is a diagram sequence and `laurent`
         * is the associated Laurent polynomial in `A`.
         *
         * The pairs may be given in any order.  An empty sequence will be
         * treated as the zero polynomial.
         *
         * Unlike the std::initializer_list constructor, zero Laurent
         * polynomials are allowed (these will be silently ignored), and
         * multiple pairs with the same diagram sequences are also allowed
         * (these will be summed together).
         *
         * This routine is targeted more towards Python users (since in C++
         * it is often easier to hard-code arrow polynomials using the
         * std::initializer_list constructor).  As an example, Python users
         * can create the arrow polynomial `A^-4 + (A^-6 - A^-10) K_1` using
         * either of the expressions:
         *
         * \code{.py}
         * Arrow([([], Laurent(-4, [1])), ([1], Laurent(-10, [-1,0,0,0,1]))])
         * Arrow([([], (-4, [1])), ([1], (-10, [-1,0,0,0,1]))])
         * \endcode
         *
         * \python Instead of the iterators \a begin and \a end, this routine
         * takes a python list of pairs `(seq, laurent)`, where \a seq is a
         * python list of integers representing a diagram sequence, and where
         * \a laurent is either (i) a Laurent polynomial, or (ii) a pair
         * `(minExp, coefficients)` which could be used to construct a Laurent
         * polynomial.  In the latter case, \a minExp would an integer, and
         * \a coefficients would be a python list of integers.
         *
         * \pre No diagram sequence ends in zero.
         *
         * \exception InvalidArgument At least one of the given diagram
         * sequences is non-empty and ends in zero.
         *
         * \tparam iterator an iterator type which, when dereferenced, gives a
         * std::pair of the form `(seq, laurent)`, where \a seq and \a laurent
         * can be used to construct objects of types DiagramSequence and
         * Laurent<Integer> respectively.
         *
         * \tparam deref a dummy argument that should be ignored.  This is
         * present to ensure that \a iterator can be dereferenced.  Once we
         * support a greater subset of C++20, this will be enforced through
         * concepts instead.
         *
         * \param begin the beginning of the collection of pairs, as outlined
         * above.
         * \param end a past-the-end iterator indicating the end of the
         * collection of pairs.
         */
        template <typename iterator, typename deref = decltype(*iterator())>
        Arrow(iterator begin, iterator end);

        /**
         * Creates a new polynomial from a hard-coded collection of diagram
         * sequences and non-zero Laurent polynomials in \a A.
         *
         * The data should be presented as a collection of pairs of the form
         * `(seq, laurent)`, where `seq` is a diagram sequence and `laurent`
         * is the associated Laurent polynomial in `A`.
         *
         * The pairs may be given in any order.  An empty sequence will be
         * treated as the zero polynomial.
         *
         * So, for example, you can create the arrow polynomial
         * `A^-4 + (A^-6 - A^-10) K_1` using the syntax:
         *
         * \code
         * Arrow a = { {{}, {-4, {1}}}, {{1}, {-10, {-1,0,0,0,1}}} };
         * \endcode
         *
         * \pre The diagram sequences are all distinct, no diagram sequence
         * ends in zero, and each associated Laurent polynomial is non-zero.
         *
         * \nopython Instead, use the Python constructor that takes a list of
         * pairs (which need not be constant).
         *
         * \exception InvalidArgument Two of the given diagram sequences are
         * identical, and/or one of the given diagram sequences is non-empty
         * and ends in zero, and/or one of the given Laurent polynomials is
         * zero.
         *
         * \param pairs the diagram sequences and Laurent polynomials, as
         * outlined above.
         */
        Arrow(std::initializer_list<
            std::pair<DiagramSequence, Laurent<Integer>>> pairs);

        /**
         * Creates the given Laurent polynomial in \a A.
         *
         * This polynomial will have no diagram variables at all.
         *
         * \param laurent the value of this new polynomial, given as a
         * Laurent polynomial in \a A.
         */
        Arrow(Laurent<Integer> laurent);

        /**
         * Sets this to become the zero polynomial.
         */
        void init();

