File: matrixops.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (1086 lines) | stat: -rw-r--r-- 45,578 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "maths/matrixops.h"
#include "maths/numbertheory.h"

namespace regina {

void smithNormalForm(MatrixInt& matrix) {
    size_t currStage = 0;
    size_t nonEmptyRows = matrix.rows();
    size_t nonEmptyCols = matrix.columns();
    bool flag;
    size_t i, j;
    size_t pivotRow, pivotCol;
    Integer d, u, v, a, b;
    Integer tmp;
    while ((currStage < nonEmptyRows) && (currStage < nonEmptyCols)) {
        loopStart:

        // Find a good pivot.
        // For now we just take the non-zero entry with smallest absolute value.
        tmp = 0;
        // TODO: Adjust nonEmptyRows and nonEmptyCols as we iterate here.
        for (i = currStage; i < nonEmptyRows; ++i)
            for (j = currStage; j < nonEmptyCols; ++j) {
                Integer pivotVal = matrix.entry(i, j).abs();
                if (pivotVal > 0)
                    if (tmp == 0 || pivotVal < tmp) {
                        tmp = pivotVal;
                        pivotRow = i;
                        pivotCol = j;
                    }
            }

        if (tmp == 0) {
            // The matrix is zero from here on - which means we are done!
            break;
        }

        if (pivotRow != currStage)
            matrix.swapRows(currStage, pivotRow);
        if (pivotCol != currStage)
            matrix.swapCols(currStage, pivotCol, currStage);

        // Make zeros for the remainder of the current row.
        for (i=currStage+1; i<nonEmptyCols; i++) {
            if (matrix.entry(currStage, i) == 0)
                continue;
            // Put a zero in (currStage, i).
            a = matrix.entry(currStage, currStage);
            b = matrix.entry(currStage, i);
            d = a.gcdWithCoeffs(b, u, v);
            a.divByExact(d);
            b.divByExact(d);
            // Do a modification to columns currStage and i.
            matrix.combCols(currStage, i, u, v, -b, a, currStage);
        }

        // Make zeros for the remainder of the current column.
        // Check to see if we change anything and thus muck up the row.
        flag = false;
        for (i=currStage+1; i<nonEmptyRows; i++) {
            if (matrix.entry(i, currStage) == 0)
                continue;
            // Put a zero in (i, currStage).
            flag = true;
            a = matrix.entry(currStage, currStage);
            b = matrix.entry(i, currStage);
            d = a.gcdWithCoeffs(b, u, v);
            a.divByExact(d);
            b.divByExact(d);
            // Do a modification to rows currStage and i.
            matrix.combRows(currStage, i, u, v, -b, a, currStage);
        }
        if (flag) {
            flag = false;
            for (i=currStage+1; i<nonEmptyCols; i++)
                if (matrix.entry(currStage, i) != 0) {
                    flag = true;
                    break;
                }
            if (flag) {
                // The clean row was mucked up.
                continue;
            }
        }

        // Check that entry (currStage, currStage) divides everything else.
        Integer& diag = matrix.entry(currStage, currStage);
        for (i=currStage+1; i<nonEmptyRows; i++)
            for (j=currStage+1; j<nonEmptyCols; j++)
                if ((matrix.entry(i, j) % diag) != 0) {
                    // Add row i to the current stage row and start this
                    // stage over.
                    matrix.addRowFrom(i, currStage, currStage + 1);
                    goto loopStart;
                }

        // This stage is complete!
        // Make sure the diagonal entry is positive before leaving it.
        if (diag < 0)
            diag.negate();
        ++currStage;
    }
}

void smithNormalForm(MatrixInt& matrix,
        MatrixInt& rowSpaceBasis, MatrixInt& rowSpaceBasisInv,
        MatrixInt& colSpaceBasis, MatrixInt& colSpaceBasisInv) {
    size_t currStage = 0;
    size_t nonEmptyRows = matrix.rows();
    size_t nonEmptyCols = matrix.columns();
    bool flag;
    size_t i, j;
    size_t pivotRow, pivotCol;
    Integer d, u, v, a, b;
    Integer tmp;

    rowSpaceBasis = MatrixInt::identity(matrix.columns());
    rowSpaceBasisInv = MatrixInt::identity(matrix.columns());
    colSpaceBasis = MatrixInt::identity(matrix.rows());
    colSpaceBasisInv = MatrixInt::identity(matrix.rows());

    while ((currStage < nonEmptyRows) && (currStage < nonEmptyCols)) {
        loopStart:

        // Find a good pivot.
        // For now we just take the non-zero entry with smallest absolute value.
        tmp = 0;
        // TODO: Adjust nonEmptyRows and nonEmptyCols as we iterate here.
        for (i = currStage; i < nonEmptyRows; ++i)
            for (j = currStage; j < nonEmptyCols; ++j) {
                Integer pivotVal = matrix.entry(i, j).abs();
                if (pivotVal > 0)
                    if (tmp == 0 || pivotVal < tmp) {
                        tmp = pivotVal;
                        pivotRow = i;
                        pivotCol = j;
                    }
            }

        if (tmp == 0) {
            // The matrix is zero from here on - which means we are done!
            break;
        }

        if (pivotRow != currStage) {
            matrix.swapRows(currStage, pivotRow);
            colSpaceBasis.swapRows(currStage, pivotRow);
            colSpaceBasisInv.swapCols(currStage, pivotRow);
        }
        if (pivotCol != currStage) {
            matrix.swapCols(currStage, pivotCol, currStage);
            rowSpaceBasis.swapCols(currStage, pivotCol);
            rowSpaceBasisInv.swapRows(currStage, pivotCol);
        }

