1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "algebra/abeliangroup.h"
#include "manifold/lensspace.h"
#include "manifold/sfs.h"
#include "subcomplex/layeredloop.h"
#include "triangulation/dim3.h"
namespace regina {
std::unique_ptr<Manifold> LayeredLoop::manifold() const {
if (hinge_[1]) {
// Not twisted.
return std::make_unique<LensSpace>(length_, 1);
} else {
// Twisted.
std::unique_ptr<SFSpace> ans(new SFSpace());
ans->insertFibre(2, -1);
ans->insertFibre(2, 1);
ans->insertFibre(length_, 1);
ans->reduce();
return ans;
}
}
std::unique_ptr<LayeredLoop> LayeredLoop::recognise(const Component<3>* comp) {
// Basic property check.
if ((! comp->isClosed()) || (! comp->isOrientable()))
return nullptr;
size_t nTet = comp->size();
if (nTet == 0)
return nullptr;
size_t nVertices = comp->countVertices();
if (nVertices > 2)
return nullptr;
bool twisted = (nVertices == 1);
// We have at least 1 tetrahedron and precisely 1 or 2 vertices.
// The component is closed and orientable (and connected, since it's
// a component).
// Pick our base tetrahedron.
Tetrahedron<3>* base = comp->tetrahedron(0);
Tetrahedron<3>* tet = base;
int adjTop0 = 0, adjTop1 = 0, adjBottom0 = 0, adjBottom1 = 0;
// Declare 0 to be a top face; find its partner.
int baseTop0 = 0;
Tetrahedron<3>* next = base->adjacentTetrahedron(0);
for (int baseTop1 = 1; baseTop1 < 4; baseTop1++) {
if (base->adjacentTetrahedron(baseTop1) != next)
continue;
// Find the vertex joined to baseTop0 by a hinge.
for (int baseBottom0 = 1; baseBottom0 < 4; baseBottom0++) {
if (baseBottom0 == baseTop1)
continue;
int baseBottom1 = 6 - baseBottom0 - baseTop0 - baseTop1;
// Some basic property checks.
if (base->adjacentTetrahedron(baseBottom0) !=
base->adjacentTetrahedron(baseBottom1))
continue;
int hinge0 = Edge<3>::edgeNumber[baseTop0][baseBottom0];
int hinge1 = Edge<3>::edgeNumber[baseTop1][baseBottom1];
if (twisted) {
if (base->edge(hinge0) != base->edge(hinge1))
continue;
if (base->edge(hinge0)->degree() != 2 * nTet)
continue;
} else {
if (base->edge(hinge0)->degree() != nTet)
continue;
if (base->edge(hinge1)->degree() != nTet)
continue;
}
int top0 = baseTop0;
int top1 = baseTop1;
int bottom0 = baseBottom0;
int bottom1 = baseBottom1;
// Follow the gluings up.
bool ok = true;
while (true) {
// Already set: tet, next, topi, bottomi.
// Check that both steps up lead to the same tetrahedron.
// Note that this check has already been done for the first
// iteration of this loop; never mind, no big loss.
if (tet->adjacentTetrahedron(top0) !=
tet->adjacentTetrahedron(top1)) {
ok = false;
break;
}
// Check that the corresponding gluings are correct.
Perm<4> p = tet->adjacentGluing(top0);
adjTop0 = p[bottom0];
adjTop1 = p[top1];
adjBottom0 = p[top0];
adjBottom1 = p[bottom1];
p = tet->adjacentGluing(top1);
// Note that only three of the four comparisons are needed.
if (adjTop0 != p[top0] || adjTop1 != p[bottom1] ||
adjBottom0 != p[bottom0]) {
ok = false;
break;
}
// If we've finished the loop, exit at this point so we
// can check that it all glued up correctly.
if (next == base)
break;
// We haven't finished the loop, so the next
// tetrahedron should be different from this one.
if (next == tet) {
ok = false;
break;
}
// Move to the next tetrahedron.
top0 = adjTop0; top1 = adjTop1;
bottom0 = adjBottom0; bottom1 = adjBottom1;
tet = next;
next = tet->adjacentTetrahedron(top0);
}
if (ok) {
// Make sure the final gluing wraps everything up
// correctly.
if (twisted) {
if (adjTop0 != baseTop1 || adjTop1 != baseTop0 ||
adjBottom0 != baseBottom1)
continue;
} else {
if (adjTop0 != baseTop0 || adjTop1 != baseTop1 ||
adjBottom0 != baseBottom0)
continue;
}
// We have a solution!
return std::unique_ptr<LayeredLoop>(new LayeredLoop(
nTet, base->edge(hinge0),
(twisted ? nullptr : base->edge(hinge1))));
}
}
}
// Nothing found.
return nullptr;
}
AbelianGroup LayeredLoop::homology() const {
if (hinge_[1]) {
// Untwisted.
if (length_ > 1)
return AbelianGroup(0, {length_});
else
return AbelianGroup();
} else {
// Twisted.
if (length_ % 2 == 0)
return AbelianGroup(0, {2,2});
else
return AbelianGroup(0, {4});
}
}
} // namespace regina
|