1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "maths/permgroup.h"
namespace regina {
template <int n, bool cached>
typename PermGroup<n, cached>::iterator&
PermGroup<n, cached>::iterator::operator ++() {
int k = 1;
// Work out which pos_[k] needs to be incremented.
while (k < n && pos_[k] == group_->count_[k] - 1)
++k;
if (k == n) {
// Out of options.
pos_[0] = 1; // past-the-end
return *this;
}
// Conveniently, all the terms term_[i][j] that we _were_ using for i < k
// were identities, since we insist that term_[i][i] == id.
// Therefore the only term that we need to remove before the increment
// is the term for k.
if constexpr (cached)
current_ = current_.cachedComp(
group_->term_[group_->usable_[k][pos_[k]]][k]); /* inverse term */
else
current_ = current_ *
group_->term_[group_->usable_[k][pos_[k]]][k]; /* inverse term */
++pos_[k];
if constexpr (cached)
current_ = current_.cachedComp(
group_->term_[k][group_->usable_[k][pos_[k]]]);
else
current_ = current_ * group_->term_[k][group_->usable_[k][pos_[k]]];
if (k > 1) {
std::fill(pos_ + 1, pos_ + k, 0);
if constexpr (cached)
current_ = current_.cachedComp(group_->initSeq_[k - 1]);
else
current_ = current_ * group_->initSeq_[k - 1];
}
return *this;
}
template PermGroup<2, false>::iterator&
PermGroup<2, false>::iterator::operator ++();
template PermGroup<3, false>::iterator&
PermGroup<3, false>::iterator::operator ++();
template PermGroup<4, false>::iterator&
PermGroup<4, false>::iterator::operator ++();
template PermGroup<5, false>::iterator&
PermGroup<5, false>::iterator::operator ++();
template PermGroup<6, false>::iterator&
PermGroup<6, false>::iterator::operator ++();
template PermGroup<7, false>::iterator&
PermGroup<7, false>::iterator::operator ++();
template PermGroup<8, false>::iterator&
PermGroup<8, false>::iterator::operator ++();
template PermGroup<9, false>::iterator&
PermGroup<9, false>::iterator::operator ++();
template PermGroup<10, false>::iterator&
PermGroup<10, false>::iterator::operator ++();
template PermGroup<11, false>::iterator&
PermGroup<11, false>::iterator::operator ++();
template PermGroup<12, false>::iterator&
PermGroup<12, false>::iterator::operator ++();
template PermGroup<13, false>::iterator&
PermGroup<13, false>::iterator::operator ++();
template PermGroup<14, false>::iterator&
PermGroup<14, false>::iterator::operator ++();
template PermGroup<15, false>::iterator&
PermGroup<15, false>::iterator::operator ++();
template PermGroup<16, false>::iterator&
PermGroup<16, false>::iterator::operator ++();
template PermGroup<2, true>::iterator&
PermGroup<2, true>::iterator::operator ++();
template PermGroup<3, true>::iterator&
PermGroup<3, true>::iterator::operator ++();
template PermGroup<4, true>::iterator&
PermGroup<4, true>::iterator::operator ++();
template PermGroup<5, true>::iterator&
PermGroup<5, true>::iterator::operator ++();
template PermGroup<6, true>::iterator&
PermGroup<6, true>::iterator::operator ++();
template PermGroup<7, true>::iterator&
PermGroup<7, true>::iterator::operator ++();
template PermGroup<8, true>::iterator&
PermGroup<8, true>::iterator::operator ++();
template PermGroup<9, true>::iterator&
PermGroup<9, true>::iterator::operator ++();
template PermGroup<10, true>::iterator&
PermGroup<10, true>::iterator::operator ++();
template PermGroup<11, true>::iterator&
PermGroup<11, true>::iterator::operator ++();
template PermGroup<12, true>::iterator&
PermGroup<12, true>::iterator::operator ++();
template PermGroup<13, true>::iterator&
PermGroup<13, true>::iterator::operator ++();
template PermGroup<14, true>::iterator&
PermGroup<14, true>::iterator::operator ++();
template PermGroup<15, true>::iterator&
PermGroup<15, true>::iterator::operator ++();
template PermGroup<16, true>::iterator&
PermGroup<16, true>::iterator::operator ++();
template <int n, bool cached>
PermGroup<n, cached>::PermGroup(NamedPermGroup group) {
// Remember: all permutations not explicitly set here will be
// initialised to the identity.
