File: perm.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (214 lines) | stat: -rw-r--r-- 8,195 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "maths/perm.h"

namespace regina {

template <int n>
void Perm<n>::precompute() {
    std::scoped_lock lock(precomputeMutex);
    if (invLower_)
        return;

    if constexpr (sizeof(size_t) <= 2 /* we always have n >= 8 here */) {
        // We are on a 16-bit machine.
        throw FailedPrecondition("This appears to be a 16-bit machine, and so "
            "cannot build tables for Perm<n>::precompute() for any n ≥ 8.");
    } else if constexpr (sizeof(size_t) == 3 && n >= 9) {
        // We are on a 24-bit machine.
        throw FailedPrecondition("This appears to be a 24-bit machine, and so "
            "cannot build tables for Perm<n>::precompute() for any n ≥ 9.");
    } else if constexpr (sizeof(size_t) < 8 && n >= 13) {
        // This is smaller than 64 bits; make the conservative (but very
        // reasonable) assumption that we are on a 32-bit machine.
        throw FailedPrecondition("This appears to be a 32-bit machine, and so "
            "cannot build tables for Perm<n>::precompute() for any n ≥ 13.");
    } else {
        try {
            invLower_ = new ImagePack[lowerCount];
            invUpper_ = new ImagePack[upperCount];
        } catch (const std::bad_alloc&) {
            throw FailedPrecondition("Not enough memory available to "
                "dynamically allocate tables for Perm<n>::precompute().");
        }

        LowerSlice lower;
        do {
            ImagePack d = 0;
            for (int i = 0; i < LowerSlice::length; ++i)
                d |= (static_cast<ImagePack>(i) << (imageBits * lower.image[i]));
            invLower_[lower.pack()] = d;
        } while (lower.lexInc());

        UpperSlice upper;
        do {
            ImagePack d = 0;
            for (int i = 0; i < UpperSlice::length; ++i)
                d |= (static_cast<ImagePack>(i + LowerSlice::length)
                    << (imageBits * upper.image[i]));
            invUpper_[upper.pack()] = d;
        } while (upper.lexInc());
    }
}

template <int n>
void Perm<n>::lexInc() {
    // The algorithm for lexicographical "next permutation": find the *last*
    // point in the sequence of images where successive images increase:
    // ..... p < q > r > s > ... > z
    // We then change p to whichever of z,...,s,r,q first exceeds it,
    // and then place the remaining images (along with p) in increasing order.

    int q = (*this)[n - 1];
    int p = (*this)[n - 2];
    if (p < q) {
        // The next permutation just swaps the last two images.
        swapImages(n - 2, n - 1);
        return;
    }

    int pIdx = n - 2;
    while (p > q && pIdx > 0) {
        q = p;
        --pIdx;
        p = (*this)[pIdx];
    }
    if (p > q) {
        // The sequence was entirely decreasing.
        // We have reached the end of our iteration.
        code_ = idCode_;
        return;
    }

    // Reverse the sequence from pIdx onwards.
    for (int i = 1; pIdx + i < n - i; ++i)
        swapImages(pIdx + i, n - i);

    // Now identify which element needs to be swapped with p.
    for (int i = pIdx + 1; i < n; ++i)
        if ((*this)[i] > p) {
            swapImages(pIdx, i);
            return;
        }
}

template <int n>
Perm<n>& Perm<n>::operator ++() {
    // We implement a lexicographic "next permutation" algorithm as above;
    // however, we want to increment according to Sn index, not orderedSn index.
    // Thus some mod 2 fiddling around signs is required.

    if (sign() > 0) {
        // Going from even to odd, we always just swap the last two elements.
        swapImages(n - 2, n - 1);
        return *this;
    }

    bool needSignChange = true;

    // The algorithm for lexicographical "next permutation": find the *last*
    // point in the sequence of images where successive images increase:
    // ..... p < q > r > s > ... > z
    // We then change p to whichever of z,...,s,r,q first exceeds it,
    // and then place the remaining images (along with p) in increasing order.
    // The sign changes iff the length of the sequence q > r > ... > z
    // is 0 or 1 (mod 4).

    int q = (*this)[n - 1];
    int p = (*this)[n - 2];
    int pIdx = n - 2;
    if (p < q) {
        // The next permutation just swaps the last two images.
        // However, since we started with an odd permutation, this will be
        // going *backwards* in the Sn ordering.
        // Swap them now, and carry on to get the *following* permutation.
        swapImages(n - 2, n - 1);
        std::swap(p, q);
        needSignChange = false;
    }
    while (p > q && pIdx > 0) {
        q = p;
        --pIdx;
        p = (*this)[pIdx];
    }
    if (p > q) {
        // The sequence was entirely decreasing.
        // We have reached the end of our iteration.
        code_ = idCode_;
        return *this;
    }

    // Reverse the sequence from pIdx onwards.
    for (int i = 1; pIdx + i < n - i; ++i)
        swapImages(pIdx + i, n - i);

    // Now identify which element needs to be swapped with p.
    for (int i = pIdx + 1; i < n; ++i)
        if ((*this)[i] > p) {
            swapImages(pIdx, i);
            break;
        }

    // Did the sign change?
    int seqRem = (n - 1 - pIdx) % 4;
    if (seqRem == 0 || seqRem == 1) {
        // The sign changed.
        if (! needSignChange)
            swapImages(n - 2, n - 1);
    } else {
        // The sign did not change.
        if (needSignChange)
            swapImages(n - 2, n - 1);
    }

    // Woof.
    return *this;
}

// Explicitly instantiate all of the higher-order permutation classes,
// so that their static data members are defined in one and only one place.
//
// See the notes alongside the matching extern declarations in the header
// for why we are doing this.  (Short answer: Windows is a terrible platform
// to try to port software to.)
//
template class Perm<8>;
template class Perm<9>;
template class Perm<10>;
template class Perm<11>;
template class Perm<12>;
template class Perm<13>;
template class Perm<14>;
template class Perm<15>;
template class Perm<16>;

} // namespace regina