        // Make zeros for the remainder of the current row.
        for (i=currStage+1; i<nonEmptyCols; i++) {
            if (matrix.entry(currStage, i) == 0)
                continue;
            // Put a zero in (currStage, i).
            a = matrix.entry(currStage, currStage);
            b = matrix.entry(currStage, i);
            d = a.gcdWithCoeffs(b, u, v);
            a.divByExact(d);
            b.divByExact(d);
            // Do a modification to columns currStage and i.
            matrix.combCols(currStage, i, u, v, -b, a, currStage);
            rowSpaceBasis.combCols(currStage, i, u, v, -b, a);
            rowSpaceBasisInv.combRows(currStage, i, a, b, -v, u);
        }

        // Make zeros for the remainder of the current column.
        // Check to see if we change anything and thus muck up the row.
        flag = false;
        for (i=currStage+1; i<nonEmptyRows; i++) {
            if (matrix.entry(i, currStage) == 0)
                continue;
            // Put a zero in (i, currStage).
            flag = true;
            a = matrix.entry(currStage, currStage);
            b = matrix.entry(i, currStage);
            d = a.gcdWithCoeffs(b, u, v);
            a.divByExact(d);
            b.divByExact(d);
            // Do a modification to rows currStage and i.
            matrix.combRows(currStage, i, u, v, -b, a, currStage);
            colSpaceBasis.combRows(currStage, i, u, v, -b, a);
            colSpaceBasisInv.combCols(currStage, i, a, b, -v, u);
        }
        if (flag) {
            flag = false;
            for (i=currStage+1; i<nonEmptyCols; i++)
                if (matrix.entry(currStage, i) != 0) {
                    flag = true;
                    break;
                }
            if (flag) {
                // The clean row was mucked up.
                continue;
            }
        }

        // Check that entry (currStage, currStage) divides everything else.
        Integer& diag = matrix.entry(currStage, currStage);
        for (i=currStage+1; i<nonEmptyRows; i++)
            for (j=currStage+1; j<nonEmptyCols; j++)
                if ((matrix.entry(i, j) % diag) != 0) {
                    // Add row i to the current stage row and start this
                    // stage over.
                    matrix.addRowFrom(i, currStage, currStage + 1);
                    colSpaceBasis.addRow(i, currStage);
                    colSpaceBasisInv.addCol(currStage, i, -1);
                    goto loopStart;
                }

        // This stage is complete!
        // Make sure the diagonal entry is positive before leaving it.
        if (diag < 0) {
            diag.negate();
            // we're thinking of this as a row op
            colSpaceBasis.multRow(currStage, -1);
            colSpaceBasisInv.multCol(currStage, -1);
        }
        ++currStage;
    }
}

size_t rowBasis(MatrixInt& matrix) {
    size_t n = matrix.columns();

    // Make a copy of the input matrix, and reduce it to row echelon form.
    MatrixInt echelon(matrix);

    size_t doneRows = 0;
    size_t rank = echelon.rows();

    auto* lead = new size_t[n];
    size_t r, c;
    for (c = 0; c < n; ++c)
        lead[c] = c;

    Integer coeff1, coeff2;
    while (doneRows < rank) {
        // INV: For i < doneRows, echelon[i, lead[i]] is non-zero, and
        // every other entry echelon[j, lead[i]] is zero for j > i.

        // Find the first non-zero entry in row doneRows.
        for (c = doneRows; c < n; ++c)
            if (echelon.entry(doneRows, lead[c]) != 0)
                break;

        if (c == n) {
            // We have a zero row.  Push it to the bottom.
            --rank;
            if (doneRows < rank) {
                echelon.swapRows(doneRows, rank);
                matrix.swapRows(doneRows, rank);
            }
        } else {
            // We have a non-zero row.
            // Save the column in which we found our non-zero entry.
            std::swap(lead[doneRows], lead[c]);

            // Make all lower entries in column lead[doneRows] equal to zero.
            // Do this with only integer arithmetic.  This could lead to
            // some very large matrix entries, though we're using Integer
            // so the worst that can happen is that things get slow.
            coeff1 = echelon.entry(doneRows, lead[doneRows]);

            for (r = doneRows + 1; r < rank; ++r) {
                coeff2 = echelon.entry(r, lead[doneRows]);
                if (coeff2 != 0) {
                    echelon.multRow(r, coeff1);
                    echelon.addRow(doneRows, r, -coeff2);

                    // Factor out the gcd of this row.
                    echelon.reduceRow(r);
                }
            }
            ++doneRows;
        }
    }

    // All done!
    delete[] lead;
    return rank;
}

size_t rowBasisAndOrthComp(MatrixInt& input, MatrixInt& complement) {
    size_t n = input.columns();

    if (complement.rows() != n || complement.columns() != n)
        throw InvalidArgument("rowBasisAndOrthComp(input, complement) expects "
            "complement to be square with side length input.columns()");

    // Make a copy of the input matrix, and reduce it to row echelon form.
    MatrixInt echelon(input);

    size_t doneRows = 0;
    size_t rank = echelon.rows();

    auto* lead = new size_t[n];
    size_t r, c;
    for (c = 0; c < n; ++c)
        lead[c] = c;

    Integer coeff1, coeff2;
    while (doneRows < rank) {
        // INV: For i < doneRows, echelon[i, lead[i]] is non-zero, and
        // every other entry echelon[j, lead[i]] is zero for j > i.

