File: matrix.h

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (1616 lines) | stat: -rw-r--r-- 66,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

/*! \file maths/matrix.h
 *  \brief Deals with matrices of elements of various types.
 */

#ifndef __REGINA_MATRIX_H
#ifndef __DOXYGEN
#define __REGINA_MATRIX_H
#endif

#include <initializer_list>
#include <iostream>
#include <memory>
#include <type_traits> // for std::enable_if_t
#include "regina-core.h"
#include "core/output.h"
#include "maths/integer.h"
#include "maths/ring.h"

namespace regina {

class Rational;
template <class> class Vector;

/**
 * Represents a matrix of elements of the given type \a T.
 *
 * As of Regina 7.4, the extra boolean \a ring template parameter is gone;
 * instead the relevant functions are only enabled in scenarios where \a T is
 * a ring type (in particular, when the specialisation `RingTraits<T>` is
 * available).  Nowadays you should always just use the type `Matrix<T>`.
 *
 * The header maths/matrixops.h contains several additional algorithms that
 * work with the specific class Matrix<Integer>.
 *
 * This class implements C++ move semantics and adheres to the C++ Swappable
 * requirement.  It is designed to avoid deep copies wherever possible,
 * even when passing or returning objects by value.
 *
 * \python The C++ types Matrix<Integer>, Matrix<bool> and Matrix<double>
 * are available using the Python names MatrixInt, MatrixBool and MatrixReal
 * respectively.
 *
 * \tparam T the type of each individual matrix element.  This type should
 * have a default constructor and an assignment operator, and should be
 * writeable to an output stream using the standard stream operator `<<`.
 *
 * \ingroup maths
 */
template <class T>
class Matrix : public Output<Matrix<T>> {
    public:
        /**
         * The type of element that is stored in this matrix.
         */
        using value_type = T;

    private:
        size_t rows_;
            /**< The number of rows in the matrix. */
        size_t cols_;
            /**< The number of columns in the matrix. */
        T** data_;
            /**< The actual entries in the matrix.
             *   `data_[r][c]` is the element in row \a r, column \a c. */

    public:
        /**
         * Creates a new uninitialised matrix.
         *
         * You _must_ initialise this matrix using the assignment operator
         * before you can use it for any purpose.  The only exceptions are:
         *
         * - you can safely destroy an uninitialised matrix;
         *
         * - you can safely assign an uninitialised matrix to another matrix
         *   (either via an assignment operator or copy constructor), in which
         *   case the other matrix will become uninitialised also and subject
         *   to similar constraints;
         *
         * - you can safely call initialised() to test whether a matrix is
         *   initialised or not.
         *
         * \nopython This is because the C++ assignment operators are
         * not accessible to Python.
         */
        Matrix() : rows_(0), cols_(0), data_(nullptr) {
        }
        /**
         * Creates a new square matrix of the given size.  Both the number of
         * rows and the number of columns will be set to \a size.
         *
         * All entries will be initialised using their default constructors.
         * In particular, this means that for Regina's own integer classes
         * (Integer, LargeInteger and NativeInteger), all entries will be
         * initialised to zero.
         *
         * \warning If \a T is a native C++ integer type (such as \c int
         * or \c long), then the matrix elements will not be initialised
         * to any particular value.
         *
         * \pre The given size is strictly positive.
         *
         * \param size the number of rows and columns in the new matrix.
         */
        Matrix(size_t size) :
                rows_(size), cols_(size), data_(new T*[size]) {
            for (size_t i = 0; i < size; ++i)
                data_[i] = new T[size];
        }
        /**
         * Creates a new matrix of the given size.
         *
         * All entries will be initialised using their default constructors.
         * In particular, this means that for Regina's own integer classes
         * (Integer, LargeInteger and NativeInteger), all entries will be
         * initialised to zero.
         *
         * \warning If \a T is a native C++ integer type (such as \c int
         * or \c long), then the matrix elements will not be initialised
         * to any particular value.
         *
         * \pre The given number of rows and columns are both strictly positive.
         *
         * \param rows the number of rows in the new matrix.
         * \param cols the number of columns in the new matrix.
         */
        Matrix(size_t rows, size_t cols) :
                rows_(rows), cols_(cols), data_(new T*[rows]) {
            for (size_t i = 0; i < rows; ++i)
                data_[i] = new T[cols];
        }
        /**
         * Creates a new matrix containing the given hard-coded entries.
         * This constructor can be used (for example) to create
         * hard-coded examples directly in C++ code.
         *
         * Each element of the initialiser list \a data describes a single row
         * of the matrix.
         *
         * \pre The list \a data is non-empty (i.e., the number of rows
         * is positive), and each of its elements is non-empty (i.e., the
         * number of columns is positive).
         *
         * \pre All elements of \a data (representing the rows of the matrix)
         * are lists of the same size.
         *
         * \python The argument \a data should be a Python list of
         * Python lists.
         *
         * \param data the rows of the matrix, each given as a list of elements.
         */
        Matrix(std::initializer_list<std::initializer_list<T>> data) :
                rows_(data.size()), cols_(data.begin()->size()),
                data_(new T*[data.size()]) {
            size_t r = 0;
            for (auto row : data) {
                data_[r] = new T[cols_];
                size_t c = 0;
                for (auto elt : row)
                    data_[r][c++] = elt;
                ++r;
            }
        }
        /**
         * Creates a new matrix that is a clone of the given matrix.
         *
         * This constructor induces a deep copy of \a src.
         *
         * This routine is safe to call even if \a src is uninitialised
         * (in which case this matrix will become uninitialised also).
         *
         * \param src the matrix to clone.
         */
        Matrix(const Matrix& src) : rows_(src.rows_), cols_(src.cols_) {
            if (src.data_) {
                data_ = new T*[src.rows_];
                size_t r, c;
                for (r = 0; r < rows_; r++) {
                    data_[r] = new T[cols_];
                    for (c = 0; c < cols_; c++)
                        data_[r][c] = src.data_[r][c];
                }
            } else {
                data_ = nullptr;
            }
        }
        /**
         * Creates a new clone of the given matrix, which may hold objects of
         * a different type.
         *
         * This constructor induces a deep copy of \a src.
         *
         * This routine is safe to call even if \a src is uninitialised
         * (in which case this matrix will become uninitialised also).
         *
         * This constructor is marked as explicit in the hope of avoiding
         * accidental (and unintentional) mixing of matrix classes.
         *
         * \nopython
         *
         * \tparam U the type of object held by the given matrix \a src.
         * It must be possible to _assign_ an object of type \a U to an
         * object of type \a T.
         *
         * \param src the matrix to clone.
         */
        template <typename U>
        explicit Matrix(const Matrix<U>& src) :
                rows_(src.rows()), cols_(src.columns()) {
            if (src.initialised()) {
                data_ = new T*[src.rows()];
                size_t r, c;
                for (r = 0; r < rows_; r++) {
                    data_[r] = new T[cols_];
                    for (c = 0; c < cols_; c++)
                        data_[r][c] = src.entry(r, c);
                }
            } else {
                data_ = nullptr;
            }
        }
        /**
         * Moves the given matrix into this new matrix.
         * This is a fast (constant time) operation.
         *
         * The matrix that is passed (\a src) will no longer be usable.
         *
         * This routine is safe to call even if \a src is uninitialised
         * (in which case this matrix will become uninitialised also).
         *
         * \param src the matrix to move.
         */
        Matrix(Matrix&& src) noexcept :
                rows_(src.rows_), cols_(src.cols_), data_(src.data_) {
            src.data_ = nullptr;
        }
        /**
         * Destroys this matrix.
         *
         * This destructor is safe to call even if \a src is uninitialised.
         */
        ~Matrix() {
            if (data_) {
                for (size_t i = 0; i < rows_; ++i)
                    delete[] data_[i];
                delete[] data_;
            }
        }

