1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include <cctype>
#include <cerrno>
#include <cstdlib>
#include <cstring>
#include <mutex>
#include "maths/integer.h"
#include "maths/numbertheory.h"
#include "utilities/exception.h"
// We instantiate both variants of the IntegerBase template at the bottom
// of this file.
// The implementations in this file currently require a native integer
// that is twice the size of a long. The C++ standard does not mandate this,
// but also I am not aware of a platform on which this fails.
static_assert(
! std::is_void<typename regina::IntOfSize<2 * sizeof(long)>::type>(),
"Regina requires a native integer type that is twice the size of a long. The developers are not currently aware of any cases where this fails, so if you see this error then _please_ write and let us know.");
// The code in this file also requires that sizeof(long long) is a
// multiple of sizeof(long). Again, this is not mandated but I am not
// aware of a platform on which it fails.
static_assert(sizeof(long long) % sizeof(long) == 0,
"Regina requires that a the size of a long long is an exact multiple of "
"the size of a long. The developers are not currently aware of any cases "
"where this fails, so if you see this error then _please_ write and "
"let us know.");
/**
* Old macros for testing signed integer overflow, given in order from
* fastest to slowest (by experimentation). All are based on section
* 2-21 from Hacker's Delight by Warren.
*
* These tests are all abandoned now because the 128-bit cast solution is
* significantly faster than any of these.
*
* Note that a slicker test (such as checking whether answer / y == x) is
* not possible, because compiler optimisations are too clever nowadays
* and strip out the very tests we are trying to perform
* (e.g., whether (x * y) / y == x).
*
* - Ben, 19/08/2013.
*
#define LONG_OVERFLOW(x, y) \
(((x) > 0 && ( \
((y) > 0 && (y) > LONG_MAX / (x)) || \
(y) < 0 && (y) < LONG_MIN / (x))) || \
((x) < 0 && ( \
((y) > 0 && (x) < LONG_MIN / (y)) || \
((y) < 0 && (x) < LONG_MAX / (y)))))
#define LONG_OVERFLOW(x, y) \
(((x) > 0 && (y) > 0 && (y) > LONG_MAX / (x)) || \
((x) > 0 && (y) < 0 && (y) < LONG_MIN / (x)) || \
((x) < 0 && (y) > 0 && (x) < LONG_MIN / (y)) || \
((x) < 0 && (y) < 0 && (x) < LONG_MAX / (y)))
#define LONG_OVERFLOW(x, y) \
((y) && labs(x) > (((~((x) ^ (y))) >> (sizeof(long)*8-1)) / labs(y)))
*/
namespace regina {
namespace {
/**
* Global variables for the GMP random state data.
*/
std::mutex randMutex;
gmp_randstate_t randState;
bool randInitialised(false);
}
namespace detail {
mpz_ptr mpz_from_ll(long long value) {
auto ans = new __mpz_struct[1];
if constexpr (sizeof(long) == sizeof(long long)) {
mpz_init_set_si(ans, value);
return ans;
} else {
constexpr static int blocks = sizeof(long long) / sizeof(long);
constexpr static int block = 8 * sizeof(long);
mpz_init_set_si(ans, static_cast<long>(
value >> ((blocks - 1) * block)));
for (int i = 2; i <= blocks; ++i) {
mpz_mul_2exp(ans, ans, block);
mpz_add_ui(ans, ans, static_cast<unsigned long>(
value >> ((blocks - i) * block)));
}
}
return ans;
}
mpz_ptr mpz_from_ull(unsigned long long value) {
auto ans = new __mpz_struct[1];
if constexpr (sizeof(long) == sizeof(long long)) {
mpz_init_set_ui(ans, value);
return ans;
} else {
constexpr static int blocks = sizeof(long long) / sizeof(long);
constexpr static int block = 8 * sizeof(long);
mpz_init_set_ui(ans, static_cast<unsigned long>(
value >> ((blocks - 1) * block)));
for (int i = 2; i <= blocks; ++i) {
mpz_mul_2exp(ans, ans, block);
mpz_add_ui(ans, ans, static_cast<unsigned long>(
value >> ((blocks - i) * block)));
}
}
return ans;
}
}
// The use of errno in this file should be threadsafe, since (as I
// understand it) each thread gets its own errno. However, there may be
// thread safety issues regarding locales when using strtol(), in
// particular when another thread changes the locale mid-flight.
