File: layeredchainpair.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (182 lines) | stat: -rw-r--r-- 7,852 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "algebra/abeliangroup.h"
#include "manifold/sfs.h"
#include "maths/matrix.h"
#include "subcomplex/layeredchainpair.h"
#include "triangulation/dim3.h"

namespace regina {

std::unique_ptr<LayeredChainPair> LayeredChainPair::recognise(
        const Component<3>* comp) {
    // Basic property check.
    if ((! comp->isClosed()) || (! comp->isOrientable()))
        return nullptr;

    size_t nTet = comp->size();
    if (nTet < 2)
        return nullptr;
    if (comp->countVertices() != 1)
        return nullptr;

    // We have at least two tetrahedra and precisely 1 vertex.
    // The component is closed and orientable (and connected, since it's
    // a component).

    // Start with tetrahedron 0.  This must belong to *some* chain.
    Tetrahedron<3>* base = comp->tetrahedron(0);

    // Note that we only need check permutations in S3 since we can
    // arbitrarily assign the role of one vertex in the tetrahedron.
    for (auto p3: Perm<3>::S3) {
        LayeredChain first(base, Perm<4>::extend(p3));
        first.extendMaximal();

        Tetrahedron<3>* firstTop = first.top();
        Tetrahedron<3>* firstBottom = first.bottom();
        Perm<4> firstTopRoles = first.topVertexRoles();
        Perm<4> firstBottomRoles = first.bottomVertexRoles();

        // Check to see if the first chain fills the entire component.
        if (first.index() == nTet) {
            // The only success here will be if we have a chain pair of
            // indices (n-1) and 1, which is in fact a layered loop.

            LayeredChain longChain(firstBottom, firstBottomRoles);
            if (longChain.extendBelow())
                if (longChain.bottom() == firstTop &&
                        longChain.bottomVertexRoles() ==
                        firstTopRoles * Perm<4>(3, 2, 1, 0)) {
                    // We've got a layered loop!
                    if (nTet == 2) {
                        // The new chain is already too long.
                        longChain = LayeredChain(firstBottom, firstBottomRoles);
                    }

                    // Extend longChain to (n-1) tetrahedra.
                    while (longChain.index() + 1 < nTet)
                        longChain.extendBelow();
                    return std::unique_ptr<LayeredChainPair>(
                        new LayeredChainPair(
                            LayeredChain(
                                firstBottom->adjacentTetrahedron(
                                    firstBottomRoles[0]),
                                firstBottom->adjacentGluing(
                                    firstBottomRoles[0]) * firstBottomRoles *
                                    Perm<4>(0, 2, 1, 3)),
                            longChain));
                }

            continue;
        }

        // At this point we must have run into the second chain.
        Tetrahedron<3>* secondBottom = firstTop->adjacentTetrahedron(
            firstTopRoles[3]);
        if (secondBottom == firstTop || secondBottom == firstBottom ||
                ! secondBottom) {
            continue;
        }

        LayeredChain second(secondBottom,
            firstTop->adjacentGluing(firstTopRoles[3]) *
            firstTopRoles * Perm<4>(1, 3, 0, 2));
        while (second.extendAbove())
            ;

        if (second.index() + first.index() != nTet)
            continue;

        Tetrahedron<3>* secondTop = second.top();
        Perm<4> secondTopRoles = second.topVertexRoles();
        Perm<4> secondBottomRoles = second.bottomVertexRoles();

        // At this point we have two chains that together have the
        // correct number of tetrahedra.  All we need do is check the
        // remaining three between-chain gluings.
        if (secondTop == firstTop->adjacentTetrahedron(firstTopRoles[0]) &&
                secondBottom == firstBottom->adjacentTetrahedron(
                    firstBottomRoles[2]) &&
                secondTop == firstBottom->adjacentTetrahedron(
                    firstBottomRoles[1]) &&
                secondTopRoles == firstTop->adjacentGluing(
                    firstTopRoles[0]) * firstTopRoles * Perm<4>(0, 2, 1, 3) &&
                secondBottomRoles == firstBottom->adjacentGluing(
                    firstBottomRoles[2]) * firstBottomRoles *
                    Perm<4>(3, 1, 2, 0) &&
                secondTopRoles == firstBottom->adjacentGluing(
                    firstBottomRoles[1]) * firstBottomRoles *
                    Perm<4>(2, 0, 3, 1)) {
            // We found one!
            if (first.index() > second.index())
                return std::unique_ptr<LayeredChainPair>(
                    new LayeredChainPair(second, first));
            else
                return std::unique_ptr<LayeredChainPair>(
                    new LayeredChainPair(first, second));
        }
    }

    // Nothing was found.  Sigh.
    return nullptr;
}

std::unique_ptr<Manifold> LayeredChainPair::manifold() const {
    std::unique_ptr<SFSpace> ans(new SFSpace());

    ans->insertFibre(2, -1);
    ans->insertFibre(chain_[0].index() + 1, 1);
    ans->insertFibre(chain_[1].index() + 1, 1);

    ans->reduce();
    return ans;
}

AbelianGroup LayeredChainPair::homology() const {
    // The first homology group can be obtained from the matrix:
    //
    //   [  1  -1   1 ]
    //   [ n_1  1   1 ]
    //   [  1  n_2 -1 ]
    //
    // This is established simply by examining the edges on the boundary
    // of each layered chain.
    MatrixInt mat(3, 3);
    mat.fill(1);
    mat.entry(0, 1) = mat.entry(2, 2) = -1;
    mat.entry(1, 0) = chain_[0].index();
    mat.entry(2, 1) = chain_[1].index();
    return AbelianGroup(std::move(mat));
}

} // namespace regina