        /**
         * Sets this to become the given product of diagram variables, using a
         * deep copy.
         *
         * If \a d is the sequence `a_1,a_2,...`, then this polynomial will be
         * set to `(K_1)^(a_1) (K_2)^(a_2) ...`.
         *
         * \exception InvalidArgument The given sequence of integers is
         * non-empty and its last entry is zero.
         *
         * \param d a sequence of integers representing some product of
         * diagram variables.  If this sequence is non-empty, then its last
         * entry should be strictly positive.
         */
        void initDiagram(const DiagramSequence& d);

        /**
         * Sets this to become the given product of diagram variables, using a
         * fast move operation.
         *
         * This variant of initDiagram() will move the diagram sequence out of
         * the argument \a d, which is very fast; however, like any move
         * operation, it will render the original argument \a d unusable.
         *
         * If \a d is the sequence `a_1,a_2,...`, then this polynomial will be
         * set to `(K_1)^(a_1) (K_2)^(a_2) ...`.
         *
         * \nopython Only the copying variant of initDiagram() is available to
         * Python users (not this move variant).
         *
         * \exception InvalidArgument The given sequence of integers is
         * non-empty and its last entry is zero.
         *
         * \param d a sequence of integers representing some product of
         * diagram variables.  If this sequence is non-empty, then its last
         * entry should be strictly positive.
         */
        void initDiagram(DiagramSequence&& d);

        /**
         * Returns whether this is the zero polynomial.
         *
         * \return \c true if and only if this is the zero polynomial.
         */
        bool isZero() const;

        /**
         * Returns the Laurent polynomial in `A` that is attached to the given
         * product of diagram variables.
         *
         * \python The diagram sequence should be presented as a sequence of
         * integer arguments; that is, you should write `arrow[a1, a2, ...]`.
         * Moreover, in Python this operator can also _set_ the attached
         * Laurent polynomial: you can write `arrow[a1, a2, ...] = ...`.
         * However, when _getting_ a coefficient this operator will return
         * by value (to enforce constness), which means for example you
         * cannot write something like `arrow[a1, a2, ...].negate()`.
         *
         * \cpp For C++ users, this operator is read-only.  To _set_
         * coefficients, you must use the separate routine set().
         *
         * \exception InvalidArgument The given sequence of integers is
         * non-empty and its last entry is zero.
         *
         * \param d a sequence of integers representing some product of
         * diagram variables.  If this sequence is non-empty, then its last
         * entry should be strictly positive.
         * \return the Laurent polynomial attached to the given product of
         * diagram variables.
         */
        const Laurent<Integer>& operator [] (const DiagramSequence& d) const;

        /**
         * Changes the Laurent polynomial in `A` that is attached to the given
         * product of diagram variables.
         *
         * The new coefficient is allowed to be zero.
         *
         * \python The diagram sequence should be presented as a sequence of
         * integer arguments; that is: `arrow.set(a1, a2, ...) = value`.
         * In Python (but not C++), you can also set the attached Laurent
         * polynomial directly using the syntax `arrow[a1, a2, ...] = value`.
         *
         * \exception InvalidArgument The given sequence of integers is
         * non-empty and its last entry is zero.
         *
         * \param d a sequence of integers representing some product of
         * diagram variables.  If this sequence is non-empty, then its last
         * entry should be strictly positive.
         * \param value the new Laurent polynomial that should be attached to
         * the given product of diagram variables.
         */
        void set(const DiagramSequence& d, const Laurent<Integer>& value);

        /**
         * Changes the Laurent polynomial in `A` that is attached to the given
         * product of diagram variables.
         *
         * This variant of set() will move the Laurent polynomial out of
         * the argument \a value, which is very fast; however, like any move
         * operation, it will render the original argument \a value unusable.
         *
         * The new coefficient is allowed to be zero.
         *
         * \nopython Only the copying variant of set() is available to Python
         * users (not this move variant).  Note that in Python (but not C++),
         * you can also set the attached Laurent polynomial directly using the
         * syntax `arrow[a1, a2, ...] = value`.
         *
         * \exception InvalidArgument The given sequence of integers is
         * non-empty and its last entry is zero.
         *
         * \param d a sequence of integers representing some product of
         * diagram variables.  If this sequence is non-empty, then its last
         * entry should be strictly positive.
         * \param value the new Laurent polynomial that should be attached to
         * the given product of diagram variables.
         */
        void set(const DiagramSequence& d, Laurent<Integer>&& value);