        // Find the first non-zero entry in row doneRows.
        for (c = doneRows; c < n; ++c)
            if (echelon.entry(doneRows, lead[c]) != 0)
                break;

        if (c == n) {
            // We have a zero row.  Push it to the bottom.
            --rank;
            if (doneRows < rank) {
                echelon.swapRows(doneRows, rank);
                input.swapRows(doneRows, rank);
            }
        } else {
            // We have a non-zero row.
            // Save the column in which we found our non-zero entry.
            std::swap(lead[doneRows], lead[c]);

            // Make all lower entries in column lead[doneRows] equal to zero.
            // Do this with only integer arithmetic.  This could lead to
            // some very large matrix entries, though we're using Integer
            // so the worst that can happen is that things get slow.
            coeff1 = echelon.entry(doneRows, lead[doneRows]);

            for (r = doneRows + 1; r < rank; ++r) {
                coeff2 = echelon.entry(r, lead[doneRows]);
                if (coeff2 != 0) {
                    echelon.multRow(r, coeff1);
                    echelon.addRow(doneRows, r, -coeff2);

                    // Factor out the gcd of this row.
                    echelon.reduceRow(r);
                }
            }
            ++doneRows;
        }
    }

    // Now form the basis for the orthogonal complement.
    complement.fill(0);

    Integer lcmLead = 1;
    for (r = 0; r < n; ++r) {
        complement.entry(r, lead[r]) = lcmLead;
        complement.entry(r, lead[r]).negate();

        for (c = 0; c < r && c < rank; ++c) {
            complement.entry(r, lead[c]) = echelon.entry(c, lead[r]) * lcmLead;
            complement.entry(r, lead[c]).divByExact(echelon.entry(c, lead[c]));
        }

        complement.reduceRow(r);

        if (r < rank) {
            coeff1 = echelon.entry(r, lead[r]);
            lcmLead = lcmLead.lcm(coeff1);

            for (size_t tmp = 0; tmp < r; ++tmp) {
                coeff2 = echelon.entry(tmp, lead[r]);
                if (coeff2 != 0) {
                    echelon.multRow(tmp, coeff1);
                    echelon.addRow(r, tmp, -coeff2);

                    // Factor out the gcd of this row.
                    echelon.reduceRow(tmp);
                }
                // TODO: Is this actually necessary?
                lcmLead = lcmLead.lcm(echelon.entry(tmp, lead[tmp]));
            }
        }
    }

    // All done!
    delete[] lead;
    return rank;
}

void columnEchelonForm(MatrixInt &M, MatrixInt &R, MatrixInt &Ri,
        const std::vector<size_t> &rowList) {
    if (R.columns() != M.columns() || Ri.rows() != M.columns())
        throw InvalidArgument("columnEchelonForm(M, R, Ri, rowList) expects "
            "M.columns() == R.columns() == Ri.rows()");

    size_t CR=0;
    size_t CC=0;
    // these are the indices of the current WORKING rows and columns
    // respectively.
    // thus the entries of M above CR will not change, and to the left of
    // CC all that can happen is some reduction.

    std::vector<size_t> rowNZlist; // in the current row, this is the
                                   // list of column coordinates
                                   // for the non-zero entries.

    Integer u,v,a,b; // for column operations u,v,a,b represent a 2x2 matrix.
    // the algorithm will think of itself as working top to bottom.
    while ( (CR<rowList.size()) && (CC<M.columns())) {
        // build rowNZlist
        rowNZlist.clear();

        for (size_t i=CC;i<M.columns();i++)
            if (M.entry(rowList[CR],i) != 0)
                rowNZlist.push_back(i);

        // now the column operations
        if (rowNZlist.size() == 0) {
            // nothing to do.
            CR++;
        } else if (rowNZlist.size() == 1) {
            // let's move this entry to be the leading entry.
            if (rowNZlist[0]==CC) {
                // step 1: ensure entry(CR,CC) is positive.
                if (M.entry(rowList[CR],CC)<0) {
                    M.negateCol(CC);
                    R.negateCol(CC);
                    Ri.negateRow(CC);
                }
                // step 2: reduce entries(CR,i) for i<CC
                for (size_t i=0;i<CC;i++) {
                    // write entry(CR,i) as d*entry(CR,CC) + r.
                    auto [d, r] = M.entry(rowList[CR],i).divisionAlg(
                        M.entry(rowList[CR],CC) );
                    // reduce column i: subtract d * column CC from column i.
                    M.addCol(CC, i, -d);
                    R.addCol(CC, i, -d);
                    // corresponding update for Ri: add d * row i to row CC
                    Ri.addRow(i, CC, d);
                }
                // done, move on.
                CC++;
                CR++;
            } else {
                M.swapCols(CC, rowNZlist[0]);
                R.swapCols(CC, rowNZlist[0]);
                Ri.swapRows(CC, rowNZlist[0]);
            }
        } else {
            // there is at least 2 non-zero entries to deal with. we go
            // through them, one by one, a pair at a time.
            while (rowNZlist.size()>1) {
                // do column reduction on columns rowNZlist[0] and rowNZlist[1]
                // first we need to find the approp modification matrix.
                // This will be the matrix ( u -b ) where ua+vb = 1. We get
                //                         ( v a  )
                // a and b from entry(CR, r[0]) and entry(CR, r[1])
                // by dividing by their GCD, found with
                // rowNZlist[0].gcdWithCoeffs(rowNZlist[1],u,v)
                Integer gcd = M.entry(rowList[CR], rowNZlist[0]).gcdWithCoeffs(
                    M.entry(rowList[CR], rowNZlist[1]), u,v);
                a = M.entry(rowList[CR], rowNZlist[0]).divExact(gcd);
                b = M.entry(rowList[CR], rowNZlist[1]).divExact(gcd);
                // so multiplication on the right by the above matrix
                // corresponds to replacing column r[0] by u r[0] + v r[1]
                // and column r[1] by -b r[0] + a r[1].
                M.combCols(rowNZlist[0], rowNZlist[1], u, v, -b, a);
                R.combCols(rowNZlist[0], rowNZlist[1], u, v, -b, a);
                Ri.combRows(rowNZlist[0], rowNZlist[1], a, b, -v, u);
                // modify rowNZlist by deleting the entry corresponding to
                // rowNZlist[1]
                rowNZlist.erase( rowNZlist.begin()+1 );
            }
        }
    }
}