switch (group) {
case NamedPermGroup::Symmetric:
for (int k = 1; k < n; ++k)
for (int j = 0; j < k; ++j) {
// These terms are all self-inverse.
term_[k][j] = term_[j][k] = Perm<n>(j, k);
}
for (int i = 0; i < n; ++i)
count_[i] = i + 1;
// Each usable_[i] should be the identity.
break;
case NamedPermGroup::Alternating:
for (int k = 2; k < n; ++k) {
// Each non-trivial term should be a 3-cycle.
if constexpr (cached) {
term_[k][0] = Perm<n>(0, k).cachedComp(Perm<n>(0, 1));
term_[0][k] = term_[k][0].cachedInverse();
} else {
term_[k][0] = Perm<n>(0, k) * Perm<n>(0, 1);
term_[0][k] = term_[k][0].inverse();
}
for (int j = 1; j < k; ++j) {
if constexpr (cached) {
term_[k][j] = Perm<n>(j, k).cachedComp(Perm<n>(0, j));
term_[j][k] = term_[k][j].cachedInverse();
} else {
term_[k][j] = Perm<n>(j, k) * Perm<n>(0, j);
term_[j][k] = term_[k][j].inverse();
}
}
}
count_[0] = 1;
count_[1] = 1; // this is where A_n differs from S_n
for (int i = 2; i < n; ++i)
count_[i] = i + 1;
// All usable_[k] should be the identity for k != 1.
usable_[1] = Perm<n>(0, 1);
break;
default:
// Each term_[k][j] should be the identity.
std::fill(count_, count_ + n, 1);
for (int i = 1; i < n; ++i)
usable_[i] = Perm<n>(0, i);
break;
}
setup();
}
template PermGroup<2, false>::PermGroup(NamedPermGroup);
template PermGroup<3, false>::PermGroup(NamedPermGroup);
template PermGroup<4, false>::PermGroup(NamedPermGroup);
template PermGroup<5, false>::PermGroup(NamedPermGroup);
template PermGroup<6, false>::PermGroup(NamedPermGroup);
template PermGroup<7, false>::PermGroup(NamedPermGroup);
template PermGroup<8, false>::PermGroup(NamedPermGroup);
template PermGroup<9, false>::PermGroup(NamedPermGroup);
template PermGroup<10, false>::PermGroup(NamedPermGroup);
template PermGroup<11, false>::PermGroup(NamedPermGroup);
template PermGroup<12, false>::PermGroup(NamedPermGroup);
template PermGroup<13, false>::PermGroup(NamedPermGroup);
template PermGroup<14, false>::PermGroup(NamedPermGroup);
template PermGroup<15, false>::PermGroup(NamedPermGroup);
template PermGroup<16, false>::PermGroup(NamedPermGroup);
template PermGroup<2, true>::PermGroup(NamedPermGroup);
template PermGroup<3, true>::PermGroup(NamedPermGroup);
template PermGroup<4, true>::PermGroup(NamedPermGroup);
template PermGroup<5, true>::PermGroup(NamedPermGroup);
template PermGroup<6, true>::PermGroup(NamedPermGroup);
template PermGroup<7, true>::PermGroup(NamedPermGroup);
template PermGroup<8, true>::PermGroup(NamedPermGroup);
template PermGroup<9, true>::PermGroup(NamedPermGroup);
template PermGroup<10, true>::PermGroup(NamedPermGroup);
template PermGroup<11, true>::PermGroup(NamedPermGroup);
template PermGroup<12, true>::PermGroup(NamedPermGroup);
template PermGroup<13, true>::PermGroup(NamedPermGroup);
template PermGroup<14, true>::PermGroup(NamedPermGroup);
template PermGroup<15, true>::PermGroup(NamedPermGroup);
template PermGroup<16, true>::PermGroup(NamedPermGroup);
template <int n, bool cached>
PermGroup<n, cached>::PermGroup(int k) {
// Remember: all permutations not explicitly set here will be
// initialised to the identity.
for (int upper = 1; upper < k; ++upper)
for (int lower = 0; lower < upper; ++lower) {
// These terms are all self-inverse.
term_[upper][lower] = term_[lower][upper] = Perm<n>(lower, upper);
}
for (int i = 0; i < k; ++i)
count_[i] = i + 1;
std::fill(count_ + k, count_ + n, 1);
// Each usable_[0..(k-1)] should be the identity.