// I could be wrong about this.
template <bool withInfinity>
IntegerBase<withInfinity>::IntegerBase(const char* value, int base) :
large_(nullptr) {
char* endptr;
errno = 0;
small_ = strtol(value, &endptr, base);
if (errno || *endptr) {
// Something went wrong. Try again with large integers and/or infinity.
// Note that in the case of overflow, we may have errno != 0 but
// *endptr == 0.
bool maybeTrailingWhitespace = (*endptr && ! errno);
if constexpr (withInfinity) {
// Skip initial whitespace now and look for infinity.
while (*value && isspace(*value))
++value;
if (strncmp(value, "inf", 3) == 0) {
makeInfinite();
return;
}
}
large_ = new __mpz_struct[1];
if (mpz_init_set_str(large_, value, base) != 0)
throw InvalidArgument("Could not parse the given string "
"as an arbitrary-precision integer");
// If the strtol() error was just trailing whitespace, we might still
// fit into a native long.
if (maybeTrailingWhitespace)
tryReduce();
}
}
template <bool withInfinity>
std::string IntegerBase<withInfinity>::stringValue(int base) const {
if (isInfinite())
return "inf";
else if (large_) {
char* str = mpz_get_str(nullptr, base, large_);
std::string ans(str);
free(str);
return ans;
} else {
// Hmm. std::setbase() only takes 8, 10 or 16 as i understand it.
// For now, be wasteful and always go through GMP.
mpz_t tmp;
mpz_init_set_si(tmp, small_);
char* str = mpz_get_str(nullptr, base, tmp);
std::string ans(str);
free(str);
mpz_clear(tmp);
return ans;
}
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator =(
const char* value) {
makeFinite();
char* endptr;
errno = 0;
small_ = strtol(value, &endptr, 10 /* base */);
if (errno || *endptr) {
// Something went wrong. Try again with large integers and/or infinity.
// Note that in the case of overflow, we may have errno != 0 but
// *endptr == 0.
bool maybeTrailingWhitespace = (*endptr && ! errno);
if constexpr (withInfinity) {
// Skip initial whitespace now and look for infinity.
while (*value && isspace(*value))
++value;
if (strncmp(value, "inf", 3) == 0) {
makeInfinite();
return *this;
}
}
if (large_) {
if (mpz_set_str(large_, value, 10 /* base */) != 0)
throw InvalidArgument("Could not parse the given string "
"as an arbitrary-precision integer");
} else {
large_ = new __mpz_struct[1];
if (mpz_init_set_str(large_, value, 10 /* base */) != 0)
throw InvalidArgument("Could not parse the given string "
"as an arbitrary-precision integer");
}
// If the strtol() error was just trailing whitespace, we might still
// fit into a native long.
if (maybeTrailingWhitespace)
tryReduce();
} else if (large_) {
// All good, but we must clear out the old large integer.
clearLarge();
}
return *this;
}
template <bool withInfinity>
std::ostream& operator << (std::ostream& out,
const IntegerBase<withInfinity>& i) {
if (i.isInfinite())
out << "inf";
else if (i.large_) {
char* str = mpz_get_str(nullptr, 10, i.large_);
out << str;
free(str);
} else
out << i.small_;
return out;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator +=(long other) {
if (isInfinite())
return *this;
if (! large_) {
// Use native arithmetic if we can.
if ( (small_ > 0 && other > (LONG_MAX - small_)) ||
(small_ < 0 && other < (LONG_MIN - small_))) {
// Boom. It's an overflow.
// Fall back to large integer arithmetic in the next block.
forceLarge();
} else {
// All good: we're done.
small_ += other;
return *this;
}
}
// And now we're down to large integer arithmetic.
// The following code should work even if other == LONG_MIN (in which case
// -other == LONG_MIN also), since passing -other to mpz_sub_ui casts it
// to an unsigned long (and gives it the correct positive value).
if (other >= 0)
mpz_add_ui(large_, large_, other);
else
mpz_sub_ui(large_, large_, -other);
return *this;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator -=(long other) {
if (isInfinite())
return *this;
if (! large_) {
// Use native arithmetic if we can.
if ( (other > 0 && small_ < (LONG_MIN + other)) ||
(other < 0 && small_ > (LONG_MAX + other))) {
// Boom. It's an overflow.