        /**
         * Tests whether this and the given polynomial are equal.
         *
         * \param rhs the polynomial to compare with this.
         * \return \c true if and only if this and the given polynomial
         * are equal.
         */
        bool operator == (const Arrow& rhs) const;

        /**
         * Tests whether this is equal to the given Laurent polynomial in \a A.
         *
         * For this to be true, this polynomial must not use any of the
         * diagram variables `K_i` at all.
         *
         * \param rhs the Laurent polynomial in \a A to compare this with.
         * \return \c true if and only if this and the given Laurent
         * polynomial are equal.
         */
        bool operator == (const Laurent<Integer>& rhs) const;

        /**
         * Compares this against the given polynomial under a total
         * ordering of all arrow polynomials.
         *
         * The particular total order that Regina uses is not important,
         * and may change between Regina releases (though such changes
         * should be very infrequent).  The main purpose of this routine
         * is to support algorithms that require a "canonical" choice of
         * polynomial from amongst many alternatives.
         *
         * This routine generates all of the usual comparison operators,
         * including `<`, `<=`, `>`, and `>=`.
         *
         * \python This spaceship operator `x <=> y` is not available, but the
         * other comparison operators that it generates _are_ available.
         *
         * \param rhs the polynomial to compare with this.
         * \return The result of the comparison between this
         * and the given polynomial.
         */
        std::strong_ordering operator <=> (const Arrow& rhs) const;

        /**
         * Sets this to be a copy of the given polynomial.
         *
         * This operator induces a deep copy of the given polynomial.
         *
         * \return a reference to this polynomial.
         */
        Arrow& operator = (const Arrow&) = default;

        /**
         * Moves the contents of the given polynomial to this polynomial.
         * This is a fast (constant time) operation.
         *
         * The polynomial that was passed will no longer be usable.
         *
         * \return a reference to this polynomial.
         */
        Arrow& operator = (Arrow&& value) noexcept = default;

        /**
         * Sets this to be the given Laurent polynomial in \a A.
         *
         * This polynomial will have no diagram variables at all.
         *
         * \param laurent the new value of this polynomial, given as a
         * Laurent polynomial in \a A.
         * \return a reference to this polynomial.
         */
        Arrow& operator = (Laurent<Integer> laurent);

        /**
         * Swaps the contents of this and the given polynomial.
         * This is a fast (constant time) operation.
         *
         * \param other the polynomial whose contents should be swapped
         * with this.
         */
        void swap(Arrow& other) noexcept;

        /**
         * Multiplies this polynomial by `A^s` for some integer \a s.
         *
         * \param s the power of \a A to multiply by.
         */
        void shift(long s);

        /**
         * Multiplies all exponents of `A` in this polynomial by \a k for some
         * integer \a k.  This is equivalent to replacing the variable `A`
         * with `A^k`.
         *
         * Both positive and negative scaling factors \a k are allowed.
         *
         * \pre \a k is non-zero.
         *
         * \param k the scaling factor to multiply exponents by.
         */
        void scaleUp(long k);

        /**
         * Divides all exponents in this polynomial by \a k for some
         * integer \a k.  This is equivalent to replacing the variable `A`
         * with `A^(1/k)`.
         *
         * Both positive and negative scaling factors \a k are allowed.
         *
         * \pre \a k is non-zero.
         * \pre All exponents of `A` that appear in this polynomial with
         * non-zero coefficients are multiples of \a k.
         *
         * \exception FailedPrecondition Either \a k is zero, or some exponent
         * of `A` with a non-zero coefficient is not a multiple of \a k.
         *
         * \param k the scaling factor to divide exponents by.
         */
        void scaleDown(long k);

        /**
         * Negates this polynomial.
         * This polynomial is changed directly.
         */
        void negate();

