1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "maths/perm.h"
namespace regina {
template <int n>
void Perm<n>::precompute() {
std::scoped_lock lock(precomputeMutex);
if (invLower_)
return;
if constexpr (sizeof(size_t) <= 2 /* we always have n >= 8 here */) {
// We are on a 16-bit machine.
throw FailedPrecondition("This appears to be a 16-bit machine, and so "
"cannot build tables for Perm<n>::precompute() for any n ≥ 8.");
} else if constexpr (sizeof(size_t) == 3 && n >= 9) {
// We are on a 24-bit machine.
throw FailedPrecondition("This appears to be a 24-bit machine, and so "
"cannot build tables for Perm<n>::precompute() for any n ≥ 9.");
} else if constexpr (sizeof(size_t) < 8 && n >= 13) {
// This is smaller than 64 bits; make the conservative (but very
// reasonable) assumption that we are on a 32-bit machine.
throw FailedPrecondition("This appears to be a 32-bit machine, and so "
"cannot build tables for Perm<n>::precompute() for any n ≥ 13.");
} else {
try {
invLower_ = new ImagePack[lowerCount];
invUpper_ = new ImagePack[upperCount];
} catch (const std::bad_alloc&) {
throw FailedPrecondition("Not enough memory available to "
"dynamically allocate tables for Perm<n>::precompute().");
}
LowerSlice lower;
do {
ImagePack d = 0;
for (int i = 0; i < LowerSlice::length; ++i)
d |= (static_cast<ImagePack>(i) << (imageBits * lower.image[i]));
invLower_[lower.pack()] = d;
} while (lower.lexInc());
UpperSlice upper;
do {
ImagePack d = 0;
for (int i = 0; i < UpperSlice::length; ++i)
d |= (static_cast<ImagePack>(i + LowerSlice::length)
<< (imageBits * upper.image[i]));
invUpper_[upper.pack()] = d;
} while (upper.lexInc());
}
}
template <int n>
void Perm<n>::lexInc() {
// The algorithm for lexicographical "next permutation": find the *last*
// point in the sequence of images where successive images increase:
// ..... p < q > r > s > ... > z
// We then change p to whichever of z,...,s,r,q first exceeds it,
// and then place the remaining images (along with p) in increasing order.
int q = (*this)[n - 1];
int p = (*this)[n - 2];
if (p < q) {
// The next permutation just swaps the last two images.
swapImages(n - 2, n - 1);
return;
}
int pIdx = n - 2;
while (p > q && pIdx > 0) {
q = p;
--pIdx;
p = (*this)[pIdx];
}
if (p > q) {
// The sequence was entirely decreasing.
// We have reached the end of our iteration.
code_ = idCode_;
return;
}
// Reverse the sequence from pIdx onwards.
for (int i = 1; pIdx + i < n - i; ++i)
swapImages(pIdx + i, n - i);
// Now identify which element needs to be swapped with p.
for (int i = pIdx + 1; i < n; ++i)
if ((*this)[i] > p) {
swapImages(pIdx, i);
return;
}
}
template <int n>
Perm<n>& Perm<n>::operator ++() {
// We implement a lexicographic "next permutation" algorithm as above;
// however, we want to increment according to Sn index, not orderedSn index.
// Thus some mod 2 fiddling around signs is required.
if (sign() > 0) {
// Going from even to odd, we always just swap the last two elements.
swapImages(n - 2, n - 1);
return *this;
}
bool needSignChange = true;
// The algorithm for lexicographical "next permutation": find the *last*
// point in the sequence of images where successive images increase:
// ..... p < q > r > s > ... > z
// We then change p to whichever of z,...,s,r,q first exceeds it,
// and then place the remaining images (along with p) in increasing order.
// The sign changes iff the length of the sequence q > r > ... > z
// is 0 or 1 (mod 4).
int q = (*this)[n - 1];
int p = (*this)[n - 2];
int pIdx = n - 2;
if (p < q) {
// The next permutation just swaps the last two images.
// However, since we started with an odd permutation, this will be
// going *backwards* in the Sn ordering.
// Swap them now, and carry on to get the *following* permutation.
swapImages(n - 2, n - 1);
std::swap(p, q);
needSignChange = false;
}
while (p > q && pIdx > 0) {
q = p;
--pIdx;
p = (*this)[pIdx];
}
if (p > q) {
// The sequence was entirely decreasing.
// We have reached the end of our iteration.
code_ = idCode_;
return *this;
}
// Reverse the sequence from pIdx onwards.
for (int i = 1; pIdx + i < n - i; ++i)
swapImages(pIdx + i, n - i);
// Now identify which element needs to be swapped with p.
for (int i = pIdx + 1; i < n; ++i)
if ((*this)[i] > p) {
swapImages(pIdx, i);
break;
}
// Did the sign change?
int seqRem = (n - 1 - pIdx) % 4;
if (seqRem == 0 || seqRem == 1) {
// The sign changed.
if (! needSignChange)
swapImages(n - 2, n - 1);
} else {
// The sign did not change.
if (needSignChange)
swapImages(n - 2, n - 1);
}
// Woof.
return *this;
}
// Explicitly instantiate all of the higher-order permutation classes,
// so that their static data members are defined in one and only one place.
//
// See the notes alongside the matching extern declarations in the header
// for why we are doing this. (Short answer: Windows is a terrible platform
// to try to port software to.)
//
template class Perm<8>;
template class Perm<9>;
template class Perm<10>;
template class Perm<11>;
template class Perm<12>;
template class Perm<13>;
template class Perm<14>;
template class Perm<15>;
template class Perm<16>;
} // namespace regina
|