// Fall back to large integer arithmetic in the next block.
forceLarge();
} else {
// All good: we're done.
small_ -= other;
return *this;
}
}
// And now we're down to large integer arithmetic.
// The following code should work even if other == LONG_MIN (in which case
// -other == LONG_MIN also), since passing -other to mpz_add_ui casts it
// to an unsigned long (and gives it the correct positive value).
if (other >= 0)
mpz_sub_ui(large_, large_, other);
else
mpz_add_ui(large_, large_, -other);
return *this;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator *=(
const IntegerBase& other) {
if (isInfinite())
return *this;
else if (other.isInfinite()) {
makeInfinite();
return *this;
}
if (large_) {
if (other.large_)
mpz_mul(large_, large_, other.large_);
else
mpz_mul_si(large_, large_, other.small_);
} else if (other.large_) {
large_ = new __mpz_struct[1];
mpz_init(large_);
mpz_mul_si(large_, other.large_, small_);
} else {
// Hum. We are assuming that Wide is not void, i.e., there is
// a native integer type that is twice the size of a long.
// Currently this is enforced through a static_assert at the
// top of this file.
using Wide = typename IntOfSize<2 * sizeof(long)>::type;
Wide ans = static_cast<Wide>(small_) * static_cast<Wide>(other.small_);
if (ans > LONG_MAX || ans < LONG_MIN) {
// Overflow.
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, small_);
mpz_mul_si(large_, large_, other.small_);
} else
small_ = static_cast<long>(ans);
}
return *this;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator *=(long other) {
if (isInfinite())
return *this;
if (large_)
mpz_mul_si(large_, large_, other);
else {
using Wide = IntOfSize<2 * sizeof(long)>::type;
Wide ans = static_cast<Wide>(small_) * static_cast<Wide>(other);
if (ans > LONG_MAX || ans < LONG_MIN) {
// Overflow.
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, small_);
mpz_mul_si(large_, large_, other);
} else
small_ = static_cast<long>(ans);
}
return *this;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator /=(
const IntegerBase& other) {
if (isInfinite())
return *this;
if (other.isInfinite())
return (*this = 0);
if (withInfinity && other.isZero()) {
makeInfinite();
return *this;
}
if (other.large_) {
if (large_) {
mpz_tdiv_q(large_, large_, other.large_);
return *this;
}
// This is a native C/C++ long.
// One of four things must happen:
// (i) |other| > |this|, in which case the result = 0;
// (ii) this = LONG_MIN and OTHER = -1, in which case the result
// is the large integer -LONG_MIN;
// (iii) this = LONG_MIN and OTHER is the large integer -LONG_MIN,
// in which case the result = -1;
// (iv) other can be converted to a native long, and the result
// is a native long also.
//
// Deal with the problematic LONG_MIN case first.
if (small_ == LONG_MIN) {
if (! mpz_cmp_ui(other.large_,
LONG_MIN /* casting to unsigned makes this -LONG_MIN */)) {
small_ = -1;
return *this;
}
if (! mpz_cmp_si(other.large_, -1)) {
// The result is -LONG_MIN, which requires large integers.
// Reduce other while we're at it.
const_cast<IntegerBase&>(other).forceReduce();
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, LONG_MIN);
mpz_neg(large_, large_);
return *this;
}
if (mpz_cmp_ui(other.large_,
LONG_MIN /* cast to ui makes this -LONG_MIN */) > 0 ||
mpz_cmp_si(other.large_, LONG_MIN) < 0) {
small_ = 0;
return *this;
}
// other is in [ LONG_MIN, -LONG_MIN ) \ {-1}.
// Reduce it and use native arithmetic.
const_cast<IntegerBase&>(other).forceReduce();
small_ /= other.small_;
return *this;
}
// From here we have this in ( LONG_MIN, -LONG_MIN ).
if (small_ >= 0) {
if (mpz_cmp_si(other.large_, small_) > 0 ||
mpz_cmp_si(other.large_, -small_) < 0) {
small_ = 0;
return *this;
}
} else {
// We can negate, since small_ != LONG_MIN.
if (mpz_cmp_si(other.large_, -small_) > 0 ||
mpz_cmp_si(other.large_, small_) < 0) {
small_ = 0;
return *this;
}
}
// We can do this all in native longs from here.
