1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "manifold/sfs.h"
#include "subcomplex/satblocktypes.h"
#include "subcomplex/satregion.h"
#include "triangulation/dim3.h"
#include <map>
#include <mutex>
#include <set>
#include <sstream>
namespace regina {
namespace {
std::mutex startersMutex;
/**
* An anonymous inline boolean xor. I'm always afraid to use ^ with
* bool, since I'm never sure if this bitwise operator will do the
* right thing on all platforms.
*
* (Update, 24/08/21: I'm pretty sure (bool != bool) does it. - Ben.)
*/
inline bool regXor(bool a, bool b) {
return ((a && ! b) || (b && ! a));
}
}
std::list<SatBlockModel> SatRegion::starters_;
void SatBlockSpec::writeTextShort(std::ostream& out) const {
block_->writeTextShort(out);
if (refVert_) {
if (refHoriz_)
out << ", rotated";
else
out << ", reflected(V)";
} else if (refHoriz_) {
out << ", reflected(H)";
}
}
void SatRegion::initStarters() {
std::scoped_lock lock(startersMutex);
if (starters_.empty()) {
starters_.push_back(SatTriPrism::model(true));
starters_.push_back(SatCube::model());
// Try various reflector strips of small length.
starters_.push_back(SatReflectorStrip::model(1, false));
starters_.push_back(SatReflectorStrip::model(1, true));
starters_.push_back(SatReflectorStrip::model(2, false));
starters_.push_back(SatReflectorStrip::model(2, true));
starters_.push_back(SatReflectorStrip::model(3, false));
starters_.push_back(SatReflectorStrip::model(3, true));
starters_.push_back(SatReflectorStrip::model(4, false));
starters_.push_back(SatReflectorStrip::model(4, true));
}
}
SatBlock* SatRegion::hasBlock(const SatAnnulus& annulus,
SatBlock::TetList& avoidTets) {
SatBlock* ans;
// Run through the types of blocks that we know about.
if ((ans = SatMobius::beginsRegion(annulus, avoidTets)))
return ans;
if ((ans = SatLST::beginsRegion(annulus, avoidTets)))
return ans;
if ((ans = SatTriPrism::beginsRegion(annulus, avoidTets)))
return ans;
if ((ans = SatCube::beginsRegion(annulus, avoidTets)))
return ans;
if ((ans = SatReflectorStrip::beginsRegion(annulus, avoidTets)))
return ans;
// As a last attempt, try a single layering. We don't have to worry
// about the degeneracy, since we'll never get a loop of these
// things (since that would form a disconnected component, and we
// never use one as a starting block).
if ((ans = SatLayering::beginsRegion(annulus, avoidTets)))
return ans;
// Nothing was found.
return nullptr;
}
SatRegion::SatRegion(SatBlock* starter) :
baseEuler_(1),
baseOrbl_(true),
hasTwist_(false),
twistsMatchOrientation_(true),
shiftedAnnuli_(0),
twistedBlocks_(0),
nBdryAnnuli_(starter->countAnnuli()) {
blocks_.push_back(SatBlockSpec(starter, false, false));
if (starter->twistedBoundary()) {
hasTwist_ = true;
twistsMatchOrientation_ = false;
twistedBlocks_ = 1;
}
}
SatRegion::SatRegion(const SatRegion& src) :
baseEuler_(src.baseEuler_),
baseOrbl_(src.baseOrbl_),
hasTwist_(src.hasTwist_),
twistsMatchOrientation_(src.twistsMatchOrientation_),
shiftedAnnuli_(src.shiftedAnnuli_),
twistedBlocks_(src.twistedBlocks_),
nBdryAnnuli_(src.nBdryAnnuli_)
{
// First clone the blocks, and keep a map from original blocks to
// their clones.
std::map<const SatBlock*, SatBlock*> clones;
for (const SatBlockSpec& b : src.blocks_) {
SatBlock* clone = b.block_->clone();
clones.insert(std::make_pair(b.block_, clone));
blocks_.push_back(SatBlockSpec(clone, b.refVert_, b.refHoriz_));
}
// Now fix the adjacencies in the cloned blocks.
for (const SatBlockSpec& b : blocks_) {
for (unsigned i = 0; i < b.block_->nAnnuli_; ++i)
if (b.block_->adjBlock_[i]) {
auto it = clones.find(b.block_->adjBlock_[i]);
if (it == clones.end()) {
// This should *not* happen.