for (int i = k; i < n; ++i)
usable_[i] = Perm<n>(0, i);
setup();
}
template PermGroup<2, false>::PermGroup(int);
template PermGroup<3, false>::PermGroup(int);
template PermGroup<4, false>::PermGroup(int);
template PermGroup<5, false>::PermGroup(int);
template PermGroup<6, false>::PermGroup(int);
template PermGroup<7, false>::PermGroup(int);
template PermGroup<8, false>::PermGroup(int);
template PermGroup<9, false>::PermGroup(int);
template PermGroup<10, false>::PermGroup(int);
template PermGroup<11, false>::PermGroup(int);
template PermGroup<12, false>::PermGroup(int);
template PermGroup<13, false>::PermGroup(int);
template PermGroup<14, false>::PermGroup(int);
template PermGroup<15, false>::PermGroup(int);
template PermGroup<16, false>::PermGroup(int);
template PermGroup<2, true>::PermGroup(int);
template PermGroup<3, true>::PermGroup(int);
template PermGroup<4, true>::PermGroup(int);
template PermGroup<5, true>::PermGroup(int);
template PermGroup<6, true>::PermGroup(int);
template PermGroup<7, true>::PermGroup(int);
template PermGroup<8, true>::PermGroup(int);
template PermGroup<9, true>::PermGroup(int);
template PermGroup<10, true>::PermGroup(int);
template PermGroup<11, true>::PermGroup(int);
template PermGroup<12, true>::PermGroup(int);
template PermGroup<13, true>::PermGroup(int);
template PermGroup<14, true>::PermGroup(int);
template PermGroup<15, true>::PermGroup(int);
template PermGroup<16, true>::PermGroup(int);
template <int n, bool cached>
bool PermGroup<n, cached>::contains(Perm<n> p) const {
for (int i = n - 1; i > 0; --i) {
// INV: p fixes all elements > i, and if p is in the group then it has
// a unique representation of the form:
// term_[i][...] * term_[i-1][...] * ... * term_[1][...].
int img = p[i];
if (img == i) {
// We are insisting that term_[i][i] is the identity.
// Nothing more to do other than move down to the next i.
continue;
}
// At this point we must have img < i.
if (term_[i][img].isIdentity()) {
// We cannot map i -> img.
return false;
}
if (cached)
p = term_[img][i].cachedComp(p); /* lhs is inverse */
else
p = term_[img][i] /* inverse term */ * p;
}
// Once we hit i == 0, p must be the identity.
return true;
}
template bool PermGroup<2, false>::contains(Perm<2>) const;
template bool PermGroup<3, false>::contains(Perm<3>) const;
template bool PermGroup<4, false>::contains(Perm<4>) const;
template bool PermGroup<5, false>::contains(Perm<5>) const;
template bool PermGroup<6, false>::contains(Perm<6>) const;
template bool PermGroup<7, false>::contains(Perm<7>) const;
template bool PermGroup<8, false>::contains(Perm<8>) const;
template bool PermGroup<9, false>::contains(Perm<9>) const;
template bool PermGroup<10, false>::contains(Perm<10>) const;
template bool PermGroup<11, false>::contains(Perm<11>) const;
template bool PermGroup<12, false>::contains(Perm<12>) const;
template bool PermGroup<13, false>::contains(Perm<13>) const;
template bool PermGroup<14, false>::contains(Perm<14>) const;
template bool PermGroup<15, false>::contains(Perm<15>) const;
template bool PermGroup<16, false>::contains(Perm<16>) const;
template bool PermGroup<2, true>::contains(Perm<2>) const;
template bool PermGroup<3, true>::contains(Perm<3>) const;
template bool PermGroup<4, true>::contains(Perm<4>) const;
template bool PermGroup<5, true>::contains(Perm<5>) const;
template bool PermGroup<6, true>::contains(Perm<6>) const;
template bool PermGroup<7, true>::contains(Perm<7>) const;
template bool PermGroup<8, true>::contains(Perm<8>) const;
template bool PermGroup<9, true>::contains(Perm<9>) const;
template bool PermGroup<10, true>::contains(Perm<10>) const;
template bool PermGroup<11, true>::contains(Perm<11>) const;
template bool PermGroup<12, true>::contains(Perm<12>) const;
template bool PermGroup<13, true>::contains(Perm<13>) const;
template bool PermGroup<14, true>::contains(Perm<14>) const;
template bool PermGroup<15, true>::contains(Perm<15>) const;
template bool PermGroup<16, true>::contains(Perm<16>) const;
template <int n, bool cached>
bool PermGroup<n, cached>::operator == (const PermGroup& other) const {
// A quick pre-check on count_[], which should be identical.
if (! std::equal(count_, count_ + n, other.count_))
return false;
// Check that every generator of this group belongs to other.