// Opportunistically reduce other, since we know we can.
const_cast<IntegerBase&>(other).forceReduce();
small_ /= other.small_;
return *this;
} else
return (*this) /= other.small_;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator /=(long other) {
if (isInfinite())
return *this;
if (withInfinity && other == 0) {
makeInfinite();
return *this;
}
if (large_) {
if (other >= 0)
mpz_tdiv_q_ui(large_, large_, other);
else {
// The cast to (unsigned long) makes this correct even if
// other = LONG_MIN.
mpz_tdiv_q_ui(large_, large_, - other);
mpz_neg(large_, large_);
}
} else if (small_ == LONG_MIN && other == -1) {
// This is the special case where we must switch from native to
// large integers.
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, LONG_MIN);
mpz_neg(large_, large_);
} else {
// We can do this entirely in native arithmetic.
small_ /= other;
}
return *this;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::divByExact(
const IntegerBase& other) {
if (other.large_) {
if (large_) {
mpz_divexact(large_, large_, other.large_);
return *this;
}
// This is a native C/C++ long.
// Because we are guaranteed other | this, it follows that
// other must likewise fit within a native long, or else
// (i) this == 0, or (ii) this == LONG_MIN and other == -LONG_MIN.
// It also follows that the result must fit within a native long,
// or else this == LONG_MIN and other == -1.
if (small_ == 0) {
// 0 / anything = 0 (we know from preconditions that other != 0).
return *this;
} else if (small_ == LONG_MIN) {
if (! mpz_cmp_ui(other.large_,
LONG_MIN /* casting to unsigned makes this -LONG_MIN */)) {
// The result is -1, since we have LONG_MIN / -LONG_MIN.
small_ = -1;
return *this;
}
// At this point we know that other fits within a native long.
// Opportunistically reduce its representation.
const_cast<IntegerBase&>(other).forceReduce();
if (other.small_ == -1) {
// The result is -LONG_MIN, which requires large integers.
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, LONG_MIN);
mpz_neg(large_, large_);
} else {
// The result will fit within a native long also.
small_ /= other.small_;
}
return *this;
}
// Here we know that other always fits within a native long,
// and so does the result.
// Opportunisticaly reduce the representation of other, since
// we know we can.
const_cast<IntegerBase&>(other).forceReduce();
small_ /= other.small_;
return *this;
} else {
// other is already a native int.
// Use the native version of this routine instead.
return divByExact(other.small_);
}
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::divByExact(long other) {
if (large_) {
if (other >= 0)
mpz_divexact_ui(large_, large_, other);
else {
// The cast to (unsigned long) makes this correct even if
// other = LONG_MIN.
mpz_divexact_ui(large_, large_, - other);
mpz_neg(large_, large_);
}
} else if (small_ == LONG_MIN && other == -1) {
// This is the special case where we must switch from native to
// large integers.
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, LONG_MIN);
mpz_neg(large_, large_);
} else {
// We can do this entirely in native arithmetic.
small_ /= other;
}
return *this;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator %=(
const IntegerBase& other) {
if (other.large_) {
if (large_) {
mpz_tdiv_r(large_, large_, other.large_);
return *this;
}
// We fit into a native long. Either:
// (i) |other| > |this|, in which case the result is just this;
// (ii) |other| == |this|, in which case the result is 0;
// (iii) |other| < |this|, in which case we can convert
// everything to native C/C++ integer arithmetic.
// Test other <=> |this|:
int res = (small_ >= 0 ?
mpz_cmp_si(other.large_, small_) :
mpz_cmp_ui(other.large_, - small_) /* ui cast makes this work
even if small_ = LONG_MIN */);
if (res > 0)
return *this;
if (res == 0) {
small_ = 0;
return *this;
}
// Test other <=> -|this|:
res = (small_ >= 0 ?
mpz_cmp_si(other.large_, - small_) :
mpz_cmp_si(other.large_, small_));
if (res < 0)
return *this;
if (res == 0) {
small_ = 0;
return *this;
}
// Everything can be made native integer arithmetic.
