1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "manifold/graphloop.h"
#include "manifold/sfs.h"
#include "subcomplex/blockedsfsloop.h"
#include "subcomplex/layering.h"
#include "subcomplex/satregion-impl.h"
namespace regina {
std::unique_ptr<Manifold> BlockedSFSLoop::manifold() const {
try {
SFSpace sfs = region_.createSFS(false);
if (sfs.punctures() == 1) {
// The region has one larger boundary, but we pinch it to create
// two smaller boundaries.
sfs.addPuncture();
}
sfs.reduce(false);
return std::make_unique<GraphLoop>(std::move(sfs), matchingReln_);
} catch (const regina::NotImplemented&) {
return nullptr;
}
}
std::ostream& BlockedSFSLoop::writeName(std::ostream& out) const {
out << "Blocked SFS Loop [";
region_.writeBlockAbbrs(out, false);
return out << ']';
}
std::ostream& BlockedSFSLoop::writeTeXName(std::ostream& out) const {
out << R"(\mathrm{BSFS\_Loop}\left[)";
region_.writeBlockAbbrs(out, true);
return out << R"(\right])";
}
void BlockedSFSLoop::writeTextLong(std::ostream& out) const {
out << "Blocked SFS Loop, matching relation " << matchingReln_ << '\n';
region_.writeDetail(out, "Internal region");
}
std::unique_ptr<BlockedSFSLoop> BlockedSFSLoop::recognise(
const Triangulation<3>& tri) {
// Basic property checks.
if (! tri.isClosed())
return nullptr;
if (tri.countComponents() > 1)
return nullptr;
// Watch out for twisted block boundaries that are incompatible with
// neighbouring blocks! Also watch for saturated tori being joined
// to saturated Klein bottles. Any of these issues will result in
// edges joined to themselves in reverse.
if (! tri.isValid())
return nullptr;
// Hunt for a starting block.
std::unique_ptr<SatRegion> region;
Matrix2 matchingReln;
bool found = SatRegion::find(tri, false,
[&](std::unique_ptr<SatRegion> r, SatBlock::TetList& usedTets) {
if (r->countBoundaryAnnuli() != 2)
return false;
auto [bdryBlock0, bdryAnnulus0, bdryRefVert0, bdryRefHoriz0] =
r->boundaryAnnulus(0);
auto [bdryBlock1, bdryAnnulus1, bdryRefVert1, bdryRefHoriz1] =
r->boundaryAnnulus(1);
// We either want two disjoint one-annulus torus boundaries, or else a
// single two-annulus boundary that is pinched to turn each annulus into
// a two-sided torus. The following test will handle all cases. We
// don't worry about the degenerate case of fibres mapping to fibres
// through the layering in the pinched case, since this will fail
// our test anyway (either boundaries do not form tori, or they are
// not two-sided).
SatAnnulus bdry0 = bdryBlock0->annulus(bdryAnnulus0);
SatAnnulus bdry1 = bdryBlock1->annulus(bdryAnnulus1);
if (! (bdry0.isTwoSidedTorus() && bdry1.isTwoSidedTorus()))
return false;
// Look for a layering on the first boundary annulus.
// Extend the layering one tetrahedron at a time, to make sure we
// don't loop back onto ourselves.
Layering layering(bdry0.tet[0], bdry0.roles[0],
bdry0.tet[1], bdry0.roles[1]);
SatAnnulus layerTop;
Matrix2 layerToBdry1;
while (true) {
layerTop.tet[0] = layering.newBoundaryTet(0);
layerTop.tet[1] = layering.newBoundaryTet(1);
layerTop.roles[0] = layering.newBoundaryRoles(0);
layerTop.roles[1] = layering.newBoundaryRoles(1);
// Have we reached the second boundary?
if (bdry1.isJoined(layerTop, layerToBdry1))
break;
// We haven't joined up yet. Either extend or die.
if (! layering.extendOne()) {
// The layering dried up and we didn't make it.
return false;
}
if (usedTets.find(layering.newBoundaryTet(0)) !=
usedTets.end() ||
usedTets.find(layering.newBoundaryTet(1)) !=
usedTets.end()) {
// Gone too far -- we've looped back upon ourselves.
return false;
}
usedTets.insert(layering.newBoundaryTet(0));
usedTets.insert(layering.newBoundaryTet(1));
}
// This is it! Build the matching matrix and stop searching.
region = std::move(r);
// First find mappings from the fibre/base curves (fi, oi) to
// annulus #i edges (first triangle: 01, first triangle: 02).
// Note that each of these matrices is self-inverse.
Matrix2 curves0ToAnnulus0(bdryRefVert0 ? 1 : -1, 0, 0,
bdryRefHoriz0 ? -1 : 1);
Matrix2 curves1ToAnnulus1(bdryRefVert1 ? 1 : -1, 0, 0,
bdryRefHoriz1 ? -1 : 1);
// Put it all together.
// Remember that curves1ToAnnulus1 is self-inverse.
matchingReln = curves1ToAnnulus1 * layerToBdry1 *
layering.boundaryReln() * curves0ToAnnulus0;
return true;
});
if (found) {
// The expansion and self-adjacency worked, and the triangulation
// is known to be closed and connected.
// This means we've got one!
//
// Note: we cannot use make_unique here, since the class constructor
// is private.
return std::unique_ptr<BlockedSFSLoop>(new BlockedSFSLoop(
std::move(*region), matchingReln));
}
// Nope.
return nullptr;
}
} // namespace regina
|