File: satannulus.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (312 lines) | stat: -rw-r--r-- 11,640 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include "maths/matrix2.h"
#include "subcomplex/satannulus.h"
#include "triangulation/dim3.h"

namespace regina {

int SatAnnulus::meetsBoundary() const {
    int ans = 0;
    if (! tet[0]->adjacentTetrahedron(roles[0][3]))
        ++ans;
    if (! tet[1]->adjacentTetrahedron(roles[1][3]))
        ++ans;
    return ans;
}

void SatAnnulus::switchSides() {
    for (int which = 0; which < 2; which++) {
        int face = roles[which][3];
        roles[which] = tet[which]->adjacentGluing(face) *
            roles[which];
        tet[which] = tet[which]->adjacentTetrahedron(face);
    }
}

std::tuple<bool, bool, bool> SatAnnulus::isAdjacent(const SatAnnulus& other)
        const {
    if (other.meetsBoundary())
        return { false, false, false };

    // See what is actually attached to the given annulus.
    SatAnnulus opposite(other);
    opposite.switchSides();

    if (opposite.tet[0] == tet[0] && opposite.tet[1] == tet[1]) {
        // Could be a match without horizontal reflection.

        if (opposite.roles[0] == roles[0] && opposite.roles[1] == roles[1]) {
            // Perfect match.
            return { true, false, false };
        }

        if (opposite.roles[0] == roles[0] * Perm<4>(0, 1) &&
                opposite.roles[1] == roles[1] * Perm<4>(0, 1)) {
            // Match with vertical reflection.
            return { true, true, false };
        }
    }

    if (opposite.tet[0] == tet[1] && opposite.tet[1] == tet[0]) {
        // Could be a match with horizontal reflection.

        if (opposite.roles[0] == roles[1] * Perm<4>(0, 1) &&
                opposite.roles[1] == roles[0] * Perm<4>(0, 1)) {
            // Match with horizontal reflection.
            return { true, false, true };
        }

        if (opposite.roles[0] == roles[1] && opposite.roles[1] == roles[0]) {
            // Match with both reflections.
            return { true, true, true };
        }
    }

    // No match.
    return { false, false, false };
}

bool SatAnnulus::isJoined(const SatAnnulus& other, Matrix2& matching) const {
    if (other.meetsBoundary())
        return false;

    // See what is actually attached to the given annulus.
    SatAnnulus opposite(other);
    opposite.switchSides();

    bool swapTriangles;
    Perm<4> roleMap; // Maps this 0/1/2 roles -> opposite 0/1/2 roles.
    if (opposite.tet[0] == tet[0] &&
            opposite.tet[1] == tet[1] &&
            opposite.roles[0][3] == roles[0][3] &&
            opposite.roles[1][3] == roles[1][3]) {
        swapTriangles = false;

        roleMap = opposite.roles[0].inverse() * roles[0];
        if (roleMap != opposite.roles[1].inverse() * roles[1])
            return false;
    } else if (opposite.tet[0] == tet[1] &&
            opposite.tet[1] == tet[0] &&
            opposite.roles[0][3] == roles[1][3] &&
            opposite.roles[1][3] == roles[0][3]) {
        swapTriangles = true;

        roleMap = opposite.roles[1].inverse() * roles[0];
        if (roleMap != opposite.roles[0].inverse() * roles[1])
            return false;
    } else
        return false;

    // It's a match.  We just need to work out the matching matrix.
    if        (roleMap == Perm<4>(0, 1, 2, 3)) {
        matching = Matrix2(1, 0, 0, 1);
    } else if (roleMap == Perm<4>(1, 2, 0, 3)) {
        matching = Matrix2(-1, 1, -1, 0);
    } else if (roleMap == Perm<4>(2, 0, 1, 3)) {
        matching = Matrix2(0, -1, 1, -1);
    } else if (roleMap == Perm<4>(0, 2, 1, 3)) {
        matching = Matrix2(0, 1, 1, 0);
    } else if (roleMap == Perm<4>(2, 1, 0, 3)) {
        matching = Matrix2(1, -1, 0, -1);
    } else if (roleMap == Perm<4>(1, 0, 2, 3)) {
        matching = Matrix2(-1, 0, -1, 1);
    }
    if (swapTriangles)
        matching.negate();

    return true;
}

bool SatAnnulus::isTwoSidedTorus() const {
    // Check that the edges are identified in opposite pairs and that we
    // have no duplicates.
    Edge<3>* e01 = tet[0]->edge(Edge<3>::edgeNumber[roles[0][0]][roles[0][1]]);
    Edge<3>* e02 = tet[0]->edge(Edge<3>::edgeNumber[roles[0][0]][roles[0][2]]);
    Edge<3>* e12 = tet[0]->edge(Edge<3>::edgeNumber[roles[0][1]][roles[0][2]]);

    if (e01 != tet[1]->edge(Edge<3>::edgeNumber[roles[1][0]][roles[1][1]]))
        return false;
    if (e02 != tet[1]->edge(Edge<3>::edgeNumber[roles[1][0]][roles[1][2]]))
        return false;
    if (e12 != tet[1]->edge(Edge<3>::edgeNumber[roles[1][1]][roles[1][2]]))
        return false;

    if (e01 == e02 || e02 == e12 || e12 == e01)
        return false;

    // Verify that edges are consistently oriented, and that the
    // orientations of the edge links indicate a two-sided torus.
    Perm<4> map0, map1;
    int a, b, x, y;
    for (int i = 0; i < 3; i++) {
        // Examine edges corresponding to annulus markings a & b.
        // We also set x & y as the complement of {a,b} in {0,1,2,3}.
        switch (i) {
            case 0: a = 0; b = 1; x = 2; y = 3; break;
            case 1: a = 0; b = 2; x = 1; y = 3; break;
            case 2: a = 1; b = 2; x = 0; y = 3; break;
        }

        // Get mappings from tetrahedron edge roles to annulus vertex roles.
        map0 = roles[0].inverse() * tet[0]->edgeMapping(
            Edge<3>::edgeNumber[roles[0][a]][roles[0][b]]);
        map1 = roles[1].inverse() * tet[1]->edgeMapping(
            Edge<3>::edgeNumber[roles[1][a]][roles[1][b]]);

        // We should have {a,b} -> {a,b} and {x,y} -> {x,y} for each map.