// If so, the groups are equal (since the sizes are the same, so we do
// not need to do the same test in reverse).
for (int k = 1; k < n; ++k) {
// Do not test the last generator term_[k][k], since this is the
// identity and so will pass for free.
for (int i = 0; i < count_[k] - 1; ++i) {
// Examine the following generator:
Perm<n> p = term_[k][usable_[k][i]];
// Our containment test is similar to contains(), but uses
// the fact that we already know that our term fixes k+1,...,n.
// See the contains() implementation for a full explanation.
for (int j = k; j > 0; --j) {
int img = p[j];
if (img == j)
continue;
if (other.term_[j][img].isIdentity())
return false;
if (cached)
p = other.term_[img][j].cachedComp(p); /* lhs is inverse */
else
p = other.term_[img][j] /* inverse term */ * p;
}
}
}
return true;
}
template bool PermGroup<2, false>::operator == (const PermGroup<2, false>&)
const;
template bool PermGroup<3, false>::operator == (const PermGroup<3, false>&)
const;
template bool PermGroup<4, false>::operator == (const PermGroup<4, false>&)
const;
template bool PermGroup<5, false>::operator == (const PermGroup<5, false>&)
const;
template bool PermGroup<6, false>::operator == (const PermGroup<6, false>&)
const;
template bool PermGroup<7, false>::operator == (const PermGroup<7, false>&)
const;
template bool PermGroup<8, false>::operator == (const PermGroup<8, false>&)
const;
template bool PermGroup<9, false>::operator == (const PermGroup<9, false>&)
const;
template bool PermGroup<10, false>::operator == (const PermGroup<10, false>&)
const;
template bool PermGroup<11, false>::operator == (const PermGroup<11, false>&)
const;
template bool PermGroup<12, false>::operator == (const PermGroup<12, false>&)
const;
template bool PermGroup<13, false>::operator == (const PermGroup<13, false>&)
const;
template bool PermGroup<14, false>::operator == (const PermGroup<14, false>&)
const;
template bool PermGroup<15, false>::operator == (const PermGroup<15, false>&)
const;
template bool PermGroup<16, false>::operator == (const PermGroup<16, false>&)
const;
template bool PermGroup<2, true>::operator == (const PermGroup<2, true>&) const;
template bool PermGroup<3, true>::operator == (const PermGroup<3, true>&) const;
template bool PermGroup<4, true>::operator == (const PermGroup<4, true>&) const;
template bool PermGroup<5, true>::operator == (const PermGroup<5, true>&) const;
template bool PermGroup<6, true>::operator == (const PermGroup<6, true>&) const;
template bool PermGroup<7, true>::operator == (const PermGroup<7, true>&) const;
template bool PermGroup<8, true>::operator == (const PermGroup<8, true>&) const;
template bool PermGroup<9, true>::operator == (const PermGroup<9, true>&) const;
template bool PermGroup<10, true>::operator == (const PermGroup<10, true>&)
const;
template bool PermGroup<11, true>::operator == (const PermGroup<11, true>&)
const;
template bool PermGroup<12, true>::operator == (const PermGroup<12, true>&)
const;
template bool PermGroup<13, true>::operator == (const PermGroup<13, true>&)
const;
template bool PermGroup<14, true>::operator == (const PermGroup<14, true>&)
const;
template bool PermGroup<15, true>::operator == (const PermGroup<15, true>&)
const;
template bool PermGroup<16, true>::operator == (const PermGroup<16, true>&)
const;
template <int n, bool cached>
void PermGroup<n, cached>::writeTextLong(std::ostream& out) const {
// We repeat the code for writeTextShort() because we would like to
// hang on to the computed group size for a bit longer.
