File: matrix2.h

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (497 lines) | stat: -rw-r--r-- 18,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#ifndef __REGINA_MATRIX2_H
#ifndef __DOXYGEN
#define __REGINA_MATRIX2_H
#endif

#include <array>
#include <iostream>
#include "regina-core.h"
#include "maths/ring.h"

/*! \file maths/matrix2.h
 *  \brief Deals with 2x2 integer matrices.
 */

namespace regina {

/**
 * Represents a 2-by-2 integer matrix.  The advantage of using this class
 * over the larger Matrix class template (e.g., MatrixInt) is that this class
 * has less overhead.
 *
 * This class only contains four long integers, and so it may be considered
 * small enough to pass about by value.
 *
 * This class supports copying but does not implement separate move operations,
 * since its internal data is so small that copying is just as efficient.
 * It implements the C++ Swappable requirement via its own member and global
 * swap() functions, for consistency with the Matrix classes.
 *
 * \ingroup maths
 */
class Matrix2 {
    private:
        std::array<std::array<long, 2>, 2> data_;
            /**< The four entries in this matrix, indexed by row and
                 then by column. */

    public:
        /**
         * Initialises to the zero matrix.
         */
        Matrix2();
        /**
         * Initialises to a copy of the given matrix.
         */
        Matrix2(const Matrix2&) = default;
        /**
         * Initialises to the given integer values.
         *
         * \param val00 the value to place in row 0, column 0.
         * \param val01 the value to place in row 0, column 1.
         * \param val10 the value to place in row 1, column 0.
         * \param val11 the value to place in row 1, column 1.
         */
        Matrix2(long val00, long val01, long val10, long val11);

        /**
         * Sets this matrix to be a copy of the given matrix.
         *
         * \return a reference to this matrix.
         */
        Matrix2& operator = (const Matrix2&) = default;

        /**
         * Swaps the contents of this and the given matrix.
         *
         * \param other the matrix whose contents should be swapped with this.
         */
        void swap(Matrix2& other) noexcept;

        /**
         * Gives read-only access to a single row of this matrix.
         *
         * This means that the integer in row \a r, column \a c can be
         * accessed as `myMatrix[r][c]` (where \a r and \a c are
         * each 0 or 1).
         *
         * \param row the index of the requested row; this must be 0 or 1.
         * \return a two-integer array containing the elements of the
         * requested row.
         */
        const std::array<long, 2>& operator [] (int row) const;
        /**
         * Gives read-write access to a single row of this matrix.
         *
         * This means that the integer in row \a r, column \a c can be
         * accessed as `myMatrix[r][c]` (where \a r and \a c are
         * each 0 or 1).  Each such element may be modified directly.
         *
         * \param row the index of the requested row; this must be 0 or 1.
         * \return a reference to the two-integer array containing the
         * elements of the requested row.
         */
        std::array<long, 2>& operator [] (int row);

        /**
         * Calculates the matrix product of this and the given matrix.
         * Neither this nor the given matrix is changed.
         *
         * \param other the matrix that this should be multiplied by.
         * \return the product \a this * \a other.
         */
        Matrix2 operator * (const Matrix2& other) const;
        /**
         * Calculates the scalar product of this matrix and the given
         * integer.  This matrix is not changed.
         *
         * \param scalar the integer that this matrix should be multiplied by.
         * \return the product \a this * \a scalar.
         */
        Matrix2 operator * (long scalar) const;
        /**
         * Calculates the sum of two matrices.
         * Neither this nor the given matrix is changed.
         *
         * \param other the matrix to add to this.
         * \return the sum \a this + \a other.
         */
        Matrix2 operator + (const Matrix2& other) const;
        /**
         * Calculates the difference of two matrices.
         * Neither this nor the given matrix is changed.
         *
         * \param other the matrix to subtract from this.
         * \return the difference \a this - \a other.
         */
        Matrix2 operator - (const Matrix2& other) const;
        /**
         * Determines the negative of this matrix.
         * This matrix is not changed.
         *
         * \return the negative of this matrix.
         */
        Matrix2 operator - () const;
        /**
         * Returns the transpose of this matrix.
         * This matrix is not changed.
         *
         * \return the transpose of this matrix.
         */
        Matrix2 transpose() const;
        /**
         * Calculates the inverse of this matrix.
         * This matrix is not changed.
         *
         * This routine only works for integer matrices whose determinant is
         * either +1 or -1.
         *
         * \return the inverse of this matrix.  If this matrix does not
         * have determinant +1 or -1, the zero matrix will be returned
         * instead.
         */
        Matrix2 inverse() const;