// Opportunistically reduce other while we're at it.
const_cast<IntegerBase&>(other).forceReduce();
// Some compilers will crash on LONG_MIN % -1, sigh.
if (other.small_ == -1)
small_ = 0;
else
small_ %= other.small_;
return *this;
} else
return (*this) %= other.small_;
}
template <bool withInfinity>
IntegerBase<withInfinity>& IntegerBase<withInfinity>::operator %=(long other) {
// Since |result| < |other|, whatever happens we can fit the result
// into a native C/C++ long.
if (large_) {
// We can safely cast other to an unsigned long, because the rounding
// rules imply that (this % LONG_MIN) == (this % -LONG_MIN).
mpz_tdiv_r_ui(large_, large_, other >= 0 ? other : -other);
forceReduce();
} else {
// All native arithmetic from here.
// Some compilers will crash on LONG_MIN % -1, sigh.
if (other == -1)
small_ = 0;
else
small_ %= other;
}
return *this;
}
template <bool withInfinity>
void IntegerBase<withInfinity>::raiseToPower(unsigned long exp) {
if (exp == 0)
(*this) = one;
else if (! isInfinite()) {
if (large_) {
// Outsource it all to MPI.
mpz_pow_ui(large_, large_, exp);
} else {
// Implement fast modular exponentiation ourselves.
IntegerBase base(*this);
*this = 1;
while (exp) {
// INV: desired result = (base ^ exp) * this.
if (exp & 1)
(*this) *= base;
exp >>= 1;
base *= base;
}
}
}
}
template <bool withInfinity>
void IntegerBase<withInfinity>::gcdWith(const IntegerBase& other) {
if (large_) {
if (other.large_) {
mpz_gcd(large_, large_, other.large_);
} else {
mpz_t tmp;
mpz_init_set_si(tmp, other.small_);
mpz_gcd(large_, large_, tmp);
mpz_clear(tmp);
}
mpz_abs(large_, large_);
} else if (other.large_) {
makeLarge();
mpz_gcd(large_, large_, other.large_);
mpz_abs(large_, large_);
} else {
// Both integers are native.
long a = small_;
long b = other.small_;
if ((a == LONG_MIN && (b == LONG_MIN || b == 0)) ||
(b == LONG_MIN && a == 0)) {
// gcd(a,b) = LONG_MIN, which means we can't make it
// non-negative without switching to large integers.
large_ = new __mpz_struct[1];
mpz_init_set_si(large_, LONG_MIN);
mpz_neg(large_, large_);
return;
}
if (a == LONG_MIN) {
a >>= 1; // Won't affect the gcd, but allows us to negate.
} else if (b == LONG_MIN) {
b >>= 1; // Won't affect the gcd, but allows us to negate.
}
if (a < 0) a = -a;
if (b < 0) b = -b;
/**
* Now everything is non-negative.
* The following code is based on Stein's binary GCD algorithm.
*/
if (! a) {
small_ = b;
return;
}
if (! b) {
small_ = a;
return;
}
// Compute the largest common power of 2.
int pow2;
for (pow2 = 0; ! ((a | b) & 1); ++pow2) {
a >>= 1;
b >>= 1;
}
// Strip out all remaining powers of 2 from a and b.
while (! (a & 1))
a >>= 1;
while (! (b & 1))
b >>= 1;
while (a != b) {
// INV: a and b are both odd and non-zero.
if (a < b) {
b -= a;
do
b >>= 1;
while (! (b & 1));
} else {
a -= b;
do
a >>= 1;
while (! (a & 1));
}
}
small_ = (a << pow2);
}
}
template <bool withInfinity>
void IntegerBase<withInfinity>::lcmWith(const IntegerBase& other) {
if (isZero())
return;
if (other.isZero()) {
if (large_)
clearLarge();
small_ = 0;
return;
}
IntegerBase gcd(*this);
gcd.gcdWith(other);
divByExact(gcd);
(*this) *= other;
}
template <bool withInfinity>
IntegerBase<withInfinity> IntegerBase<withInfinity>::gcdWithCoeffs(
const IntegerBase& other, IntegerBase& u, IntegerBase& v) const {
// TODO: Implement properly for native types.
const_cast<IntegerBase&>(*this).makeLarge();
const_cast<IntegerBase&>(other).makeLarge();
u.makeLarge();
v.makeLarge();
// TODO: Fix for natives:
// regina::gcdWithCoeffs(small_, other.small_, u.small_, v.small_);
// TODO: Escalate to GMP if anyone is equal to MINLONG.