MatrixInt preImageOfLattice(const MatrixInt& hom,
        const std::vector<Integer>& L) {
    if (L.size() != hom.rows())
        throw InvalidArgument("preImageOfLattice(hom, sublattice) expects "
            "the length of sublattice to match the number of rows in hom");

    // there are two main steps to this algorithm.
    // 1) find a basis for the domain which splits into a) vectors sent to the
    //    complement of the primitive subspace generated by the range lattice
    //    and b) a basis of vectors sent to the primitive subspace generated
    //    by the range lattice.
    // 2) modify the basis (b) by column ops to get the preimage of the lattice.
    // step (1) is an application of the columnEchelonForm
    // step (2) starts with another application of columnEchelonForm, but then
    // it finishes with a variation on it...

    MatrixInt basis(hom.columns(), hom.columns() );
    basis.makeIdentity();
    MatrixInt basisi(hom.columns(), hom.columns() );
    basisi.makeIdentity();
    // and we proceed to modify it solely via column operations.
    // one for every column operation performed on homModL
    MatrixInt homModL(hom);

    // set up two lists: the coordinates that correspond to free generators
    // of the range and coordinates corresponding to torsion generators.

    // these lists need to be built from L
    std::vector<size_t> freeList;
    std::vector<size_t> torList;
    for (size_t i=0;i<L.size();i++)
        if (L[i]==0)
            freeList.push_back(i);
        else
            torList.push_back(i);

    // so first put the free image part of it in column echelon form

    columnEchelonForm( homModL, basis, basisi, freeList );

    std::vector<size_t> torCol(0);
    bool zeroCol;

    for (size_t i=0; i<homModL.columns(); i++) {
        zeroCol=true;
        for (auto pos : freeList)
            if (homModL.entry( pos, i) != 0)
                zeroCol=false;
        if (zeroCol)
            torCol.push_back(i);
    }

    // set up a new matrix consisting of columns being sent to the primitive
    // subspace generated by the torsion lattice.

    MatrixInt tHom( homModL.rows(), torCol.size() );
    MatrixInt tBasis( basis.rows(), torCol.size() ); // this will be the
                                                     // eventual retval.
    MatrixInt dummy( torCol.size(), 0 ); // needed when we call
    // columnEchelonForm. choosing it to have 0 columns speeds up
    // the algorithm.

    for (size_t i=0;i<tHom.rows();i++)
        for (size_t j=0;j<tHom.columns();j++)
            tHom.entry(i,j) = homModL.entry(i, torCol[j]);

    for (size_t i=0;i<basis.rows();i++)
        for (size_t j=0;j<torCol.size();j++)
            tBasis.entry(i,j) = basis.entry(i, torCol[j]);

    columnEchelonForm( tHom, tBasis, dummy, torList );

    // so now we have a primitive collection of vectors being sent to the
    // primitive subspace generated by the torsion lattice in the target.
    // The idea is to run through the rows, for each non-zero row, through
    // a basis change we can ensure there is at most one non-zero entry.
    // multiply this column by the smallest factor so that it is in
    // the torsion lattice, repeat. etc.

    size_t CR=0; // current row under consideration. The actual row index
    // will of course be torList[CR] since all other rows are already zero.

    std::vector<size_t> rowNZlist; // in the current row, this is the list
    // of column coordinates for the non-zero entries.

    Integer d,r; // given two Integers a and b, we will represent
    // a/b by d and a % b by r in the algorithm.
    Integer u,v,gcd, a,b; // for column operations u,v,a,b represent
    // a 2x2 matrix.
    Integer tmp;

    while (CR<torList.size()) {
        // build rowNZlist
        rowNZlist.clear();

        for (size_t i=0;i<tHom.columns();i++)
            if (tHom.entry(torList[CR],i) != 0)
                rowNZlist.push_back(i);
        // okay, so now we have a list of non-zero entries.
        // case 1: rowNZlist.size()==0, increment CR, continue;

        if (rowNZlist.size()==0) {
            CR++;
            continue;
        }
        // case 2: rowNZlist.size()==1 multiply column only if neccessary,
        // increment CR, continue;