        /**
         * Adds the given matrix to this.
         * This matrix is changed to reflect the result.
         *
         * \param other the matrix to add to this.
         * \return a reference to this matrix with its new value.
         */
        Matrix2& operator += (const Matrix2& other);
        /**
         * Subtracts the given matrix from this.
         * This matrix is changed to reflect the result.
         *
         * \param other the matrix to subtract from this.
         * \return a reference to this matrix with its new value.
         */
        Matrix2& operator -= (const Matrix2& other);
        /**
         * Multiplies this by the given matrix.
         * This matrix is changed to reflect the result.
         *
         * \param other the matrix by which this should be multiplied.
         * \return a reference to this matrix with its new value.
         */
        Matrix2& operator *= (const Matrix2& other);
        /**
         * Multiplies this by the given scalar.
         * This matrix is changed to reflect the result.
         *
         * \param scalar the scalar by which this should be multiplied.
         * \return a reference to this matrix with its new value.
         */
        Matrix2& operator *= (long scalar);
        /**
         * Negates this matrix.
         * This matrix is changed to reflect the result.
         */
        void negate();
        /**
         * Inverts this matrix.
         *
         * This routine only works for integer matrices whose determinant is
         * either +1 or -1.  Otherwise this matrix is left unchanged.
         *
         * \return \c true if this matrix was successfully inverted
         * (i.e., its determinant was +1 or -1), or \c false otherwise.
         */
        bool invert();

        /**
         * Determines if this is equal to the given matrix.
         *
         * \return \c true if and only if this matrix is equal to the given
         * matrix.
         */
        bool operator == (const Matrix2&) const = default;

        /**
         * Returns the determinant of this matrix.
         *
         * \return the determinant of this matrix.
         */
        long determinant() const;
        /**
         * Determines if this is the 2-by-2 identity matrix.
         *
         * \return \c true if this is the identity matrix, or \c false
         * otherwise.
         */
        bool isIdentity() const;
        /**
         * Determines if this is the 2-by-2 zero matrix.
         *
         * \return \c true if this is the zero matrix, or \c false
         * otherwise.
         */
        bool isZero() const;

    friend std::ostream& operator << (std::ostream& out, const Matrix2& mat);
};

#ifndef __DOXYGEN
// Don't confuse doxygen with specialisations.
template <>
struct RingTraits<Matrix2> {
    inline static const Matrix2 zero;
    inline static const Matrix2 one { 1, 0, 0, 1 };
};
#endif // __DOXYGEN

/**
 * Swaps the contents of the two given matrices.
 *
 * This global routine simply calls Matrix2::swap(); it is provided so
 * that Matrix2 meets the C++ Swappable requirements.
 *
 * \param a the first matrix whose contents should be swapped.
 * \param b the second matrix whose contents should be swapped.
 *
 * \ingroup maths
 */
void swap(Matrix2& a, Matrix2& b) noexcept;

/**
 * Writes the given matrix to the given output stream.  The matrix will
 * be written entirely on a single line, with the first row followed by the
 * second row.
 *
 * \param out the output stream to which to write.
 * \param mat the matrix to write.
 * \return a reference to \a out.
 *
 * \ingroup maths
 */
std::ostream& operator << (std::ostream& out, const Matrix2& mat);