b.block_->adjBlock_[i] = nullptr;
} else
b.block_->adjBlock_[i] = it->second;
}
}
}
std::tuple<const SatBlock*, size_t, bool, bool>
SatRegion::boundaryAnnulus(size_t which) const {
for (const SatBlockSpec& b : blocks_)
for (size_t ann = 0; ann < b.block()->countAnnuli(); ++ann)
if (! b.block()->hasAdjacentBlock(ann)) {
if (which == 0)
return { b.block(), ann, b.refVert(), b.refHoriz() };
--which;
}
throw InvalidArgument(
"SatRegion::boundaryAnnulus(): Invalid boundary annulus index");
}
bool SatRegion::operator == (const SatRegion& other) const {
if (blocks_ != other.blocks_)
return false;
// We have the same combinatorial types of blocks, presented in the same
// order with the same horizontal/vertical reflections. What we need to
// do now is confirm that the blocks are glued together in the same way.
// For this, we need to be able to convert block pointers to indices.
std::map<const SatBlock*, size_t> index;
size_t i = 0;
for (const SatBlockSpec& spec : blocks_)
index.emplace(spec.block(), i++);
// Now check all the adjacencies.
auto me = blocks_.begin();
auto you = other.blocks_.begin();
for ( ; me != blocks_.end(); ++me, ++you) {
const SatBlock* b = me->block();
for (size_t ann = 0; ann < b->countAnnuli(); ++ann) {
if (const SatBlock* adj = b->adjacentBlock(ann)) {
if (you->block()->adjacentBlock(ann) !=
other.blocks_[index.at(adj)].block())
return false;
if (you->block()->adjacentAnnulus(ann) !=
b->adjacentAnnulus(ann))
return false;
if (you->block()->adjacentReflected(ann) !=
b->adjacentReflected(ann))
return false;
if (you->block()->adjacentBackwards(ann) !=
b->adjacentBackwards(ann))
return false;
} else {
if (you->block()->hasAdjacentBlock(ann))
return false;
}
}
}
return true;
}
SFSpace SatRegion::createSFS(bool reflect) const {
// Count boundary components.
size_t untwisted, twisted;
countBoundaries(untwisted, twisted);
// Go ahead and build the Seifert fibred space.
SFSpace::Class baseClass;
bool bdry = (twisted || untwisted || twistedBlocks_);
if (baseOrbl_) {
if (hasTwist_)
baseClass = (bdry ? SFSpace::Class::bo2 : SFSpace::Class::o2);
else
baseClass = (bdry ? SFSpace::Class::bo1 : SFSpace::Class::o1);
} else if (! hasTwist_)
baseClass = (bdry ? SFSpace::Class::bn1 : SFSpace::Class::n1);
else if (twistsMatchOrientation_)
baseClass = (bdry ? SFSpace::Class::bn2 : SFSpace::Class::n2);
else {
// In the no-boundary case, we might not be able to distinguish
// between n3 and n4. Just call it n3 for now, and if we discover
// it might have been n4 instead then we call it off and throw
// an exception.
baseClass = (bdry ? SFSpace::Class::bn3 : SFSpace::Class::n3);
}
// Recall that baseEuler_ assumes that each block contributes a plain
// old disc to the base orbifold (and, in particular, it ignores any
// reflector boundaries arising from twistedBlocks_). This lets us
// calculate genus just by looking at baseEuler_, orientability and
// the number of punctures.
SFSpace sfs(baseClass,
(baseOrbl_ ? ((2 - baseEuler_) - twisted - untwisted) / 2 :
((2 - baseEuler_) - twisted - untwisted)),
untwisted /* untwisted punctures */, twisted /* twisted punctures */,
0 /* untwisted reflectors */, twistedBlocks_ /* twisted reflectors */);
for (const auto& b : blocks_)
b.block()->adjustSFS(sfs, ! regXor(reflect,
regXor(b.refVert(), b.refHoriz())));
if (shiftedAnnuli_)
sfs.insertFibre(1, reflect ? -shiftedAnnuli_ : shiftedAnnuli_);
if ((sfs.baseGenus() >= 3) &&
(sfs.baseClass() == SFSpace::Class::n3 ||
sfs.baseClass() == SFSpace::Class::n4)) {
// Could still be either n3 or n4.
// Shrug, give up.
throw NotImplemented("SatRegion::createSFS() cannot yet "
"distinguish between the closed non-orientable classes n3 and n4 "
"for large base orbifold genus");
}
return sfs;
}
bool SatRegion::expand(SatBlock::TetList& avoidTets, bool stopIfIncomplete) {
// Try to push past the boundary annuli of all blocks present and future.
// We rely on a vector data type for blocks_ here, since this
// will keep the loop doing exactly what it should do even if new
// blocks are added and blockFound.size() increases.
for (size_t pos = 0; pos < blocks_.size(); pos++) {
const SatBlockSpec& currBlockSpec = blocks_[pos];
// Keep a local copy of the contents of currBlockSpec, since
// our additions to the blocks_ vector might cause reallocation
// and therefore invalidate our reference.