        /**
         * Replaces `A` with `A^-1` in this polynomial.
         * This polynomial is changed directly.
         *
         * Calling this routine is equivalent to calling `scaleUp(-1)`.
         */
        void invertA();

        /**
         * Multiplies this polynomial by the given diagram variable.
         *
         * Specifically, if the given index is \a i, then this polynomial will
         * be multiplied by the diagram variable `K_i`.  Note that this
         * requires \a i to be strictly positive.
         *
         * \exception InvalidArgument The given index is zero.
         *
         * \param index the index of the diagram variable to multiply by; this
         * must be strictly positive.
         */
        void multDiagram(size_t index);

        /**
         * Returns the sum of all Laurent polynomials in `A` that are attached
         * to each diagram sequence.  This is the Laurent polynomial in `A`
         * that would be obtained if we set each diagram variable `K_i = 1`.
         *
         * \return the sum of all attached Laurent polynomials in `A`.
         */
        Laurent<Integer> sumLaurent() const;

        /**
         * Multiplies this polynomial by the given integer constant.
         *
         * \param scalar the scalar factor to multiply by.
         * \return a reference to this polynomial.
         */
        Arrow& operator *= (const Integer& scalar);

        /**
         * Multiplies this arrow polynomial by the given Laurent polynomial
         * in `A`.
         *
         * \param laurent the Laurent polynomial to multiply by; this will be
         * treated as a Laurent polynomial in the ordinary variable `A`.
         * \return a reference to this arrow polynomial.
         */
        Arrow& operator *= (const Laurent<Integer>& laurent);

        /**
         * Adds the given polynomial to this.
         *
         * \param other the polynomial to add to this.
         * \return a reference to this polynomial.
         */
        Arrow& operator += (const Arrow& other);

        /**
         * Subtracts the given polynomial from this.
         *
         * \param other the polynomial to subtract from this.
         * \return a reference to this polynomial.
         */
        Arrow& operator -= (const Arrow& other);

        /**
         * Multiplies this by the given polynomial.
         *
         * \param other the polynomial to multiply this by.
         * \return a reference to this polynomial.
         */
        Arrow& operator *= (const Arrow& other);

        /**
         * Writes this polynomial to the given output stream.
         *
         * If \a utf8 is passed as \c true then unicode subscript and
         * superscript characters will be used for diagram variables, exponents
         * and the minus sign; these will be encoded using UTF-8.  This will
         * make the output nicer, but will require more complex fonts to be
         * available on the user's machine.
         *
         * \nopython Use str() or utf8() instead.
         *
         * \param out the output stream to which to write.
         * \param utf8 \c true if unicode characters may be used.
         */
        void writeTextShort(std::ostream& out, bool utf8 = false) const;

        /**
         * Writes the tight encoding of this polynomial to the given output
         * stream.  See the page on \ref tight "tight encodings" for details.
         *
         * \nopython Use tightEncoding() instead, which returns a string.
         *
         * \param out the output stream to which the encoded string will
         * be written.
         */
        void tightEncode(std::ostream& out) const;

        /**
         * Reconstructs a polynomial from its given tight encoding.
         * See the page on \ref tight "tight encodings" for details.
         *
         * The tight encoding will be read from the given input stream.
         * If the input stream contains leading whitespace then it will be
         * treated as an invalid encoding (i.e., this routine will throw an
         * exception).  The input stream _may_ contain further data: if this
         * routine is successful then the input stream will be left positioned
         * immediately after the encoding, without skipping any trailing
         * whitespace.
         *
         * \exception InvalidInput The given input stream does not begin with
         * a tight encoding of an arrow polynomial.
         *
         * \nopython Use tightDecoding() instead, which takes a string as
         * its argument.
         *
         * \param input an input stream that begins with the tight encoding
         * for an arrow polynomial.
         * \return the polynomial represented by the given tight encoding.
         */
        static Arrow tightDecode(std::istream& input);

    private:
        /**
         * Removes all entries from terms_ whose associated Laurent
         * polynomials are zero.
         */
        void removeZeroes();

    friend Arrow operator * (const Arrow&, const Arrow&);
};