/**
 * Compare two matrices to determine which is more aesthetically pleasing.
 * The way in which this judgement is made is purely aesthetic on the part
 * of the author, and is subject to change in future versions of Regina.
 *
 * \python Instead of a `std::strong_ordering`, this routine returns an
 * integer -1, 0 or 1 (representing `less`, `equal` or `greater` respectively).
 *
 * \param m1 the first matrix to examine.
 * \param m2 the second matrix to examine.
 * \return `less` if \a m1 is deemed to be more pleasing than \a m2,
 * `greater` if \a m2 is more pleasing than \a m1, or `equal` if both matrices
 * are equal.
 *
 * \ingroup maths
 */
std::strong_ordering simplerThreeWay(const Matrix2& m1, const Matrix2& m2);

/**
 * Deprecated routine that determines whether the first given matrix is
 * more aesthetically pleasing than the second.
 *
 * \deprecated This routine is implemented using simplerThreeWay(), and new
 * code should use that routine instead.  See simplerThreeWay() for further
 * discussion.
 *
 * \param m1 the first matrix to examine.
 * \param m2 the second matrix to examine.
 * \return \c true if \a m1 is deemed to be more pleasing than \a m2, or
 * \c false if either the matrices are equal or \a m2 is more pleasing than
 * \a m1.
 *
 * \ingroup maths
 */
[[deprecated]] bool simpler(const Matrix2& m1, const Matrix2& m2);

/**
 * Compares two ordered pairs of matrices to determine which pair is more
 * aesthetically pleasing.  The way in which this judgement is made is purely
 * aesthetic on the part of the author, and is subject to change in future
 * versions of Regina.
 *
 * Note that pairs are ordered, so the pair (\a M, \a N) may be more
 * (or perhaps less) pleasing than the pair (\a N, \a M).
 *
 * \python Instead of a `std::strong_ordering`, this routine returns an
 * integer -1, 0 or 1 (representing `less`, `equal` or `greater` respectively).
 *
 * \param pair1first the first matrix of the first pair to examine.
 * \param pair1second the second matrix of the first pair to examine.
 * \param pair2first the first matrix of the second pair to examine.
 * \param pair2second the second matrix of the second pair to examine.
 * \return `less` if the first pair is deemed to be more pleasing than the
 * second pair, `greater` if the second pair is more pleasing than the first,
 * or `equal` if both ordered pairs are equal.
 *
 * \ingroup maths
 */
std::strong_ordering simplerThreeWay(
        const Matrix2& pair1first, const Matrix2& pair1second,
        const Matrix2& pair2first, const Matrix2& pair2second);

/**
 * Deprecated routine that determines whether the first given pair of matrices
 * is more aesthetically pleasing than the second pair.
 *
 * \deprecated This routine is implemented using simplerThreeWay(), and new
 * code should use that routine instead.  See simplerThreeWay() for further
 * discussion.
 *
 * \param pair1first the first matrix of the first pair to examine.
 * \param pair1second the second matrix of the first pair to examine.
 * \param pair2first the first matrix of the second pair to examine.
 * \param pair2second the second matrix of the second pair to examine.
 * \return \c true if the first pair is deemed to be more pleasing than
 * the second pair, or \c false if either the ordered pairs are equal or
 * the second pair is more pleasing than the first.
 *
 * \ingroup maths
 */
[[deprecated]] bool simpler(
        const Matrix2& pair1first, const Matrix2& pair1second,
        const Matrix2& pair2first, const Matrix2& pair2second);