        /**
         * Copies the given matrix into this matrix.
         *
         * It does not matter if this and the given matrix have different
         * sizes; if they do then this matrix will be resized as a result.
         *
         * This operator induces a deep copy of \a src.
         *
         * This routine is safe to call even if \a src is uninitialised
         * (in which case this matrix will become uninitialised also).
         *
         * \param src the matrix to copy.
         * \return a reference to this matrix.
         */
        Matrix& operator = (const Matrix& src) {
            // std::copy() exhibits undefined behaviour with self-assignment.
            if (std::addressof(src) == this)
                return *this;

            if (src.data_) {
                if (rows_ != src.rows_ || cols_ != src.cols_ || ! data_) {
                    if (data_) {
                        for (size_t i = 0; i < rows_; ++i)
                            delete[] data_[i];
                        delete[] data_;
                    }

                    rows_ = src.rows_;
                    cols_ = src.cols_;

                    data_ = new T*[rows_];
                    for (size_t i = 0; i < rows_; ++i)
                        data_[i] = new T[cols_];
                }

                for (size_t i = 0; i < rows_; ++i)
                    std::copy(src.data_[i], src.data_[i] + cols_, data_[i]);
            } else {
                if (data_) {
                    for (size_t i = 0; i < rows_; ++i)
                        delete[] data_[i];
                    delete[] data_;
                }
                rows_ = cols_ = 0;
                data_ = nullptr;
            }
            return *this;
        }
        /**
         * Moves the given matrix into this matrix.
         * This is a fast (constant time) operation.
         *
         * It does not matter if this and the given matrix have different
         * sizes; if they do then this matrix will be resized as a result.
         *
         * The matrix that is passed (\a src) will no longer be usable.
         *
         * This routine is safe to call even if \a src is uninitialised
         * (in which case this matrix will become uninitialised also).
         *
         * \param src the matrix to move.
         * \return a reference to this matrix.
         */
        Matrix& operator = (Matrix&& src) noexcept {
            // We need to swap rows_, because src needs this information in
            // order to dispose of our original data properly.
            std::swap(rows_, src.rows_);
            cols_ = src.cols_;
            std::swap(data_, src.data_);
            // Let src dispose of the original contents in its own destructor.
            return *this;
        }

        /**
         * Sets every entry in the matrix to the given value.
         *
         * \param value the value to assign to each entry.
         */
        void fill(const T& value) {
            size_t r, c;
            for (r = 0; r < rows_; r++)
                for (c = 0; c < cols_; c++)
                    data_[r][c] = value;
        }
        /**
         * Deprecated function that sets every entry in the matrix to the
         * given value.
         *
         * \deprecated This routine has been renamed to fill(), to make it
         * clear that it has nothing to do with initialised versus
         * uninitialised matrices.
         *
         * \param value the value to assign to each entry.
         */
        [[deprecated]] void initialise(const T& value) {
            fill(value);
        }

        /**
         * Swaps the contents of this and the given matrix.
         *
         * \param other the matrix whose contents are to be swapped with this.
         */
        inline void swap(Matrix& other) noexcept {
            std::swap(rows_, other.rows_);
            std::swap(cols_, other.cols_);
            std::swap(data_, other.data_);
        }

        /**
         * Returns the number of rows in this matrix.
         *
         * \return the number of rows.
         */
        size_t rows() const {
            return rows_;
        }
        /**
         * Returns the number of columns in this matrix.
         *
         * \return the number of columns.
         */
        size_t columns() const {
            return cols_;
        }
        /**
         * Determines whether this matrix is initialised or uninitialised.
         *
         * The only ways for a matrix to be _uninitialised_ are:
         *
         * - it was created using the default constructor, and has not yet been
         *   initialised using the assignment operator;
         *
         * - it was the result of assignment or copy construction from some
         *   other uninitialised matrix.
         *
         * \return \c true if this matrix is initialised, or \c false if it is
         * uninitialised.
         */
        bool initialised() const {
            return data_;
        }