// Otherwise smalls are fine, but check gmpWithCoeffs() for overflow.
IntegerBase ans;
ans.makeLarge();
// Check for zero arguments.
if (isZero()) {
u = 0L;
if (other.isZero()) {
v = 0L;
// ans is already zero.
return ans;
}
v = 1;
ans = other;
if (ans < 0) {
v.negate();
ans.negate();
}
return ans;
}
if (other.isZero()) {
v = 0L;
u = 1;
ans = *this;
if (ans < 0) {
u.negate();
ans.negate();
}
return ans;
}
// Neither argument is zero.
// Run the gcd algorithm.
mpz_gcdext(ans.large_, u.large_, v.large_, large_, other.large_);
// Ensure the gcd is positive.
if (ans < 0) {
ans.negate();
u.negate();
v.negate();
}
// Get u and v in the correct range.
IntegerBase addToU(other);
IntegerBase addToV(*this);
addToU.divByExact(ans);
addToV.divByExact(ans);
if (addToV < 0)
addToV.negate();
else
addToU.negate();
// We can add (addToU, addToV) to u and v.
// We also know that addToV is positive.
// Add enough copies to make v*sign(other) just non-positive.
IntegerBase copies(v);
if (other > 0) {
// v must be just non-positive.
if (v > 0) {
copies -= 1;
copies /= addToV;
copies.negate();
copies -= 1;
} else {
copies /= addToV;
copies.negate();
}
}
else {
// v must be just non-negative.
if (v < 0) {
copies += 1;
copies /= addToV;
copies.negate();
copies += 1;
} else {
copies /= addToV;
copies.negate();
}
}
addToU *= copies;
addToV *= copies;
u += addToU;
v += addToV;
return ans;
}
template <bool withInfinity>
std::pair<IntegerBase<withInfinity>, IntegerBase<withInfinity>>
IntegerBase<withInfinity>::divisionAlg(const IntegerBase& divisor)
const {
if (divisor.isZero())
return { 0, *this };
// Preconditions state that nothing is infinite, and we've dealt with d=0.
// Throughout the following code:
// - GMP mpz_fdiv_qr() could give a negative remainder, but that this
// will only ever happen if the divisor is also negative.
// - native integer division could leave a negative remainder
// regardless of the sign of the divisor (I think the standard
// indicates that the decision is based on the sign of *this?).
std::pair<IntegerBase, IntegerBase> ans;
if (large_) {
// We will have to use GMP routines.
ans.first.makeLarge();
ans.second.makeLarge();
if (divisor.large_) {
// Just pass everything straight through to GMP.
mpz_fdiv_qr(ans.first.large_, ans.second.large_, large_,
divisor.large_);
if (ans.second < 0) {
ans.second -= divisor;
++ans.first;
}
} else {
// Put the divisor in GMP format for the GMP routines to use.
mpz_t divisorGMP;
mpz_init_set_si(divisorGMP, divisor.small_);
mpz_fdiv_qr(ans.first.large_, ans.second.large_, large_, divisorGMP);
mpz_clear(divisorGMP);
// The remainder must fit into a long, since
// 0 <= remainder < |divisor|.
ans.second.forceReduce();
if (ans.second.small_ < 0) {
ans.second.small_ -= divisor.small_;
++ans.first;
}
}
} else {
// This integer fits into a long.
if (divisor.large_) {
// Cases:
//
// 1) Divisor needs to be large (does not fit into long).
// Subcases:
// 1a) |divisor| > |this|.
// --> quotient = -1/0/+1, remainder is large.
// 1b) divisor = |LONG_MIN| and this = LONG_MIN.
// --> quotient = -1, remainder = 0.
//
// 2) Otherwise, divisor actually fits into a long.
// Fall through to the next code block.