        if (rowNZlist.size()==1) {
            // check to see if tHom.entry(torList[CR], rowNZlist[0]) %
            // L[torList[CR]] == 0 if not, find smallest positive integer
            // s.t. when multiplied by it, above becomes true.
            gcd = tHom.entry(torList[CR], rowNZlist[0]).gcd( L[torList[CR]] );
            d = L[torList[CR]].divExact(gcd); 
            // multiply column  rowNZlist[0] of tHom by d.
            for (auto pos : torList)
                tHom.entry( pos, rowNZlist[0] ) *= d;
            // corresponding operation on tBasis.
            for (size_t i=0;i<tBasis.rows();i++)
                tBasis.entry( i, rowNZlist[0] ) *= d;
            // done.
            CR++;
            continue;
        }
        // case 3: rowNZlist.size()>1.row ops to reduce rowNZlist.size().
        // then continue
        while (rowNZlist.size()>1) {
            // do column op on columns rowNZlist[0] and rowNZlist[1]
            // first we need to find the approp modification matrix. This will
            // be the matrix ( u -b ) where ua+vb = 1. We get a and b from
            //               ( v a  ) from entry(torList[CR], r[0]) and
            // entry(torlist[CR], r[1]) by dividing by their GCD, found with
            // rowNZlist[0].gcdWithCoeffs(rowNZlist[1],u,v)
            gcd = tHom.entry(torList[CR], rowNZlist[0]).gcdWithCoeffs(
                        tHom.entry(torList[CR], rowNZlist[1]), u,v);
            a = tHom.entry(torList[CR], rowNZlist[0]).divExact(gcd);
            b = tHom.entry(torList[CR], rowNZlist[1]).divExact(gcd);
            // so multiplication on the right by the above matrix corresponds
            // to replacing column r[0] by u r[0] + v r[1] and column r[1] by
            // -b r[0] + a r[1].
            for (auto pos : torList) {
                tmp = u * tHom.entry( pos, rowNZlist[0] ) +
                    v * tHom.entry( pos, rowNZlist[1] );
                tHom.entry( pos,rowNZlist[1]) =
                    a * tHom.entry( pos, rowNZlist[1]) -
                    b * tHom.entry( pos, rowNZlist[0]);
                tHom.entry( pos,rowNZlist[0]) = tmp;
            }
            // modify tBasis
            for (size_t i=0;i<tBasis.rows();i++) {
                tmp = u * tBasis.entry( i, rowNZlist[0] ) +
                    v * tBasis.entry(i, rowNZlist[1] );
                tBasis.entry(i,rowNZlist[1]) =
                    a * tBasis.entry( i, rowNZlist[1]) -
                    b * tBasis.entry( i, rowNZlist[0]);
                tBasis.entry(i,rowNZlist[0]) = tmp;
            }
            // now rowNZlist[1] entry is zero, remove it from the list.
            rowNZlist.erase( rowNZlist.begin()+1 );
        }
    }
    return tBasis;
}

// Lemma 1: [a b | c d] representing an element of End(Z_n x Z_{mn}) is in 
//  Aut(Z_n x Z_{mn}) if and only if dA-bc is a unit of Z_{mn} for some lift 
//  A \in Z_{mn} of a \in Z_n
//   
//  You can get an explicit formula for the inverse, basically it boils down 
//  to a comparison with the Z_n^2 case, and the observation that 
//  Z_{mn} --> Z_n is surjective on units. 

// The algorithm:
//
//  Step 1: reduce all entries mod p_i where i is the row index.
//  Step 2: Consider the bottom row of A.  Consider a group of columns for which 
//          they all share the same p_i. standard Gaussian elimination works to 
//          put zeros in all but one entry of this row.  Potential problem here 
//          the 1x1 case where the entry is a unit mod p_1
//  Step 3: Now we are in the situation where in this row, any two non-zero 
//          entries have distinct p_i's, where now i is the column index. 
//          Let them be in columns i and n respectively.  
//          Let l_1a_{ni} + l_2a_{nn} = gcd(a_{ni},a_{nn})=g, 
//          consider matrix [ v_n l_1 | -v_i l_2 ] where 
//          v_n = a_{nn}/g and v_i=a_{ni}/g.  This is a valid
//          column operation by Lemma 1 and some congruence munching. 
//          Apply, this reduces this bottom row to the point where it has only 
//          one non-zero entry and it is a unit mod the relevant p_i, 
//          so we can multiply by its inverse
//  Step 4: repeat inductively to square submatrix above and to the left of the 
//          nn entry.  This results in an upper diagonal matrix.  
//          Reapply step 1 gives all 1's down diagonal.
//  Step 5: row ops to convert to identity.  
// *Step 6: keep track of all the corresponding matrices, put together to 
//          assemble inverse. Notice it's all standard Gaussian elimination, 
//          just done in a funny order and with some modular arithmatic
//          stuffed in there. 
MatrixInt torsionAutInverse(const MatrixInt& input,
        const std::vector<Integer> &invF) {
    if (input.rows() != input.columns())
        throw InvalidArgument("torsionAutInverse() expects a square matrix");
    if (invF.size() != input.rows())
        throw InvalidArgument("torsionAutInverse(input, invF) expects "
            "the length of invF to match the side length of input");

    // inductive step begins right away. Start at bottom row.
    MatrixInt workMat( input );
    MatrixInt colOps( input.rows(), input.columns() );
    colOps.makeIdentity();

    size_t wRow = input.rows();
    while (wRow > 0) {
        wRow--;
        // step 1 modular reduction on the current row. And find last non-zero 
        // entry in this row up to wRow column
        size_t pivCol=0; 
        for (size_t i=0; i<=wRow; i++) {
            auto [Q, R] = workMat.entry(wRow, i).divisionAlg(invF[wRow]);
            workMat.entry(wRow, i) = R;
            if (R!=0) pivCol=i;
        } // now pivCol is the last non-zero entry in the 0..wRow square smatrix 

        // Step 2: transpose pivCol and column wRow
        if (wRow != pivCol)
            for (size_t i=0; i<workMat.rows(); i++) {
                workMat.entry(i, wRow).swap(workMat.entry(i, pivCol));
                colOps.entry(i, wRow).swap(colOps.entry(i, pivCol));
            }
        pivCol = wRow;