        /**
         * Returns a read-write reference to the entry at the given
         * row and column.  Rows and columns are numbered beginning at zero.
         *
         * \python In general, to assign values to matrix elements you
         * should use the Python-only set() routine.  This entry() routine does
         * give read-write access to matrix elements in Python, but it does
         * not allow them to be set using the assignment operator.
         * In other words, code such as `matrix.entry(r, c).negate()`
         * will work, but `matrix.entry(r, c) = value` will not; instead
         * you will need to call `matrix.set(r, c, value)`.
         *
         * \param row the row of the desired entry; this must be between
         * 0 and rows()-1 inclusive.
         * \param column the column of the desired entry; this must be
         * between 0 and columns()-1 inclusive.
         * \return a reference to the entry in the given row and column.
         */
        T& entry(size_t row, size_t column) {
            return data_[row][column];
        }
        /**
         * Returns a read-only reference to the entry at the given
         * row and column.  Rows and columns are numbered beginning at zero.
         *
         * \param row the row of the desired entry; this must be between
         * 0 and rows()-1 inclusive.
         * \param column the column of the desired entry; this must be
         * between 0 and columns()-1 inclusive.
         * \return a reference to the entry in the given row and column.
         */
        const T& entry(size_t row, size_t column) const {
            return data_[row][column];
        }
#ifdef __APIDOCS
        /**
         * Python-only routine that sets the entry at the given row and column.
         * Rows and columns are numbered beginning at zero.
         *
         * \nocpp For C++ users, entry() is used for both reading and
         * writing: just write `entry(row, column) = value`.
         *
         * \python In general, to assign values to matrix elements you
         * should use the syntax `matrix.set(row, column, value)`.  The entry()
         * routine does give read-write access to matrix elements in Python,
         * but it does not allow them to be set using the assignment operator.
         * In other words, code such as `matrix.entry(r, c).negate()`
         * will work, but `matrix.entry(r, c) = value` will not.
         *
         * \param row the row of the entry to set; this must be between
         * 0 and rows()-1 inclusive.
         * \param column the column of the entry to set; this must be
         * between 0 and columns()-1 inclusive.
         * \param value the new entry to place in the given row and column.
         */
        void set(size_t row, size_t column, const T& value);
#endif

        /**
         * Returns the transpose of this matrix.  This matrix is not changed.
         *
         * \return the transpose.
         */
        Matrix transpose() const {
            Matrix ans(cols_, rows_);

            size_t r, c;
            for (r = 0; r < rows_; r++)
                for (c = 0; c < cols_; c++)
                    ans.data_[c][r] = data_[r][c];

            return ans;
        }

        /**
         * Determines whether this and the given matrix are identical.
         *
         * Two matrices are identical if and only if (i) their dimensions
         * are the same, and (ii) the corresponding elements of each
         * matrix are equal.
         *
         * Note that this routine can happily deal with two matrices of
         * different dimensions (in which case it will always return
         * \c false).
         *
         * This routine returns \c true if and only if the inequality operator
         * (!=) returns \c false.
         *
         * \pre The type \a T provides an equality operator (==).
         *
         * \param other the matrix to compare with this.
         * \return \c true if the matrices are equal as described above,
         * or \c false otherwise.
         */
        bool operator == (const Matrix& other) const {
            if (rows_ != other.rows_ || cols_ != other.cols_)
                return false;

            size_t r, c;
            for (r = 0; r < rows_; ++r)
                for (c = 0; c < cols_; ++c)
                    if (! (data_[r][c] == other.data_[r][c]))
                        return false;

            return true;
        }

        /**
         * Swaps the elements of the two given rows in the matrix.
         *
         * This operation is constant time (unlike swapping columns,
         * which is linear time).
         *
         * Unlike swapCols(), this operation does not take a \a fromCol
         * argument.  This is because swapping rows is already as fast possible
         * (internally, just a single pointer swap), and so iterating along
         * only part of the row would slow the routine down considerably.
         *
         * \pre The two given rows are between 0 and rows()-1 inclusive.
         *
         * \param first the first row to swap.
         * \param second the second row to swap.
         */
        void swapRows(size_t first, size_t second) {
            if (first != second)
                std::swap(data_[first], data_[second]);
        }
        /**
         * Swaps the elements of the two given columns in the matrix.
         *
         * This operation is linear time (unlike swapping rows,
         * which is constant time).
         *
         * If the optional argument \a fromRow is passed, then the
         * operation will only be performed for the elements from that
         * row down to the bottom of each column (inclusive).
         *
         * \pre The two given columns are between 0 and columns()-1 inclusive.
         * \pre If passed, \a fromRow is between 0 and rows() -1 inclusive.
         *
         * \param first the first column to swap.
         * \param second the second column to swap.
         * \param fromRow the starting point in each column from which the
         * operation will be performed.
         */
        void swapCols(size_t first, size_t second, size_t fromRow = 0) {
            if (first != second) {
                // Give ourselves a chance to use a customised swap(),
                // if one exists for type T.
                using std::swap;
                for (size_t i = fromRow; i < rows_; i++)
                    swap(data_[i][first], data_[i][second]);
            }
        }

        /**
         * Writes a short text representation of this object to the
         * given output stream.
         *
         * \nopython Use str() instead.
         *
         * \param out the output stream to which to write.
         */
        void writeTextShort(std::ostream& out) const {
            size_t r, c;
            out << '[';
            for (r = 0; r < rows_; ++r) {
                if (r > 0)
                    out << ' ';
                out << '[';
                for (c = 0; c < cols_; ++c)
                    out << ' ' << data_[r][c];
                out << " ]";
            }
            out << ']';
        }
        /**
         * Writes a detailed text representation of this object to the
         * given output stream.
         *
         * \nopython Use detail() instead.
         *
         * \param out the output stream to which to write.
         */
        void writeTextLong(std::ostream& out) const {
            size_t r, c;
            for (r = 0; r < rows_; r++) {
                for (c = 0; c < cols_; c++) {
                    if (c > 0) out << ' ';
                    out << data_[r][c];
                }
                out << '\n';
            }
        }

        /**
         * Returns an identity matrix of the given size.
         * The matrix returned will have \a size rows and \a size columns.
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         *
         * \param size the number of rows and columns of the matrix to build.
         * \return an identity matrix of the given size.
         */
        static Matrix identity(size_t size) {
            Matrix ans(size, size);
            ans.fill(RingTraits<T>::zero);
            for (size_t i = 0; i < size; ++i)
                ans.data_[i][i] = RingTraits<T>::one;
            return ans;
        }