#ifndef __DOXYGEN
// Don't confuse doxygen with specialisations.
template <>
struct RingTraits<Arrow> {
    inline static const Arrow zero;
    inline static const Arrow one { Laurent<Integer>(0, {1}) };
};
#endif // __DOXYGEN

/**
 * Swaps the contents of the given polynomials.
 *
 * This global routine simply calls Arrow::swap(); it is provided
 * so that Arrow meets the C++ Swappable requirements.
 *
 * \param a the first polynomial whose contents should be swapped.
 * \param b the second polynomial whose contents should be swapped.
 *
 * \ingroup maths
 */
void swap(Arrow& a, Arrow& b) noexcept;

/**
 * Multiplies the given polynomial by the given integer constant.
 *
 * \param poly the polynomial to multiply by.
 * \param scalar the scalar factor to multiply by.
 * \return the product of the given polynomial and scalar.
 *
 * \ingroup maths
 */
Arrow operator * (Arrow poly, const Integer& scalar);

/**
 * Multiplies the given polynomial by the given integer constant.
 *
 * \param scalar the scalar factor to multiply by.
 * \param poly the polynomial to multiply by.
 * \return the product of the given polynomial and scalar.
 *
 * \ingroup maths
 */
Arrow operator * (const Integer& scalar, Arrow poly);

/**
 * Multiplies the given arrow polynomial by the given Laurent polynomial in `A`.
 *
 * \param arrow the arrow polynomial to multiply by.
 * \param laurent the Laurent polynomial to multiply by; this will be treated as
 * a Laurent polynomial in the ordinary variable `A`.
 * \return the product of the given arrow and Laurent polynomials.
 *
 * \ingroup maths
 */
Arrow operator * (Arrow arrow, const Laurent<Integer>& laurent);

/**
 * Multiplies the given arrow polynomial by the given Laurent polynomial in `A`.
 *
 * \param laurent the Laurent polynomial to multiply by; this will be treated as
 * a Laurent polynomial in the ordinary variable `A`.
 * \param arrow the arrow polynomial to multiply by.
 * \return the product of the given arrow and Laurent polynomials.
 *
 * \ingroup maths
 */
Arrow operator * (const Laurent<Integer>& laurent, Arrow arrow);

/**
 * Adds the two given polynomials.
 *
 * \param lhs the first polynomial to add.
 * \param rhs the second polynomial to add.
 * \return the sum of both polynomials.
 *
 * \ingroup maths
 */
Arrow operator + (const Arrow& lhs, const Arrow& rhs);

/**
 * Adds the two given polynomials.
 *
 * \param lhs the first polynomial to add.
 * \param rhs the second polynomial to add.
 * \return the sum of both polynomials.
 *
 * \ingroup maths
 */
Arrow operator + (Arrow&& lhs, const Arrow& rhs);

/**
 * Adds the two given polynomials.
 *
 * \param lhs the first polynomial to add.
 * \param rhs the second polynomial to add.
 * \return the sum of both polynomials.
 *
 * \ingroup maths
 */
Arrow operator + (const Arrow& lhs, Arrow&& rhs);

/**
 * Adds the two given polynomials.
 *
 * \param lhs the first polynomial to add.
 * \param rhs the second polynomial to add.
 * \return the sum of both polynomials.
 *
 * \ingroup maths
 */
Arrow operator + (Arrow&& lhs, Arrow&& rhs);

/**
 * Returns the negative of the given polynomial.
 *
 * \param arg the polynomial to negate.
 * \return the negative of \a arg.
 *
 * \ingroup maths
 */
Arrow operator - (Arrow arg);

/**
 * Subtracts the two given polynomials.
 *
 * \param lhs the polynomial to sutract \a rhs from.
 * \param rhs the polynomial to subtract from \a lhs.
 * \return the difference of the two given polynomials.
 *
 * \ingroup maths
 */
Arrow operator - (const Arrow& lhs, const Arrow& rhs);