        // Make sure that the two annulus edges are oriented in the same way
        // (i.e., (a,b) <-> (b,a)), and that the edge link runs in opposite
        // directions through the annulus on each side (i.e., (x,y) <-> (y,x)).
        if (map0 != Perm<4>(a, b) * Perm<4>(x, y) * map1)
            return false;
    }

    // No unpleasantries.
    return true;
}

void SatAnnulus::transform(const Triangulation<3>& /* originalTri */,
        const Isomorphism<3>& iso, const Triangulation<3>& newTri) {
    for (int which = 0; which < 2; which++) {
        size_t tetID = tet[which]->index();
        tet[which] = newTri.tetrahedron(iso.tetImage(tetID));
        roles[which] = iso.facePerm(tetID) * roles[which];
    }
}

void SatAnnulus::attachLST(Tetrahedron<3>* t0, Perm<4> r0,
        Tetrahedron<3>* t1, Perm<4> r1, long alpha, long beta) {
    // Save ourselves headaches later.
    if (alpha == 0)
        throw InvalidArgument("SatAnnulus::attachLST() requires alpha "
            "to be non-zero");

    // The coprimality condition is checked by insertLayeredSolidTorus().
    // The conditions on the two boundary faces (being unglued and unlocked)
    // are checked within Simplex::join().

    // Normalise to alpha positive.
    if (alpha < 0) {
        alpha = -alpha;
        beta = -beta;
    }

    // Pull out the degenerate case.
    if (alpha == 2 && beta == 1) {
        t0->join(r0[3], t1, r1 * Perm<4>(0, 1) * r0.inverse());
        return;
    }

    // Insert a real layered solid torus.  How we do this depends on
    // relative signs and orderings.
    long diag = alpha - beta;

    // Our six possibilities are:
    //
    // 0 <= -diag  <   alpha <= beta:
    // 0 <   alpha <= -diag  <  beta:
    // 0 <   diag  <=  beta  <  alpha:
    // 0 <=  beta  <   diag  <= alpha:
    // 0 <  -beta  <=  alpha <  diag
    // 0 <   alpha <  -beta  <  diag

    // We can give the vertices of the tetrahedra "cut labels" as
    // follows (where the LST has parameters 0 <= cuts0 <= cuts1 <= cuts2):
    //
    //         cuts0
    //       *-------*
    //       |2  1 / |
    //       |    / 0|
    // cuts1 |   /   | cuts1
    //       |0 /    |
    //       | / 1  2|
    //       *-------*
    //         cuts0

    long cuts0, cuts1;
    Perm<4> cutsToRoles; // Maps cut labels to annulus vertex roles.
    if (alpha <= beta) {
        if (-diag < alpha) {
            // 0 <= -diag  <   alpha <= beta:
            cuts0 = -diag;
            cuts1 = alpha;
            cutsToRoles = Perm<4>(0, 2, 1, 3);
        } else {
            // 0 <   alpha <= -diag  <  beta:
            cuts0 = alpha;
            cuts1 = -diag;
            cutsToRoles = Perm<4>(2, 0, 1, 3);
        }
    } else if (0 <= beta) {
        if (diag <= beta) {
            // 0 <   diag  <=  beta  <  alpha:
            cuts0 = diag;
            cuts1 = beta;
            cutsToRoles = Perm<4>(0, 1, 2, 3);
        } else {
            // 0 <=  beta  <   diag  <= alpha:
            cuts0 = beta;
            cuts1 = diag;
            cutsToRoles = Perm<4>(1, 0, 2, 3);
        }
    } else {
        if (-beta <= alpha) {
            // 0 <  -beta  <=  alpha <  diag
            cuts0 = -beta;
            cuts1 = alpha;
            cutsToRoles = Perm<4>(1, 2, 0, 3);
        } else {
            // 0 <   alpha <  -beta  <  diag
            cuts0 = alpha;
            cuts1 = -beta;
            cutsToRoles = Perm<4>(2, 1, 0, 3);
        }
    }

    Tetrahedron<3>* lst = t0->triangulation().insertLayeredSolidTorus(
        cuts0, cuts1);

    // The boundary of the new LST sits differently for the special
    // cases (0,1,1) and (1,1,2); see the insertLayeredSolidTorus()
    // documentation for details.
    if (cuts1 == 1) {
        lst->join(3, t0, r0 * cutsToRoles * Perm<4>(1, 2, 0, 3));
        lst->join(2, t1, r1 * cutsToRoles * Perm<4>(2, 1, 3, 0));
    } else {
        lst->join(3, t0, r0 * cutsToRoles * Perm<4>(0, 1, 2, 3));
        lst->join(2, t1, r1 * cutsToRoles * Perm<4>(1, 0, 3, 2));
    }
}

} // namespace regina