        // Step 3 Gauss eliminate whatever can be done. Start at rightmost 
        //  column (pivCol) and work to the left 
        size_t wCol = pivCol;
        while (wCol > 0) {
            wCol--;
            Integer g, l1, l2;
            g = workMat.entry( wRow, wCol ).gcdWithCoeffs( 
                               workMat.entry(wRow, pivCol), l1, l2 );
            Integer u1, u2;
            u1 = workMat.entry(wRow, wCol).divExact(g); 
            u2 = workMat.entry(wRow, pivCol).divExact(g); 
            // u1 l1 + u2 l2 = 1
            // [ u2 l1 | -u1 l2 ] is column op matrix for wCol and pivCol
            for (size_t i=0; i<workMat.rows(); i++) {
                // wCol -> u2 wCol - u1 pivCol, pivCol -> l1 wCol + l2 pivCol
                Integer W(workMat.entry(i, wCol)), P(workMat.entry(i, pivCol));
                workMat.entry(i, wCol) = u2*W - u1*P; 
                workMat.entry(i, pivCol) = l1*W + l2*P;
                W = colOps.entry(i, wCol);
                P = colOps.entry(i, pivCol);
                colOps.entry(i, wCol) = u2*W - u1*P; 
                colOps.entry(i, pivCol) = l1*W + l2*P; 
            }
        }
        // now workMat.entry(wRow, pivCol) is a unit mod invF[pivCol], 
        //  so find its inverse
        Integer g, a1, a2;
        g= workMat.entry( wRow, pivCol ).gcdWithCoeffs( invF[pivCol], a1, a2 );
        // a1 represents this multiplicative inverse so multiply column by it. 
        for (size_t i=0; i<workMat.rows(); i++) {
            colOps.entry( i, pivCol ) *= a1;
            workMat.entry( i, pivCol ) *= a1;
        }

        // step 4 mod reduce the only entry left, 
        //  recurse back to step 1 on the next row up. 
        auto [Q, R] = workMat.entry(wRow, pivCol).divisionAlg(invF[wRow]);
        workMat.entry(wRow, pivCol) = R;
        // so we should have 1's down the diagonal now as long 
        //  as I haven't screwed up.
    }

    MatrixInt rowOps( input.rows(), input.columns() );
    rowOps.makeIdentity();

    // step 5 upper triang -> identity.  Use row i to kill i-th entry of row j.
    for (size_t i=1; i<workMat.columns(); i++)
        for (size_t j=0; j<i; j++) {
            Integer X(workMat.entry(j, i)); 
            // now subtract X times row i from row j in both
            // workMat and retval. I guess we could eventually
            // avoid the ops on workMat since it won't affect
            // the return value but for debugging purposes we'll
            // keep it for now.
            for (size_t k=0; k<workMat.columns(); k++) {
                rowOps.entry(j, k) -= X*rowOps.entry(i, k);
                workMat.entry(j, k) -= X*workMat.entry(i, k);
            }
        }

    MatrixInt retval( input.rows(), input.columns() );
    for (size_t i=0; i<colOps.rows(); i++)
        for (size_t j=0; j<rowOps.columns(); j++) {
            for (size_t k=0; k<colOps.columns(); k++)
                retval.entry(i,j) += colOps.entry(i,k)*rowOps.entry(k,j);
            retval.entry(i,j) %= invF[i];
            if (retval.entry(i,j) < 0)
                retval.entry(i,j) += invF[i];
        }

    // done
    return retval;
}


bool metricFindPivot(size_t currStage, const MatrixInt &matrix, 
        size_t &pr, size_t &pc,
        const std::vector<Integer> &rowNorm,
        const std::vector<Integer> &colNorm, 
        const std::vector<Integer> &rowGCD) {
    bool pivotFound = false;
    // find the smallest positive rowGCD
    Integer SProwGCD; // zero

    for (size_t i=currStage; i<matrix.rows(); i++)
        if (rowGCD[i] != 0) {
            if (SProwGCD == 0) SProwGCD = rowGCD[i].abs();
            else if (SProwGCD > rowGCD[i].abs()) SProwGCD = rowGCD[i].abs();
        }

    for (size_t i=currStage; i<matrix.rows(); i++)
     if (rowGCD[i].abs() == SProwGCD)
      for (size_t j=currStage; j<matrix.columns(); j++)
       {
        if (matrix.entry(i,j) == 0) continue;
        if (pivotFound == false) { pivotFound = true; pr = i; pc = j; }
        else
         {
         // okay, so now we have a previous potential pivot and this one.
         //  Have to choose which one we 
         // prefer. 1st step, is the magnitude smaller? 
         if ( matrix.entry(i,j).abs() < matrix.entry(pr,pc).abs() ) 
          { pr = i; pc = j; }
         else // if not, maybe they're the same magnitude...
         if ( matrix.entry(i,j).abs() == matrix.entry(pr,pc).abs() )
          { // if magnitude == 1 we use the relative weight comparison. 
           if ( matrix.entry(i,j).abs() == 1 )
            {
            if ( (rowNorm[i] - matrix.entry(i,j).abs())*
                 (colNorm[j] - matrix.entry(i,j).abs()) < 
                 (rowNorm[pr] - matrix.entry(pr,pc).abs())*
                 (colNorm[pc] - matrix.entry(pr,pc).abs()) ) { pr = i; pc = j; }
            }   // if magnitude > 1 we use the rowNorm comparison.
           else // if rows the same? use colNorm...
            {
             if (i == pr) { if ( colNorm[j] < colNorm[pc] ) { pr = i; pc =j; } }
             else
              { if ( rowNorm[i] < rowNorm[pr] ) { pr = i; pc = j; } }
            }
          }
        }
      } 
    return pivotFound;
}

// switch rows i and j in matrix.  Keep track of change-of-basis
void metricSwitchRows(size_t currStage, size_t i, size_t j,
        MatrixInt &matrix, MatrixInt& colBasis, MatrixInt& colBasisInv,
        std::vector<Integer> &rowNorm, std::vector<Integer> &rowGCD)
{
    rowNorm[i].swap(rowNorm[j]); rowGCD[i].swap(rowGCD[j]);
    colBasis.swapRows(i, j);
    colBasisInv.swapCols(i, j);
    for (size_t k=currStage; k<matrix.columns(); k++)
        matrix.entry(i, k).swap(matrix.entry(j,k));
}