        /**
         * Turns this matrix into an identity matrix.
         * This matrix need not be square; after this routine it will have
         * `entry(r,c)` equal to 1 if `r == c` and 0 otherwise.
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         */
        void makeIdentity() {
            this->fill(RingTraits<T>::zero);
            for (size_t i = 0; i < this->rows_ && i < this->cols_; i++)
                this->data_[i][i] = RingTraits<T>::one;
        }

        /**
         * Determines whether this matrix is a square identity matrix.
         *
         * If this matrix is square, isIdentity() will return \c true if
         * and only if the matrix has ones in the main diagonal and zeroes
         * everywhere else.
         *
         * If this matrix is not square, isIdentity() will always return
         * \c false (even if makeIdentity() was called earlier).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         *
         * \return \c true if and only if this is a square identity matrix.
         */
        bool isIdentity() const {
            if (this->rows_ != this->cols_)
                return false;

            size_t r, c;
            for (r = 0; r < this->rows_; ++r)
                for (c = 0; c < this->cols_; ++c) {
                    if (r == c && this->data_[r][c] != RingTraits<T>::one)
                        return false;
                    if (r != c && this->data_[r][c] != RingTraits<T>::zero)
                        return false;
                }

            return true;
        }

        /**
         * Determines whether this is the zero matrix.
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         *
         * \return \c true if and only if all entries in the matrix are zero.
         */
        bool isZero() const {
            for (size_t r=0; r<this->rows_; ++r)
                for (size_t c=0; c<this->cols_; ++c)
                    if (this->data_[r][c] != RingTraits<T>::zero)
                        return false;
            return true;
        }