auto s = size();
out << (s == 1 ? "Trivial" : s == Perm<n>::nPerms ? "Symmetric" :
(s << 1) == Perm<n>::nPerms ? "Alternating" : "Permutation");
out << " group of degree " << n << ", order " << s;
out << std::endl;
if (s == 1)
out << "No generators" << std::endl;
else {
out << "Generators:" << std::endl;
for (int k = 1; k < n; ++k)
if (count_[k] > 1) {
for (int i = 0; i < count_[k] - 1; ++i) {
if (i > 0)
out << ' ';
out << term_[k][usable_[k][i]];
}
out << std::endl;
}
}
}
template void PermGroup<2, false>::writeTextLong(std::ostream&) const;
template void PermGroup<3, false>::writeTextLong(std::ostream&) const;
template void PermGroup<4, false>::writeTextLong(std::ostream&) const;
template void PermGroup<5, false>::writeTextLong(std::ostream&) const;
template void PermGroup<6, false>::writeTextLong(std::ostream&) const;
template void PermGroup<7, false>::writeTextLong(std::ostream&) const;
template void PermGroup<8, false>::writeTextLong(std::ostream&) const;
template void PermGroup<9, false>::writeTextLong(std::ostream&) const;
template void PermGroup<10, false>::writeTextLong(std::ostream&) const;
template void PermGroup<11, false>::writeTextLong(std::ostream&) const;
template void PermGroup<12, false>::writeTextLong(std::ostream&) const;
template void PermGroup<13, false>::writeTextLong(std::ostream&) const;
template void PermGroup<14, false>::writeTextLong(std::ostream&) const;
template void PermGroup<15, false>::writeTextLong(std::ostream&) const;
template void PermGroup<16, false>::writeTextLong(std::ostream&) const;
template void PermGroup<2, true>::writeTextLong(std::ostream&) const;
template void PermGroup<3, true>::writeTextLong(std::ostream&) const;
template void PermGroup<4, true>::writeTextLong(std::ostream&) const;
template void PermGroup<5, true>::writeTextLong(std::ostream&) const;
template void PermGroup<6, true>::writeTextLong(std::ostream&) const;
template void PermGroup<7, true>::writeTextLong(std::ostream&) const;
template void PermGroup<8, true>::writeTextLong(std::ostream&) const;
template void PermGroup<9, true>::writeTextLong(std::ostream&) const;
template void PermGroup<10, true>::writeTextLong(std::ostream&) const;
template void PermGroup<11, true>::writeTextLong(std::ostream&) const;
template void PermGroup<12, true>::writeTextLong(std::ostream&) const;
template void PermGroup<13, true>::writeTextLong(std::ostream&) const;
template void PermGroup<14, true>::writeTextLong(std::ostream&) const;
template void PermGroup<15, true>::writeTextLong(std::ostream&) const;
template void PermGroup<16, true>::writeTextLong(std::ostream&) const;
template <int n, bool cached>
PermGroup<n, cached> PermGroup<n, cached>::centraliser(
const PermClass<n>& conj) {
// Begin with the trivial group.
PermGroup ans;
// The only k with non-trivial term_[k][j] (k > j) are those k that
// occur at the end of a cycle.
// Work through each group of cycles of the same size.
int eltStart = 0; // first element in the first cycle of this group
int eltEnd = 0; // first element in the first cycle of the *next* group
int cycleStart = 0; // first cycle of this group
int cycleEnd = 1; // first cycle of the *next* group
while (true) {
// INV: eltEnd == eltStart
// INV: cycleEnd == cycleStart + 1
int cycleLen = conj.cycle(cycleStart);
eltEnd += cycleLen;
int groupSize = 1;
while (true) {
// Process k as the last element of cycle #(cycleEnd - 1).
// We can move k to any j in the range eltStart ≤ j < k.
int k = eltEnd - 1;
if (k != eltStart) {
ans.count_[k] = eltEnd - eltStart;
ans.usable_[k] = Perm<n>::rot(eltStart);
if (cycleLen == 1) {
// This is a group of fixed points (length 1 cycles),
// so our terms can all just be pair swaps.