//
// NOTE: Be careful not to take -small_ when small_ is negative!
if (small_ >= 0 && (divisor > small_ || divisor < -small_)) {
// quotient is already initialised to 0
ans.second.small_ = small_;
} else if (small_ < 0 && divisor < small_) {
ans.first.small_ = 1;
ans.second.small_ = small_;
ans.second -= divisor;
} else if (small_ < 0 && -divisor < small_) {
ans.first.small_ = -1;
ans.second.small_ = small_;
ans.second += divisor;
} else if (small_ == LONG_MIN && -divisor == small_) {
ans.first.small_ = -1;
// remainder is already initialised to 0
} else {
// Since we know we can reduce divisor to a native integer,
// be kind: cast away the const and reduce it.
const_cast<IntegerBase&>(divisor).forceReduce();
// Fall through to the next block.
}
}
if (! divisor.large_) {
// Here we know divisor fits into a long.
// Thus remainder also fits into a long, since
// 0 <= |remainder| < |divisor|.
//
// Cases:
// 1) quotient = |LONG_MIN|.
// Only happens if this = LONG_MIN, divisor = -1.
// 2) |quotient| < |LONG_MIN| --> quotient fits into a long also.
if (small_ == LONG_MIN && divisor.small_ == -1) {
ans.first = LONG_MIN;
ans.first.negate();
// remainder is already initialised to 0
} else {
ans.first.small_ = small_ / divisor.small_;
ans.second.small_ =
small_ - (ans.first.small_ * divisor.small_);
if (ans.second.small_ < 0) {
if (divisor.small_ > 0) {
ans.second.small_ += divisor.small_;
--ans.first;
} else {
ans.second.small_ -= divisor.small_;
++ans.first;
}
}
}
}
}
return ans;
}
template <bool withInfinity>
int IntegerBase<withInfinity>::legendre(const IntegerBase& p) const {
// For now, just do this entirely through GMP.
mpz_ptr gmp_this = large_;
mpz_ptr gmp_p = p.large_;
if (! large_) {
gmp_this = new __mpz_struct[1];
mpz_init_set_si(gmp_this, small_);
}
if (! p.large_) {
gmp_p = new __mpz_struct[1];
mpz_init_set_si(gmp_p, p.small_);
}
int ans = mpz_legendre(gmp_this, gmp_p);
if (! large_) {
mpz_clear(gmp_this);
delete[] gmp_this;
}
if (! p.large_) {
mpz_clear(gmp_p);
delete[] gmp_p;
}
return ans;
}
template <bool withInfinity>
IntegerBase<withInfinity> IntegerBase<withInfinity>::randomBoundedByThis()
const {
std::lock_guard<std::mutex> ml(randMutex);
if (! randInitialised) {
gmp_randinit_default(randState);
randInitialised = true;
}
IntegerBase retval;
retval.makeLarge();
if (large_)
mpz_urandomm(retval.large_, randState, large_);
else {
// Go through GMP anyway, for the rand() routine, so that all
// our random number generators use a consistent algorithm.
mpz_t tmp;
mpz_init_set_si(tmp, small_);
mpz_urandomm(retval.large_, randState, tmp);
mpz_clear(tmp);
// Since this fits within a long, the result will also.
retval.forceReduce();
}
return retval;
}
template <bool withInfinity>
IntegerBase<withInfinity> IntegerBase<withInfinity>::randomBinary(
unsigned long n) {
std::lock_guard<std::mutex> ml(randMutex);
if (! randInitialised) {
gmp_randinit_default(randState);
randInitialised = true;
}
IntegerBase retval;
retval.makeLarge();
mpz_urandomb(retval.large_, randState, n);
// If n bits will fit within a signed long, reduce.
if (n < sizeof(long) * 8)
retval.forceReduce();
return retval;
}
template <bool withInfinity>
IntegerBase<withInfinity> IntegerBase<withInfinity>::randomCornerBinary(
unsigned long n) {
std::lock_guard<std::mutex> ml(randMutex);
if (! randInitialised) {
gmp_randinit_default(randState);
randInitialised = true;
}
IntegerBase retval;
retval.makeLarge();
mpz_rrandomb(retval.large_, randState, n);
// If n bits will fit within a signed long, reduce.
if (n < sizeof(long) * 8)
retval.forceReduce();
return retval;
}
// Instantiate templates for all possible template arguments.
template class IntegerBase<true>;
template class IntegerBase<false>;
template std::ostream& operator << (std::ostream&, const IntegerBase<true>&);
template std::ostream& operator << (std::ostream&, const IntegerBase<false>&);
} // namespace regina
|