        /**
         * Adds the given source row to the given destination row.
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given rows are distinct and between 0 and
         * rows()-1 inclusive.
         *
         * \warning If you only wish to add a portion of a row, be careful:
         * you cannot just pass the usual \a fromCol argument, since this will
         * be interpreted as a coefficient to be used with the other version
         * of addRow() that adds _several_ copies of the source row.
         * Instead you will need to call addRowFrom().
         *
         * \param source the row to add.
         * \param dest the row that will be added to.
         */
        void addRow(size_t source, size_t dest) {
            for (size_t i = 0; i < this->cols_; i++)
                this->data_[dest][i] += this->data_[source][i];
        }
        /**
         * Adds a portion of the given source row to the given destination row.
         *
         * This is similar to addRow(), except that the operation will
         * only be performed for the elements from the column \a fromCol
         * to the rightmost end of the row (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given rows are distinct and between 0 and
         * rows()-1 inclusive.
         * \pre If passed, \a fromCol is between 0 and columns() -1 inclusive.
         *
         * \param source the row to add.
         * \param dest the row that will be added to.
         * \param fromCol the starting point in the row from which the
         * operation will be performed.
         */
        void addRowFrom(size_t source, size_t dest, size_t fromCol) {
            for (size_t i = fromCol; i < this->cols_; i++)
                this->data_[dest][i] += this->data_[source][i];
        }
        /**
         * Adds the given number of copies of the given source row to
         * the given destination row.
         *
         * Note that \a copies is passed by value in case it is an
         * element of the row to be changed.
         *
         * If the optional argument \a fromCol is passed, then the
         * operation will only be performed for the elements from that
         * column to the rightmost end of the row (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given rows are distinct and between 0 and
         * rows()-1 inclusive.
         * \pre If passed, \a fromCol is between 0 and columns() -1 inclusive.
         *
         * \param source the row to add.
         * \param dest the row that will be added to.
         * \param copies the number of copies of \a source to add to \a dest.
         * \param fromCol the starting point in the row from which the
         * operation will be performed.
         */
        void addRow(size_t source, size_t dest, T copies, size_t fromCol = 0) {
            for (size_t i = fromCol; i < this->cols_; i++)
                this->data_[dest][i] += copies * this->data_[source][i];
        }
        /**
         * Adds the given source column to the given destination column.
         *
         * \warning If you only wish to add a portion of a column, be careful:
         * you cannot just pass the usual \a fromRow argument, since this will
         * be interpreted as a coefficient to be used with the other version
         * of addCol() that adds _several_ copies of the source column.
         * Instead you will need to call addColFrom().
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given columns are distinct and between 0 and
         * columns()-1 inclusive.
         *
         * \param source the columns to add.
         * \param dest the column that will be added to.
         */
        void addCol(size_t source, size_t dest) {
            for (size_t i = 0; i < this->rows_; i++)
                this->data_[i][dest] += this->data_[i][source];
        }
        /**
         * Adds a portion of the given source column to the given destination
         * column.
         *
         * This is similar to addCol(), except that the operation will
         * only be performed for the elements from the row \a fromRow
         * down to the bottom of the column (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given columns are distinct and between 0 and
         * columns()-1 inclusive.
         * \pre If passed, \a fromRow is between 0 and rows() -1 inclusive.
         *
         * \param source the columns to add.
         * \param dest the column that will be added to.
         * \param fromRow the starting point in the column from which the
         * operation will be performed.
         */
        void addColFrom(size_t source, size_t dest, size_t fromRow = 0) {
            for (size_t i = fromRow; i < this->rows_; i++)
                this->data_[i][dest] += this->data_[i][source];
        }
        /**
         * Adds the given number of copies of the given source column to
         * the given destination column.
         *
         * Note that \a copies is passed by value in case it is an
         * element of the row to be changed.
         *
         * If the optional argument \a fromRow is passed, then the
         * operation will only be performed for the elements from that
         * row down to the bottom of the column (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given columns are distinct and between 0 and
         * columns()-1 inclusive.
         * \pre If passed, \a fromRow is between 0 and rows() -1 inclusive.
         *
         * \param source the columns to add.
         * \param dest the column that will be added to.
         * \param copies the number of copies of \a source to add to \a dest.
         * \param fromRow the starting point in the column from which the
         * operation will be performed.
         */
        void addCol(size_t source, size_t dest, T copies, size_t fromRow = 0) {
            for (size_t i = fromRow; i < this->rows_; i++)
                this->data_[i][dest] += copies * this->data_[i][source];
        }
        /**
         * Multiplies the given row by the given factor.
         *
         * Note that \a factor is passed by value in case it is an
         * element of the row to be changed.
         *
         * If the optional argument \a fromCol is passed, then the
         * operation will only be performed for the elements from that
         * column to the rightmost end of the row (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The given row is between 0 and rows()-1 inclusive.
         * \pre If passed, \a fromCol is between 0 and columns() -1 inclusive.
         *
         * \param row the row to work with.
         * \param factor the factor by which to multiply the given row.
         * \param fromCol the starting point in the row from which the
         * operation will be performed.
         */
        void multRow(size_t row, T factor, size_t fromCol = 0) {
            for (size_t i = fromCol; i < this->cols_; i++)
                this->data_[row][i] *= factor;
        }
        /**
         * Multiplies the given column by the given factor.
         *
         * Note that \a factor is passed by value in case it is an
         * element of the row to be changed.
         *
         * If the optional argument \a fromRow is passed, then the
         * operation will only be performed for the elements from that
         * row down to the bottom of the column (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The given column is between 0 and columns()-1 inclusive.
         * \pre If passed, \a fromRow is between 0 and rows() -1 inclusive.
         *
         * \param column the column to work with.
         * \param factor the factor by which to multiply the given column.
         * \param fromRow the starting point in the column from which the
         * operation will be performed.
         */
        void multCol(size_t column, T factor, size_t fromRow = 0) {
            for (size_t i = fromRow; i < this->rows_; i++)
                this->data_[i][column] *= factor;
        }
        /**
         * Rewrites two rows as linear combinations of those two rows.
         *
         * Specifically, if \a R1 and \a R2 are the original values of
         * rows \a row1 and \a row2 respectively, then:
         *
         * - Row \a row1 will become `coeff11 * R1 + coeff12 * R2`;
         * - Row \a row2 will become `coeff21 * R1 + coeff22 * R2`.
         *
         * The four coefficients are passed by value, in case they are
         * elements of the rows to be changed.
         *
         * If the optional argument \a fromCol is passed, then the
         * operation will only be performed for the elements from that
         * column to the rightmost end of each row (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given rows are distinct and between 0 and
         * rows()-1 inclusive.
         * \pre If passed, \a fromCol is between 0 and columns() -1 inclusive.
         *
         * \param row1 the first row to operate on.
         * \param row2 the second row to operate on.
         * \param coeff11 the coefficient of row \a row1 to use when
         * rewriting row \a row1.
         * \param coeff12 the coefficient of row \a row2 to use when
         * rewriting row \a row1.
         * \param coeff21 the coefficient of row \a row1 to use when
         * rewriting row \a row2.
         * \param coeff22 the coefficient of row \a row2 to use when
         * rewriting row \a row2.
         * \param fromCol the starting point in the rows from which the
         * operation will be performed.
         */
        void combRows(size_t row1, size_t row2, T coeff11, T coeff12,
                T coeff21, T coeff22, size_t fromCol = 0) {
            for (size_t i = fromCol; i < this->cols_; ++i) {
                T tmp = coeff11 * this->data_[row1][i] +
                    coeff12 * this->data_[row2][i];
                this->data_[row2][i] = coeff21 * this->data_[row1][i] +
                    coeff22 * this->data_[row2][i];
                this->data_[row1][i] = std::move(tmp);
            }
        }
        /**
         * Rewrites two columns as linear combinations of those two columns.
         *
         * Specifically, if \a C1 and \a C2 are the original values of
         * columns \a col1 and \a col2 respectively, then:
         *
         * - Column \a col1 will become `coeff11 * C1 + coeff12 * C2`;
         * - Column \a col2 will become `coeff21 * C1 + coeff22 * C2`.
         *
         * The four coefficients are passed by value, in case they are
         * elements of the columns to be changed.
         *
         * If the optional argument \a fromRow is passed, then the
         * operation will only be performed for the elements from that
         * column down to the bottom of each column (inclusive).
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre The two given columns are distinct and between 0 and
         * columns()-1 inclusive.
         * \pre If passed, \a fromCol is between 0 and columns() -1 inclusive.
         *
         * \param col1 the first column to operate on.
         * \param col2 the second column to operate on.
         * \param coeff11 the coefficient of column \a col1 to use when
         * rewriting column \a col1.
         * \param coeff12 the coefficient of column \a col2 to use when
         * rewriting column \a col1.
         * \param coeff21 the coefficient of column \a col1 to use when
         * rewriting column \a col2.
         * \param coeff22 the coefficient of column \a col2 to use when
         * rewriting column \a col2.
         * \param fromRow the starting point in the columns from which the
         * operation will be performed.
         */
        void combCols(size_t col1, size_t col2, T coeff11, T coeff12,
                T coeff21, T coeff22, size_t fromRow = 0) {
            for (size_t i = fromRow; i < this->rows_; ++i) {
                T tmp = coeff11 * this->data_[i][col1] +
                    coeff12 * this->data_[i][col2];
                this->data_[i][col2] = coeff21 * this->data_[i][col1] +
                    coeff22 * this->data_[i][col2];
                this->data_[i][col1] = std::move(tmp);
            }
        }

        /**
         * Multiplies this by the given matrix, and returns the result.
         * This matrix is not changed.
         *
         * The two matrices being multiplied may use different underlying types
         * (e.g., you can multiply a matrix of LargeInteger objects with a
         * matrix of native C++ long integers).  The type of object that is
         * stored in the resulting matrix will be deduced accordingly
         * (specifically, it will be the type obtained by multiplying objects
         * of types \a T and \a U using the binary multiplication operator).
         *
         * \pre The element type \a E for the matrix that is returned is a ring
         * type; in particular, the specialisation `RingTraits<E>` is available.
         * (In many cases, \a E will just be the matrix element type \a T.)
         * \pre The number of columns in this matrix equals the number
         * of rows in the given matrix.
         *
         * \param other the other matrix to multiply this matrix by.
         * \return the product matrix `this * other`.
         */
        template <typename U>
        Matrix<decltype(T() * U())> operator * (const Matrix<U>& other) const {
            using Ans = decltype(T() * U());
            Matrix<Ans> ans(this->rows_, other.cols_);