/**
 * Subtracts the two given polynomials.
 *
 * \param lhs the polynomial to sutract \a rhs from.
 * \param rhs the polynomial to subtract from \a lhs.
 * \return the difference of the two given polynomials.
 *
 * \ingroup maths
 */
Arrow operator - (Arrow&& lhs, const Arrow& rhs);

/**
 * Subtracts the two given polynomials.
 *
 * \param lhs the polynomial to sutract \a rhs from.
 * \param rhs the polynomial to subtract from \a lhs.
 * \return the difference of the two given polynomials.
 *
 * \ingroup maths
 */
Arrow operator - (const Arrow& lhs, Arrow&& rhs);

/**
 * Subtracts the two given polynomials.
 *
 * \param lhs the polynomial to sutract \a rhs from.
 * \param rhs the polynomial to subtract from \a lhs.
 * \return the difference of the two given polynomials.
 *
 * \ingroup maths
 */
Arrow operator - (Arrow&& lhs, Arrow&& rhs);

/**
 * Multiplies the two given polynomials.
 *
 * \param lhs the first polynomial to multiply.
 * \param rhs the second polynomial to multiply.
 * \return the product of the two given polynomials.
 *
 * \ingroup maths
 */
Arrow operator * (const Arrow& lhs, const Arrow& rhs);

template <typename iterator, typename deref>
inline Arrow::Arrow(iterator begin, iterator end) {
    for (auto it = begin; it != end; ++it) {
        DiagramSequence seq = it->first;
        Laurent<Integer> laurent = it->second;

        if ((! seq.empty()) && seq.back() == 0)
            throw InvalidArgument("One of the given diagram sequences "
                "ends in zero");
        if (laurent.isZero())
            continue;

        auto result = terms_.try_emplace(std::move(seq), std::move(laurent));
        if (! result.second) {
            // This diagram sequence is already present.
            // Accumulate, and erase if the resulting coefficient is zero.
            // Note: Laurent's += operator does not support rvalue refs,
            // so it does not help to use std::move() here.
            if ((result.first->second += laurent).isZero())
                terms_.erase(result.first);
        }
    }
}

inline Arrow::Arrow(
        std::initializer_list<std::pair<DiagramSequence, Laurent<Integer>>>
        pairs) {
    for (const auto& p : pairs) {
        if (p.second.isZero())
            throw InvalidArgument("One of the given Laurent polynomials "
                "is zero");
        if ((! p.first.empty()) && p.first.back() == 0)
            throw InvalidArgument("One of the given diagram sequences "
                "ends in zero");
        if (! terms_.insert(p).second)
            throw InvalidArgument("Two of the given diagram sequences "
                "are identical");
    }
}

inline Arrow::Arrow(Laurent<Integer> laurent) {
    if (! laurent.isZero())
        terms_.emplace(DiagramSequence(), std::move(laurent));
}

inline void Arrow::init() {
    terms_.clear();
}

inline void Arrow::initDiagram(const DiagramSequence& d) {
    if ((! d.empty()) && d[d.size() - 1] == 0)
        throw InvalidArgument("The given diagram sequence should not "
            "end with a zero");

    terms_.clear();
    terms_.emplace(d, RingTraits<Laurent<Integer>>::one);
}

inline void Arrow::initDiagram(DiagramSequence&& d) {
    if ((! d.empty()) && d[d.size() - 1] == 0)
        throw InvalidArgument("The given diagram sequence should not "
            "end with a zero");

    // Verified: the code below does indeed move d (not copy it).
    terms_.clear();
    terms_.emplace(std::move(d), RingTraits<Laurent<Integer>>::one);
}

inline bool Arrow::isZero() const {
    return terms_.empty();
}

inline bool Arrow::operator == (const Arrow& rhs) const {
    return terms_ == rhs.terms_;
}

inline bool Arrow::operator == (const Laurent<Integer>& rhs) const {
    if (rhs.isZero())
        return isZero();
    else {
        if (terms_.size() != 1)
            return false;
        if (! terms_.begin()->first.empty())
            return false;
        return terms_.begin()->second == rhs;
    }
}

