File: numbertheory.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (181 lines) | stat: -rw-r--r-- 6,457 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include <algorithm>
#include <functional>
#include <numeric> // for std::gcd()
#include "maths/numbertheory.h"

namespace regina {

long reducedMod(long k, long modBase) {
    if (modBase <= 0)
        throw InvalidArgument(
            "reducedMod() requires modBase to be strictly positive");

    long ans = k % modBase;
    if (ans < 0) {
        if ((ans + modBase) <= (-ans))
            return (ans + modBase);
    } else if (-(ans - modBase) < ans)
        return (ans - modBase);
    return ans;
}

long gcd(long a, long b) {
    while (a != b && b != 0) {
        long tmp = a;
        a = b;
        b = tmp % b;
    }
    return (a >= 0 ? a : -a);
}

namespace {
    long gcdWithCoeffsInternal(long a, long b, long& u, long& v) {
        // PRE: a and b are non-negative.

        // First get the trivial cases out of the way.
        if (b == 0 || a == b) {
            u = 1; v = 0;
            return a;
        }
        if (a == 0) {
            u = 0; v = 1;
            return b;
        }

        u = 1;
        v = 0;
        long uu = 0;
        long vv = 1;
        while (b != 0) {
            // At each stage:
            //   a != b and a != 0;
            //   u*(a_orig) + v*(b_orig) = a;
            //   uu*(a_orig) + vv*(b_orig) = b;
            //   u*vv - uu*v = ±1;
            //   (u,v), (uu,vv), (u,uu), (v,vv) are all coprime pairs with
            //       opposite signs (we treat 0 as negative for this purpose).
            //
            // Moreover, if we treat magnitude as distance from 1/2 (so that
            // ... > |-1| > |0| == |1| < |2| < ...), then at every stage
            // we have |u| ≤ |uu| and |v| ≤ |vv|.
            long q = a / b;

            // (u,uu) <- (uu, u - q*uu)
            long tmp = u;
            u = uu;
            uu = tmp - (q * uu);

            // (v,vv) <- (vv, v - q*vv)
            tmp = v;
            v = vv;
            vv = tmp - (q * vv);

            // (a,b) <- (b, a % b)
            tmp = a;
            a = b;
            b = tmp % b;
        }

        // At this point:
        //   a = gcd = u*(a_orig) + v*(b_orig);
        //   (uu, vv) = ±(b_orig, -a_orig)/gcd.
        //
        // This means we have one of the following two scenarios:
        //
        // 1: (uu, vv) = (-b_orig, a_orig)/gcd.
        //    The magnitude result above then gives
        //    -a_orig/gcd < v ≤ 0 < u ≤ b_orig/gcd + 1,
        //    and the relation u*a_orig + v*b_orig = gcd then forces
        //    -a_orig/gcd < v ≤ 0 < u ≤ b_orig/gcd.
        //
        // 2: (uu, vv) = (b_orig, -a_orig)/gcd.
        //    The magnitude result above then gives
        //    -b_orig/gcd < u ≤ 0 < v ≤ a_orig/gcd + 1,
        //    and the relation u*a_orig + v*b_orig = gcd then forces
        //    -b_orig/gcd < u ≤ 0 < v ≤ a_orig/gcd.
        //
        // Our final aim is -a_orig/gcd < v ≤ 0 < u ≤ b_orig/gcd, which
        // is easy from here:

        if (u <= 0) {
            u += uu; // adds (b_orig / gcd)
            v += vv; // subtracts (a_orig / gcd)
        }

        return a;
    }
}

std::tuple<long, long, long> gcdWithCoeffs(long a, long b) {
    long signA = (a > 0 ? 1 : a == 0 ? 0 : -1);
    long signB = (b > 0 ? 1 : b == 0 ? 0 : -1);

    std::tuple<long, long, long> ans;
    std::get<0>(ans) = gcdWithCoeffsInternal(a >= 0 ? a : -a,
        b >= 0 ? b : -b, std::get<1>(ans), std::get<2>(ans));
    std::get<1>(ans) *= signA;
    std::get<2>(ans) *= signB;
    return ans;
}

long lcm(long a, long b) {
    if (a == 0 || b == 0)
        return 0;

    long tmp = std::gcd(a, b);
    tmp = (a / tmp) * b;
    return (tmp >= 0 ? tmp : -tmp);
}

long modularInverse(long n, long k) {
    if (n <= 0)
        throw InvalidArgument(
            "modularInverse(n, k) requires n to be strictly positive");
    if (n == 1)
        return 0;

    // Compute (d, u, v).
    auto ans = gcdWithCoeffs(n, k % n);

    // GCD should equal 1, so u*n + k*v = 1.
    if (std::get<0>(ans) != 1)
        throw InvalidArgument(
            "modularInverse(n, k) requires n and k to be coprime");

    // Inverse is v; note that -n < (+/-)v <= 0.
    // Since n >= 2 now and (n,k) = 1, we know v != 0.
    return (std::get<2>(ans) > 0 ? std::get<2>(ans) : std::get<2>(ans) + n);
}

} // namespace regina