            size_t row, col, k;
            for (row = 0; row < rows_; ++row)
                for (col = 0; col < other.cols_; ++col) {
                    ans.data_[row][col] = RingTraits<Ans>::zero;
                    for (k = 0; k < cols_; ++k)
                        ans.data_[row][col] +=
                            (data_[row][k] * other.data_[k][col]);
                }

            return ans;
        }

        /**
         * Multiplies this matrix by the given vector, and returns the result.
         * The given vector is treated as a column vector.
         *
         * The matrix and vector may use different underlying types
         * (e.g., you can multiply a matrix of LargeInteger objects with a
         * vector of native C++ long integers).  The type of object that is
         * stored in the resulting vector will be deduced accordingly
         * (specifically, it will be the type obtained by multiplying objects
         * of types \a T and \a U using the binary multiplication operator).
         *
         * \pre The element type \a E for the vector that is returned is a ring
         * type; in particular, the specialisation `RingTraits<E>` is available.
         * (In many cases, \a E will just be the matrix element type \a T.)
         * \pre The length of the given vector is precisely the number of
         * columns in this matrix.
         *
         * \param other the vector to multiply this matrix by.
         * \return the product `this * other`, which will be a
         * vector whose length is the number of rows in this matrix.
         */
        template <typename U>
        Vector<decltype(T() * U())> operator * (const Vector<U>& other) const {
            using Ans = decltype(T() * U());
            Vector<Ans> ans(this->rows_);

            size_t row, col;
            for (row = 0; row < rows_; ++row) {
                Ans elt = RingTraits<Ans>::zero;
                for (col = 0; col < cols_; ++col)
                    elt += (data_[row][col] * other[col]);
                ans[row] = elt;
            }

            return ans;
        }

        /**
         * Evaluates the determinant of the matrix.
         *
         * This algorithm has quartic complexity, and uses the dynamic
         * programming approach of Mahajan and Vinay.  For further
         * details, see Meena Mahajan and V. Vinay, "Determinant:
         * Combinatorics, algorithms, and complexity", Chicago J. Theor.
         * Comput. Sci., Vol. 1997, Article 5.
         *
         * Although the Matrix class does not formally support empty matrices,
         * if this _is_ found to be a 0-by-0 matrix then the determinant
         * returned will be 1.
         *
         * \pre \a T is a ring type; in particular, the specialisation
         * `RingTraits<T>` is available.
         * \pre This is a square matrix.
         *
         * \exception FailedPrecondition This matrix is not square.
         *
         * \return the determinant of this matrix.
         */
        T det() const {
            size_t n = this->rows_;
            if (n != this->cols_)
                throw FailedPrecondition("Determinants can only be "
                    "computed for square matrices.");
            if (n == 0)
                return RingTraits<T>::one;

            T* partial[2];
            partial[0] = new T[n * n];
            partial[1] = new T[n * n];

            size_t len, head, curr, prevHead, prevCurr;

            // Treat the smallest cases of len = 1 separately.
            int layer = 0; // always 0 or 1
            for (head = 0; head < n; head++) {
                partial[0][head + head * n] = RingTraits<T>::one;
                for (curr = head + 1; curr < n; curr++)
                    partial[0][head + curr * n] = RingTraits<T>::zero;
            }

            // Work up through incrementing values of len.
            for (len = 2; len <= n; len++) {
                layer ^= 1;
                for (head = 0; head < n; head++) {
                    // If curr == head, we need to open a new clow.
                    partial[layer][head + head * n] = RingTraits<T>::zero;
                    for (prevHead = 0; prevHead < head; prevHead++)
                        for (prevCurr = prevHead; prevCurr < n; prevCurr++)
                            partial[layer][head + head * n] -=
                                (partial[layer ^ 1][prevHead + prevCurr * n] *
                                this->data_[prevCurr][prevHead]);

                    // If curr > head, we need to continue an existing clow.
                    for (curr = head + 1; curr < n; curr++) {
                        partial[layer][head + curr * n] = RingTraits<T>::zero;
                        for (prevCurr = head; prevCurr < n; prevCurr++)
                            partial[layer][head + curr * n] +=
                                (partial[layer ^ 1][head + prevCurr * n] *
                                this->data_[prevCurr][curr]);
                    }
                }
            }

            // All done.  Sum up the determinant.
            T ans = RingTraits<T>::zero;
            for (head = 0; head < n; head++)
                for (curr = head; curr < n; curr++)
                    ans += (partial[layer][head + curr * n] *
                        this->data_[curr][head]);

            delete[] partial[0];
            delete[] partial[1];
            return (n % 2 == 0 ? -ans : ans);
        }

        /**
         * Negates all elements in the given row.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The given row number is between 0 and rows()-1 inclusive.
         *
         * \param row the index of the row whose elements should be negated.
         */
        void negateRow(size_t row) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::negateRow() requires type T to be one of "
                "Regina's own integer types.");

            for (T* x = this->data_[row]; x != this->data_[row] + cols_; ++x)
                x->negate();
        }

        /**
         * Negates all elements in the given column.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The given column number is between 0 and columns()-1 inclusive.
         *
         * \param col the index of the column whose elements should be negated.
         */
        void negateCol(size_t col) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::negateCol() requires type T to be one of "
                "Regina's own integer types.");

            for (T** row = this->data_; row != this->data_ + rows_; ++row)
                (*row)[col].negate();
        }

        /**
         * Divides all elements of the given row by the given integer.
         * This can only be used when the given integer divides into all
         * row elements exactly (with no remainder).  For the Integer class,
         * this may be much faster than ordinary division.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The argument \a divBy is neither zero nor infinity, and
         * none of the elements of the given row are infinity.
         * \pre The argument \a divBy divides exactly into every element
         * of the given row (i.e., it leaves no remainder).
         * \pre The given row number is between 0 and rows()-1 inclusive.
         *
         * \param row the index of the row whose elements should be
         * divided by \a divBy.
         * \param divBy the integer to divide each row element by.
         */
        void divRowExact(size_t row, const T& divBy) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::divRowExact() requires type T to be one of "
                "Regina's own integer types.");

            for (T* x = this->data_[row]; x != this->data_[row] + cols_; ++x)
                x->divByExact(divBy);
        }