inline std::strong_ordering Arrow::operator <=> (const Arrow& rhs) const {
    return terms_ <=> rhs.terms_;
}

inline Arrow& Arrow::operator = (Laurent<Integer> laurent) {
    terms_.clear();
    if (! laurent.isZero())
        terms_.emplace(DiagramSequence(), std::move(laurent));
    return *this;
}

inline void Arrow::swap(Arrow& other) noexcept {
    terms_.swap(other.terms_);
}

inline void Arrow::shift(long k) {
    for (auto& term : terms_)
        term.second.shift(k);
}

inline void Arrow::scaleUp(long k) {
    for (auto& term : terms_)
        term.second.scaleUp(k);
}

inline void Arrow::scaleDown(long k) {
    for (auto& term : terms_)
        term.second.scaleDown(k);
}

inline void Arrow::negate() {
    for (auto& term : terms_)
        term.second.negate();
}

inline void Arrow::invertA() {
    for (auto& term : terms_)
        term.second.invertX();
}

inline Laurent<Integer> Arrow::sumLaurent() const {
    Laurent<Integer> ans;
    for (const auto& term : terms_)
        ans += term.second;
    return ans;
}

inline Arrow& Arrow::operator *= (const Integer& scalar) {
    if (scalar == 0) {
        terms_.clear();
    } else {
        for (auto& term : terms_)
            term.second *= scalar;
    }
    return *this;
}

inline Arrow& Arrow::operator *= (const Laurent<Integer>& laurent) {
    if (laurent.isZero()) {
        terms_.clear();
    } else {
        for (auto& term : terms_)
            term.second *= laurent;
    }
    return *this;
}

inline Arrow& Arrow::operator *= (const Arrow& other) {
    terms_ = std::move((*this * other).terms_);
    return *this;
}

inline void swap(Arrow& a, Arrow& b) noexcept {
    a.swap(b);
}

inline Arrow operator * (Arrow poly, const Integer& scalar) {
    // When the argument poly is an lvalue reference, we perform a deep copy
    // due to pass-by-value.  If scalar == 0 then we don't need this deep copy,
    // since the argument can be ignored.  This special-case optimisation
    // would require two different lvalue/rvalue implementations of *, and
    // so we leave it for now.
    poly *= scalar;
    return poly;
}

inline Arrow operator * (const Integer& scalar, Arrow poly) {
    // See the notes above on a possible optimisation for scalar == 0.
    poly *= scalar;
    return poly;
}

inline Arrow operator * (Arrow poly, const Laurent<Integer>& laurent) {
    // See the notes above on a possible optimisation for laurent == 0.
    poly *= laurent;
    return poly;
}

inline Arrow operator * (const Laurent<Integer>& laurent, Arrow poly) {
    // See the notes above on a possible optimisation for laurent == 0.
    poly *= laurent;
    return poly;
}

inline Arrow operator + (const Arrow& lhs, const Arrow& rhs) {
    // We have to make a deep copy since both arguments are read-only.
    return std::move(Arrow(lhs) += rhs);
}

inline Arrow operator + (Arrow&& lhs, const Arrow& rhs) {
    return std::move(lhs += rhs);
}

inline Arrow operator + (const Arrow& lhs, Arrow&& rhs) {
    return std::move(rhs += lhs);
}

inline Arrow operator + (Arrow&& lhs, Arrow&& rhs) {
    return std::move(lhs += rhs);
}

inline Arrow operator - (Arrow arg) {
    arg.negate();
    return arg;
}

inline Arrow operator - (const Arrow& lhs, const Arrow& rhs) {
    // We have to make a deep copy since both arguments are read-only.
    return std::move(Arrow(lhs) -= rhs);
}

inline Arrow operator - (Arrow&& lhs, const Arrow& rhs) {
    return std::move(lhs -= rhs);
}

inline Arrow operator - (const Arrow& lhs, Arrow&& rhs) {
    rhs.negate();
    return std::move(rhs += lhs);
}

inline Arrow operator - (Arrow&& lhs, Arrow&& rhs) {
    return std::move(lhs -= rhs);
}

} // namespace regina

#endif