for (int j = eltStart; j < k; ++j)
ans.term_[k][j] = ans.term_[j][k] = Perm<n>(j, k);
} else {
int kCycleStart = k + 1 - cycleLen;
std::array<int, n> img;
// Permutations moving k to an earlier cycle in this group:
int j = eltStart;
for (int c = 0; c < groupSize - 1; ++c) {
// Build the cycle ( j j+1 ... j+cycleLen-1 )
for (int i = 0; i < j; ++i)
img[i] = i;
for (int i = j; i < j + cycleLen - 1; ++i)
img[i] = i + 1;
img[j + cycleLen - 1] = j;
for (int i = j + cycleLen; i < n; ++i)
img[i] = i;
Perm<n> shift(img);
// Build a swap between cycles:
// ( j j+1 ... ) <-> ( k kCycleStart ... k-1 )
for (int i = 0; i < j; ++i)
img[i] = i;
img[j] = k;
for (int i = j + 1; i < j + cycleLen; ++i)
img[i] = i + k - j - cycleLen;
for (int i = j + cycleLen; i < kCycleStart; ++i)
img[i] = i;
for (int i = kCycleStart; i < k; ++i)
img[i] = i + j + cycleLen - k;
img[k] = j;
for (int i = k + 1; i < n; ++i)
img[i] = i;
Perm<n> term(img);
for (int i = 0; i < cycleLen; ++i) {
ans.term_[k][j] = term;
ans.term_[j][k] = term.inverse();
term = shift * term;
++j;
}
}
// Permutations moving k within its own cycle:
// Build the cycle ( kCycleStart kCycleStart+1 ... k )
for (int i = 0; i < kCycleStart; ++i)
img[i] = i;
for (int i = kCycleStart; i < k; ++i)
img[i] = i + 1;
img[k] = kCycleStart;
for (int i = k + 1; i < n; ++i)
img[i] = i;
Perm<n> shift(img);
Perm<n> term = shift;
for (int i = 0; i < cycleLen - 1; ++i) {
ans.term_[k][j] = term;
ans.term_[j][k] = term.inverse();
term = shift * term;
++j;
}
// At this point we should have j == k, and we are done.
}
}
if (eltEnd == n)
goto done;
if (conj.cycle(cycleStart) != conj.cycle(cycleEnd))
break;
eltEnd += cycleLen;
++cycleEnd;
++groupSize;
}
// Move on to the next cycle group.
eltStart = eltEnd;
cycleStart = cycleEnd;
++cycleEnd;
}
done:
ans.setup();
return ans;
}
template PermGroup<2, false> PermGroup<2, false>::centraliser(
const PermClass<2>&);
template PermGroup<3, false> PermGroup<3, false>::centraliser(
const PermClass<3>&);
template PermGroup<4, false> PermGroup<4, false>::centraliser(
const PermClass<4>&);
template PermGroup<5, false> PermGroup<5, false>::centraliser(
const PermClass<5>&);
template PermGroup<6, false> PermGroup<6, false>::centraliser(
const PermClass<6>&);
template PermGroup<7, false> PermGroup<7, false>::centraliser(
const PermClass<7>&);
template PermGroup<8, false> PermGroup<8, false>::centraliser(
const PermClass<8>&);
template PermGroup<9, false> PermGroup<9, false>::centraliser(
const PermClass<9>&);
template PermGroup<10, false> PermGroup<10, false>::centraliser(
const PermClass<10>&);
template PermGroup<11, false> PermGroup<11, false>::centraliser(
const PermClass<11>&);
template PermGroup<12, false> PermGroup<12, false>::centraliser(
const PermClass<12>&);
template PermGroup<13, false> PermGroup<13, false>::centraliser(
const PermClass<13>&);
template PermGroup<14, false> PermGroup<14, false>::centraliser(
const PermClass<14>&);
template PermGroup<15, false> PermGroup<15, false>::centraliser(
const PermClass<15>&);
template PermGroup<16, false> PermGroup<16, false>::centraliser(
const PermClass<16>&);
template PermGroup<2, true> PermGroup<2, true>::centraliser(
const PermClass<2>&);
template PermGroup<3, true> PermGroup<3, true>::centraliser(
const PermClass<3>&);
template PermGroup<4, true> PermGroup<4, true>::centraliser(
const PermClass<4>&);
template PermGroup<5, true> PermGroup<5, true>::centraliser(
const PermClass<5>&);
template PermGroup<6, true> PermGroup<6, true>::centraliser(
const PermClass<6>&);
template PermGroup<7, true> PermGroup<7, true>::centraliser(
const PermClass<7>&);
template PermGroup<8, true> PermGroup<8, true>::centraliser(
const PermClass<8>&);
template PermGroup<9, true> PermGroup<9, true>::centraliser(
const PermClass<9>&);
template PermGroup<10, true> PermGroup<10, true>::centraliser(
const PermClass<10>&);
template PermGroup<11, true> PermGroup<11, true>::centraliser(
const PermClass<11>&);
template PermGroup<12, true> PermGroup<12, true>::centraliser(
const PermClass<12>&);
template PermGroup<13, true> PermGroup<13, true>::centraliser(
const PermClass<13>&);
template PermGroup<14, true> PermGroup<14, true>::centraliser(
const PermClass<14>&);
template PermGroup<15, true> PermGroup<15, true>::centraliser(
const PermClass<15>&);
template PermGroup<16, true> PermGroup<16, true>::centraliser(
const PermClass<16>&);
} // namespace regina
|