        /**
         * Divides all elements of the given column by the given integer.
         * This can only be used when the given integer divides into all
         * column elements exactly (with no remainder).  For the Integer class,
         * this may be much faster than ordinary division.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The argument \a divBy is neither zero nor infinity, and
         * none of the elements of the given column are infinity.
         * \pre The argument \a divBy divides exactly into every element
         * of the given column (i.e., it leaves no remainder).
         * \pre The given column number is between 0 and columns()-1 inclusive.
         *
         * \param col the index of the column whose elements should be
         * divided by \a divBy.
         * \param divBy the integer to divide each column element by.
         */
        void divColExact(size_t col, const T& divBy) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::divColExact() requires type T to be one of "
                "Regina's own integer types.");

            for (T** row = this->data_; row != this->data_ + rows_; ++row)
                (*row)[col].divByExact(divBy);
        }

        /**
         * Computes the greatest common divisor of all elements of the
         * given row.  The value returned is guaranteed to be non-negative.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The given row number is between 0 and rows()-1 inclusive.
         *
         * \param row the index of the row whose gcd should be computed.
         * \return the greatest common divisor of all elements of this row.
         */
        T gcdRow(size_t row) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::gcdRow() requires type T to be one of "
                "Regina's own integer types.");

            T* x = this->data_[row];

            T gcd = *x++;
            while (x != this->data_[row] + cols_ && gcd != 1 && gcd != -1)
                gcd = gcd.gcd(*x++);

            if (gcd < 0)
                gcd.negate();
            return gcd;
        }

        /**
         * Computes the greatest common divisor of all elements of the
         * given column.  The value returned is guaranteed to be non-negative.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The given column number is between 0 and columns()-1 inclusive.
         *
         * \param col the index of the column whose gcd should be computed.
         * \return the greatest common divisor of all elements of this column.
         */
        T gcdCol(size_t col) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::gcdCol() requires type T to be one of "
                "Regina's own integer types.");

            T** row = this->data_;

            T gcd = (*row++)[col];
            while (row != this->data_ + rows_ && gcd != 1 && gcd != -1)
                gcd = gcd.gcd((*row++)[col]);

            if (gcd < 0)
                gcd.negate();
            return gcd;
        }

        /**
         * Reduces the given row by dividing all its elements by their
         * greatest common divisor.  It is guaranteed that, if the row is
         * changed at all, it will be divided by a _positive_ integer.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The given row number is between 0 and rows()-1 inclusive.
         *
         * \param row the index of the row to reduce.
         */
        void reduceRow(size_t row) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::reduceRow() requires type T to be one of "
                "Regina's own integer types.");

            T gcd = gcdRow(row);
            if (gcd != 0 && gcd != 1)
                divRowExact(row, gcd);
        }

        /**
         * Reduces the given column by dividing all its elements by their
         * greatest common divisor.  It is guaranteed that, if the column is
         * changed at all, it will be divided by a _positive_ integer.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         * \pre The given column number is between 0 and columns()-1 inclusive.
         *
         * \param col the index of the column to reduce.
         */
        void reduceCol(size_t col) {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::reduceCol() requires type T to be one of "
                "Regina's own integer types.");

            T gcd = gcdCol(col);
            if (gcd != 0 && gcd != 1)
                divColExact(col, gcd);
        }

        /**
         * Transforms this matrix into row echelon form.  The transformation
         * will perform only row operations.
         *
         * This is simpler than the global routine regina::columnEchelonForm():
         * it does not return the change of basis matrices, and it processes
         * all columns in order from left to right (instead of passing a
         * custom column list).
         *
         * Our convention is that a matrix is in row echelon form if:
         *
         * - each row is either zero or there is a first non-zero entry which
         *   is positive;
         * - moving from the top row to the bottom, these first non-zero
         *   entries have strictly increasing column indices;
         * - for each first non-zero row entry, in that column all the elements
         *   above are smaller and non-negative (and all elements below are
         *   already zero by the previous condition);
         * - all the zero rows are at the bottom of the matrix.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         *
         * \return the rank of this matrix, i.e., the number of non-zero rows
         * remaining.
         */
        size_t rowEchelonForm() {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::rowEchelonForm() requires type T to be one of "
                "Regina's own integer types.");

            size_t i, j;

            // The current working row and column:
            // The entries to the left of currCol will not change, and
            // above currRow all that can happen is some reduction.
            size_t currRow = 0;
            size_t currCol = 0;

            // The algorithm works from left to right.
            while (currRow < rows_ && currCol < cols_) {
                // Identify the first non-zero entry in currCol.
                for (i = currRow; i < rows_; ++i)
                    if (data_[i][currCol] != 0)
                        break;

                if (i == rows_) {
                    // The column is entirely zero.  Nothing to do.
                    ++currCol;
                    continue;
                }

                if (i > currRow) {
                    // Swap rows so this first non-zero entry is currRow.
                    swapRows(currRow, i);
                }

                // Now our first non-zero entry is in currRow.

                // Zero out all entries in currCol that appear *below* currRow.
                for (i = currRow + 1; i < rows_; ++i)
                    if (data_[i][currCol] != 0) {
                        auto [gcd, u, v] = data_[currRow][currCol].
                            gcdWithCoeffs(data_[i][currCol]);
                        T a = data_[currRow][currCol].divExact(gcd);
                        T b = data_[i][currCol].divExact(gcd);
                        for (j = 0; j < cols_; ++j) {
                            T tmp = u * data_[currRow][j] + v * data_[i][j];
                            data_[i][j] = a * data_[i][j] -
                                b * data_[currRow][j];
                            data_[currRow][j] = tmp;
                        }
                    }

                // Ensure that our leading coefficient (currRow, currCol)
                // is positive.
                if (data_[currRow][currCol] < 0) {
                    multRow(currRow, -1);
                }

                // Finally, reduce the entries in currCol *above* currRow.
                for (i = 0; i < currRow; ++i) {
                    auto [d, r] = data_[i][currCol].divisionAlg(
                        data_[currRow][currCol]);
                    if (d != 0)
                        addRow(currRow /* source */, i /* dest */, -d);
                }