// switch columns i and j in matrix.  Keep track of change-of-basis matrix
void metricSwitchCols(size_t currStage, size_t i, size_t j,
        MatrixInt &matrix, MatrixInt& rowBasis, MatrixInt& rowBasisInv, 
        std::vector<Integer> &colNorm)
{
    colNorm[i].swap(colNorm[j]);
    rowBasis.swapCols(i, j);
    rowBasisInv.swapRows(i, j);
    for (size_t k=currStage; k<matrix.rows(); k++)
        matrix.entry(k, i).swap(matrix.entry(k, j));
}

// columns operation using 2x2-matrix [a b|c d] on columns i, j resp.
void metricColOp(size_t currStage, size_t i, size_t j, MatrixInt &matrix, 
        const Integer& a, const Integer& b, 
        const Integer& c, const Integer& d, 
        MatrixInt& rowBasis, MatrixInt& rowBasisInv, 
        std::vector<Integer> &rowNorm, 
        std::vector<Integer> &colNorm)
{
    Integer t1, t2;
    // smart rowMetric recomputation and transformation
    colNorm[i] = 0; colNorm[j] = 0;
    for (size_t k=currStage; k<matrix.rows(); k++)
    {
        t1 = a*matrix.entry(k, i) + c*matrix.entry(k, j);
        t2 = b*matrix.entry(k, i) + d*matrix.entry(k, j);
        rowNorm[k] += t1.abs() + t2.abs() - matrix.entry(k,i).abs() 
                                          - matrix.entry(k,j).abs();
        matrix.entry(k, i) = t1;
        matrix.entry(k, j) = t2;
        colNorm[i] += t1.abs();
        colNorm[j] += t2.abs();
    } // now modify rowBasis and rowBasisInv
    for (size_t k=0; k<matrix.columns(); k++) {
        // apply same column op to rowBasis
        t1 = a*rowBasis.entry(k, i) + c*rowBasis.entry(k, j);
        t2 = b*rowBasis.entry(k, i) + d*rowBasis.entry(k, j);
        rowBasis.entry(k, i) = t1;
        rowBasis.entry(k, j) = t2;
    }
    for (size_t k=0; k<matrix.columns(); k++) {
        // apply inverse row op to rowBasisInv
        t1 = d*rowBasisInv.entry(i, k) - b*rowBasisInv.entry(j, k);
        t2 = -c*rowBasisInv.entry(i, k) + a*rowBasisInv.entry(j, k);
        rowBasisInv.entry(i, k) = t1; rowBasisInv.entry(j, k) = t2;
    }
}

// row operation using 2x2-matrix [a b|c d] on rows i, j resp.
void metricRowOp(size_t currStage, size_t i, size_t j, MatrixInt &matrix, 
    const Integer& a, const Integer& b, 
    const Integer& c, const Integer& d, 
    MatrixInt& colBasis, MatrixInt& colBasisInv, 
    std::vector<Integer> &rowNorm, std::vector<Integer> &colNorm,
    std::vector<Integer> &rowGCD)
{
    Integer t1, t2;
    // smart norm recomputation and transformation
    rowNorm[i] = rowNorm[j] = 0;
    rowGCD[i] = rowGCD[j] = 0;
    for (size_t k=currStage; k<matrix.columns(); k++) {
        t1 = a*matrix.entry(i, k) + b*matrix.entry(j, k);
        t2 = c*matrix.entry(i, k) + d*matrix.entry(j, k);
        colNorm[k] += t1.abs() + t2.abs() - matrix.entry(i, k).abs() 
                                          - matrix.entry(j, k).abs();
        matrix.entry(i, k) = t1;
        matrix.entry(j, k) = t2; 
        rowNorm[i] += t1.abs();
        rowNorm[j] += t2.abs();
        rowGCD[i] = rowGCD[i].gcd(t1);
        rowGCD[j] = rowGCD[j].gcd(t2);
    } // now modify colBasis and colBasisInv
    for (size_t k=0; k<matrix.rows(); k++) {
        // apply same row op to colBasis
        t1 = a*colBasis.entry(i, k) + b*colBasis.entry(j, k);
        t2 = c*colBasis.entry(i, k) + d*colBasis.entry(j, k);
        colBasis.entry(i, k) = t1;
        colBasis.entry(j, k) = t2;
    }
    for (size_t k=0; k<matrix.rows(); k++) {
        // apply inverse column op to colBasisInv
        t1 =  d*colBasisInv.entry(k, i) - c*colBasisInv.entry(k, j);
        t2 = -b*colBasisInv.entry(k, i) + a*colBasisInv.entry(k, j);
        colBasisInv.entry(k, i) = t1; colBasisInv.entry(k, j) = t2;
    }
}