// Inline functions for Matrix2

inline Matrix2::Matrix2() : data_ {{{ 0, 0 }, { 0, 0 }}} {
}

inline Matrix2::Matrix2(long val00, long val01, long val10, long val11) :
        data_ {{{ val00, val01 }, { val10, val11 }}} {
}

inline void Matrix2::swap(Matrix2& other) noexcept {
    data_.swap(other.data_);
}

inline const std::array<long, 2>& Matrix2::operator [] (int row) const {
    return data_[row];
}

inline std::array<long, 2>& Matrix2::operator [] (int row) {
    return data_[row];
}

inline Matrix2 Matrix2::operator * (const Matrix2& other) const {
    return Matrix2(
        data_[0][0] * other.data_[0][0] + data_[0][1] * other.data_[1][0],
        data_[0][0] * other.data_[0][1] + data_[0][1] * other.data_[1][1],
        data_[1][0] * other.data_[0][0] + data_[1][1] * other.data_[1][0],
        data_[1][0] * other.data_[0][1] + data_[1][1] * other.data_[1][1]);
}

inline Matrix2 Matrix2::operator * (long scalar) const {
    return Matrix2(
        data_[0][0] * scalar, data_[0][1] * scalar,
        data_[1][0] * scalar, data_[1][1] * scalar);
}

inline Matrix2 Matrix2::operator + (const Matrix2& other) const {
    return Matrix2(
        data_[0][0] + other.data_[0][0], data_[0][1] + other.data_[0][1],
        data_[1][0] + other.data_[1][0], data_[1][1] + other.data_[1][1]);
}

inline Matrix2 Matrix2::operator - (const Matrix2& other) const {
    return Matrix2(
        data_[0][0] - other.data_[0][0], data_[0][1] - other.data_[0][1],
        data_[1][0] - other.data_[1][0], data_[1][1] - other.data_[1][1]);
}

inline Matrix2 Matrix2::operator - () const {
    return Matrix2(-data_[0][0], -data_[0][1], -data_[1][0], -data_[1][1]);
}

inline Matrix2 Matrix2::transpose() const {
    return Matrix2(data_[0][0], data_[1][0], data_[0][1], data_[1][1]);
}

inline Matrix2& Matrix2::operator += (const Matrix2& other) {
    data_[0][0] += other.data_[0][0]; data_[0][1] += other.data_[0][1];
    data_[1][0] += other.data_[1][0]; data_[1][1] += other.data_[1][1];
    return *this;
}

inline Matrix2& Matrix2::operator -= (const Matrix2& other) {
    data_[0][0] -= other.data_[0][0]; data_[0][1] -= other.data_[0][1];
    data_[1][0] -= other.data_[1][0]; data_[1][1] -= other.data_[1][1];
    return *this;
}

inline Matrix2& Matrix2::operator *= (long scalar) {
    data_[0][0] *= scalar; data_[0][1] *= scalar;
    data_[1][0] *= scalar; data_[1][1] *= scalar;
    return *this;
}

inline void Matrix2::negate() {
    data_[0][0] = -data_[0][0]; data_[0][1] = -data_[0][1];
    data_[1][0] = -data_[1][0]; data_[1][1] = -data_[1][1];
}

inline long Matrix2::determinant() const {
    return data_[0][0] * data_[1][1] - data_[0][1] * data_[1][0];
}

inline bool Matrix2::isIdentity() const {
    return (data_[0][0] == 1 && data_[0][1] == 0 &&
            data_[1][0] == 0 && data_[1][1] == 1);
}

inline bool Matrix2::isZero() const {
    return (data_[0][0] == 0 && data_[0][1] == 0 &&
            data_[1][0] == 0 && data_[1][1] == 0);
}

inline std::ostream& operator << (std::ostream& out, const Matrix2& mat) {
    return out << "[[ " << mat.data_[0][0] << ' ' << mat.data_[0][1]
        << " ] [ " << mat.data_[1][0] << ' ' << mat.data_[1][1] << " ]]";
}

inline void swap(Matrix2& a, Matrix2& b) noexcept {
    a.swap(b);
}

inline bool simpler(const Matrix2& m1, const Matrix2& m2) {
    return simplerThreeWay(m1, m2) == std::strong_ordering::less;
}

inline bool simpler(const Matrix2& pair1first, const Matrix2& pair1second,
        const Matrix2& pair2first, const Matrix2& pair2second) {
    return simplerThreeWay(pair1first, pair1second, pair2first, pair2second) ==
        std::strong_ordering::less;
}

} // namespace regina

#endif