                ++currRow;
                ++currCol;
            }

            return currRow;
        }

        /**
         * Transforms this matrix into column echelon form.  The transformation
         * will perform only column operations.
         *
         * This is simpler than the global routine regina::columnEchelonForm():
         * it does not return the change of basis matrices, and it processes
         * all rows in order from left to right (instead of passing a
         * custom row list).
         *
         * Our convention is that a matrix is in column echelon form if:
         *
         * - each column is either zero or there is a first non-zero entry
         *   which is positive;
         * - moving from the left column to the right, these first non-zero
         *   entries have strictly increasing row indices;
         * - for each first non-zero column entry, in that row all the elements
         *   to the left are smaller and non-negative (and all elements to the
         *   right are already zero by the previous condition);
         * - all the zero columns are at the right hand end of the matrix.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         *
         * \return the rank of this matrix, i.e., the number of non-zero
         * columns remaining.
         */
        size_t columnEchelonForm() {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::columnEchelonForm() requires type T to be one of "
                "Regina's own integer types.");

            size_t i, j;

            // The current working row and column:
            // The entries above currRow will not change, and to the left of
            // currCol all that can happen is some reduction.
            size_t currRow = 0;
            size_t currCol = 0;

            // The algorithm works from top to bottom.
            while (currRow < rows_ && currCol < cols_) {
                // Identify the first non-zero entry in currRow.
                for (i = currCol; i < cols_; ++i)
                    if (data_[currRow][i] != 0)
                        break;

                if (i == cols_) {
                    // The row is entirely zero.  Nothing to do.
                    ++currRow;
                    continue;
                }

                if (i > currCol) {
                    // Swap columns so this first non-zero entry is currCol.
                    swapCols(currCol, i);
                }

                // Now our first non-zero entry is in currCol.

                // Zero out all entries in currRow that appear right of currCol.
                for (i = currCol + 1; i < cols_; ++i)
                    if (data_[currRow][i] != 0) {
                        auto [gcd, u, v] = data_[currRow][currCol].
                            gcdWithCoeffs(data_[currRow][i]);
                        T a = data_[currRow][currCol].divExact(gcd);
                        T b = data_[currRow][i].divExact(gcd);
                        for (j = 0; j < rows_; ++j) {
                            T tmp = u * data_[j][currCol] + v * data_[j][i];
                            data_[j][i] = a * data_[j][i] -
                                b * data_[j][currCol];
                            data_[j][currCol] = tmp;
                        }
                    }

                // Ensure that our leading coefficient (currRow, currCol)
                // is positive.
                if (data_[currRow][currCol] < 0) {
                    multCol(currCol, -1);
                }

                // Finally, reduce the entries in currRow left of currCol.
                for (i = 0; i < currCol; ++i) {
                    auto [d, r] = data_[currRow][i].divisionAlg(
                        data_[currRow][currCol]);
                    if (d != 0)
                        addCol(currCol /* source */, i /* dest */, -d);
                }

                ++currRow;
                ++currCol;
            }

            return currCol;
        }

        /**
         * A non-destructive routine that returns the rank of this matrix
         * whilst preserving the contents of the matrix.
         *
         * Normally, a rank computation would involve modifying the matrix
         * directly (e.g., by converting it to row echelon form).  In contrast,
         * this routine will leave the matrix unchanged.  The cost is an extra
         * deep copy in the implementation.
         *
         * If your matrix is disposable (i.e., you will never need to use it
         * again), then it is faster to use the rvalue reference version of
         * this routine, which will avoid the extra overhead of the deep copy.
         * To do this, replace `matrix.rank()` with `std::move(matrix).rank()`.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         *
         * \python Only the const version of rank() (i.e., this version)
         * is available for Python users.
         *
         * \return the rank of this matrix.
         */
        size_t rank() const& {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::rank() requires type T to be one of "
                "Regina's own integer types.");

            // Make a deep copy, which we can modify as we compute rank.
            return Matrix(*this).rowEchelonForm();
        }

        /**
         * A destructive routine that returns the rank of this matrix.
         *
         * Here "destructive" means that this routine modifies the matrix
         * directly as it performs the rank computation.  For this reason,
         * it is declared as an rvalue reference member function: it should
         * only be used if you do not care about the contents of the matrix
         * afterwards.
         *
         * To use this destructive rank computation, you can call
         * `std::move(matrix).rank()`.
         *
         * If you need to preserve the contents of the matrix, you should
         * instead call the const version of this function, which you can
         * simply access as `matrix.rank()`.  The (minor) cost of this
         * constness will be the extra overhead of an internal deep copy.
         *
         * \pre Type \a T is one of Regina's own integer classes (Integer,
         * LargeInteger, or NativeIntgeger).
         *
         * \nopython Only the const version of rank() is available for Python
         * users.
         *
         * \return the rank of this matrix.
         */
        size_t rank() && {
            static_assert(IsReginaInteger<T>::value,
                "Matrix<T>::rank() requires type T to be one of "
                "Regina's own integer types.");

            return rowEchelonForm();
        }
};

/**
 * Swaps the contents of the given matrices.
 *
 * This global routine simply calls Matrix<T>::swap(); it is provided
 * so that Matrix<T> meets the C++ Swappable requirements.
 *
 * \param a the first matrix whose contents should be swapped.
 * \param b the second matrix whose contents should be swapped.
 *
 * \ingroup maths
 */
template <typename T>
inline void swap(Matrix<T>& a, Matrix<T>& b) noexcept {
    a.swap(b);
}

/**
 * A matrix of arbitrary-precision integers.
 *
 * This is the most common class used by Regina when running algebraic
 * algorithms over integer matrices.  Since the underlying type is
 * Regina's Integer class, calculations will be exact regardless of
 * how large the integers become.
 *
 * \python This instance of the Matrix template class is made
 * available to Python.
 *
 * \ingroup maths
 */
using MatrixInt = Matrix<Integer>;

/**
 * A matrix of booleans.
 *
 * This is used in a handful of places in Regina to represent incidence or
 * adjacency matrices.
 *
 * \python This instance of the Matrix template class is made
 * available to Python.
 *
 * \ingroup maths
 */
using MatrixBool = Matrix<bool>;

} // namespace regina

#endif