/**
 * This routine converts mxn matrix "matrix" into its Smith Normal Form.
 * It assumes rowSpaceBasis and rowSpaceBasisInv are pointers to MatrixInts, 
 * if alloceted, having dimension mxm, and colSpaceBasis and colSpaceBasisInv
 * has dimensions nxn.  These matrices record the row and columns operations
 * used to convert between "matrix" and its Smith Normal Form.  Specifically, 
 * if orig_matrix is "matrix" before metricalSmithNormalForm is called, and
 * after_matrix is "matrix" after metricalSmithNormalForm is called, then
 * we have the relations:
 *
 *    (*colSpaceBasis) * orig_matrix * (*rowSpaceBasis) == after_matrix
 *
 *    (*colSpaceBasisInv) * after_matrix * (*rowSpaceBasisInv) == orig_matrix
 *
 * If any of rowSpaceBasis, colSpaceBasis or rowSpaceBasisInv or
 * colSpaceBasisInv are \c null, this algorithm does not bother to
 * compute them (and is correspondingly faster).
 *
 * This routine uses a first-order technique to intelligently choose the
 * pivot when computing the Smith Normal Form, attempting to keep the matrix
 * sparse and its norm small throughout the reduction process.  The technique
 * is loosely based on the papers: 
 *
 * Havas, Holt, Rees. Recognizing badly Presented Z-modules. Linear Algebra
 * and its Applications. 192:137--163 (1993). 
 *
 * Markowitz. The elimination form of the inverse and its application to linear
 * programming. Management Sci. 3:255--269 (1957).
 */
void metricalSmithNormalForm(MatrixInt& matrix,
        MatrixInt &rowSpaceBasis, MatrixInt &rowSpaceBasisInv,
        MatrixInt &colSpaceBasis, MatrixInt &colSpaceBasisInv) {
    rowSpaceBasis = MatrixInt::identity(matrix.columns());
    rowSpaceBasisInv = MatrixInt::identity(matrix.columns());
    colSpaceBasis = MatrixInt::identity(matrix.rows());
    colSpaceBasisInv = MatrixInt::identity(matrix.rows());

    // set up metrics (all vectors are initialised to zero by default).
    std::vector<Integer> rowNorm(matrix.rows());
    std::vector<Integer> colNorm(matrix.columns());
    std::vector<Integer> rowGCD(matrix.rows());
    for (size_t i=0; i<matrix.rows(); i++)
        for (size_t j=0; j<matrix.columns(); j++) {
            rowNorm[i] += matrix.entry(i,j).abs();
            colNorm[j] += matrix.entry(i,j).abs();
            rowGCD[i]  = rowGCD[i].gcd(matrix.entry(i,j));
        }

    size_t currStage = 0;
    size_t i, j;
    while (metricFindPivot(currStage, matrix, i, j, rowNorm, colNorm, rowGCD)) {
        // entry i,j is now the pivot, so we move it to currStage, currStage.
        if (i != currStage)
            metricSwitchRows(currStage, currStage, i, matrix, colSpaceBasis,
                colSpaceBasisInv, rowNorm, rowGCD);
        if (j != currStage)
            metricSwitchCols(currStage, currStage, j, matrix, rowSpaceBasis,
                rowSpaceBasisInv, colNorm);
        Integer g, u, v;
rowMuckerLoop:
        // we come back here if the column operations later on mess
        // up row currStage first we do the col ops, eliminating
        // entries to the right of currStage, currStage
        for (j=currStage+1; j<matrix.columns(); j++)
            if (matrix.entry(currStage, j) != 0) {
                g = matrix.entry(currStage, currStage).gcdWithCoeffs(
                     matrix.entry(currStage, j), u, v);
                metricColOp(currStage, currStage, j, matrix, u,
                            -matrix.entry(currStage,j).divExact(g), v,
                            matrix.entry(currStage, currStage).divExact(g),
                            rowSpaceBasis, rowSpaceBasisInv, rowNorm, colNorm);
            }
        // then the row ops, eliminating entries below currStage, currStage
        for (i=currStage+1; i<matrix.rows(); i++)
            if (matrix.entry(i, currStage) != 0) {
                g = matrix.entry(currStage, currStage).gcdWithCoeffs(
                     matrix.entry(i, currStage), u, v);
                metricRowOp(currStage, currStage, i, matrix, u, v,
                            -matrix.entry(i,currStage).divExact(g),
                            matrix.entry(currStage,currStage).divExact(g),
                            colSpaceBasis, colSpaceBasisInv, rowNorm, colNorm,
                            rowGCD);
            }
        // scan row currStage, if it isn't zero, goto rowMuckerLoop
        for (j=currStage+1; j<matrix.columns(); j++)
            if (matrix.entry(currStage, j) != 0) goto rowMuckerLoop;
        // ensure matrix.entry(currStage, currStage) is positive
        if (matrix.entry(currStage, currStage)<0) {
            // we'll make it a column operation
            for (i=currStage; i<matrix.rows(); i++)
                matrix.entry(i, currStage).negate();
            for (i=0; i<matrix.columns(); i++)
                rowSpaceBasis.entry( i, currStage ).negate();
            for (i=0; i<matrix.columns(); i++)
                rowSpaceBasisInv.entry( currStage, i ).negate();
        }
        // run through rows currStage+1 to bottom, check if divisible by
        // matrix.entry(cs,cs). if not, record row and gcd(matrix.entry(cs,cs),
        //  rowGCD[this row],  pick the row with the lowest of these gcds...
        size_t rowT=currStage;
        Integer bestGCD(matrix.entry(currStage, currStage).abs());
        for (i=currStage+1; i<matrix.rows(); i++) {
            g = matrix.entry(currStage, currStage).gcd(rowGCD[i]).abs();
            if ( g < bestGCD ) {
                rowT = i;
                bestGCD = g;
            }
        }
        if ( rowT > currStage ) {
            metricRowOp(currStage, currStage, rowT, matrix,
                    Integer::one, Integer::one,
                    Integer::zero, Integer::one, colSpaceBasis,
                    colSpaceBasisInv, rowNorm, colNorm, rowGCD);
            goto rowMuckerLoop;
        }
        // done
        currStage++;
    }
    // no pivot found -- matrix down and to the right of currStage is zero.
    // so we're done.
}

} // namespace regina