SatBlock* currBlock = currBlockSpec.block_;
bool currVert = currBlockSpec.refVert();
bool currHoriz = currBlockSpec.refHoriz();
// Run through each boundary annulus for this block.
for (size_t ann = 0; ann < currBlock->countAnnuli(); ann++) {
if (currBlock->hasAdjacentBlock(ann))
continue;
// Do we have one or two boundary triangles?
int annBdryTriangles = currBlock->annulus(ann).meetsBoundary();
if (annBdryTriangles == 2) {
// The annulus lies completely on the triangulation
// boundary. Just skip it.
continue;
} else if (annBdryTriangles == 1) {
// The annulus lies half on the boundary. No chance of
// extending it from here, but we have no chance of
// filling the entire triangulation.
if (stopIfIncomplete)
return false;
continue;
}
// We can happily jump to the other side, since we know
// there are tetrahedra present.
// Is there a new block there?
if (SatBlock* adjBlock = hasBlock(
currBlock->annulus(ann).otherSide(), avoidTets)) {
// We found a new adjacent block that we haven't seen before.
// Note that, since the annuli are not horizontally
// reflected, the blocks themselves will be.
currBlock->setAdjacent(ann, adjBlock, 0, false, false);
blocks_.push_back(SatBlockSpec(adjBlock, false, ! currHoriz));
nBdryAnnuli_ = nBdryAnnuli_ + adjBlock->countAnnuli() - 2;
// Note whether the new block has twisted boundary.
if (adjBlock->twistedBoundary()) {
hasTwist_ = true;
twistsMatchOrientation_ = false;
twistedBlocks_++;
}
// On to the next annulus!
continue;
}
// No adjacent block.
// Perhaps it's joined to something we've already seen?
// Only search forwards from this annulus.
size_t adjPos, adjAnn;
if (ann + 1 < currBlock->countAnnuli()) {
adjPos = pos;
adjAnn = ann + 1;
} else {
adjPos = pos + 1;
adjAnn = 0;
}
while (adjPos < blocks_.size()) {
SatBlock* adjBlock = blocks_[adjPos].block_;
if (! adjBlock->hasAdjacentBlock(adjAnn)) {
auto [isAdj, adjVert, adjHoriz] = currBlock->annulus(ann).
isAdjacent(adjBlock->annulus(adjAnn));
if (isAdj) {
// They match!
currBlock->setAdjacent(ann, adjBlock, adjAnn,
adjVert, adjHoriz);
nBdryAnnuli_ -= 2;
// See what kinds of inconsistencies this
// rejoining has caused.
bool currNor = regXor(regXor(currHoriz,
blocks_[adjPos].refHoriz()), ! adjHoriz);
bool currTwisted = regXor(regXor(currVert,
blocks_[adjPos].refVert()), adjVert);
if (currNor)
baseOrbl_ = false;
if (currTwisted)
hasTwist_ = true;
if (regXor(currNor, currTwisted))
twistsMatchOrientation_ = false;
// See if we need to add a (1,1) shift before
// the annuli can be identified.
if (regXor(adjHoriz, adjVert)) {
if (regXor(currHoriz, currVert))
shiftedAnnuli_--;
else
shiftedAnnuli_++;
}
break;
}
}
if (adjAnn + 1 < adjBlock->countAnnuli())
adjAnn++;
else {
adjPos++;
adjAnn = 0;
}
}
// If we found a match, we're done. Move on to the next annulus.
if (adjPos < blocks_.size())
continue;
// We couldn't match the annulus to anything.
if (stopIfIncomplete)
return false;
}
}
// Well, we got as far as we got.
calculateBaseEuler();
return true;
}
long SatRegion::blockIndex(const SatBlock* block) const {
std::vector<SatBlockSpec>::const_iterator it;
size_t id;
for (id = 0, it = blocks_.begin(); it != blocks_.end(); it++, id++)
if (block == it->block())
return id;
return -1;
}
void SatRegion::calculateBaseEuler() {
size_t ann;
long faces = blocks_.size();
long edgesBdry = 0;
long edgesInternalDoubled = 0;
for (const SatBlockSpec& b : blocks_)
for (ann = 0; ann < b.block()->countAnnuli(); ann++)
if (b.block()->hasAdjacentBlock(ann))
edgesInternalDoubled++;
else
edgesBdry++;
// When counting vertices, don't just count unique edges in the
// triangulation -- we could run into strife with edge identifications
// outside the region. Count the boundary vertices separately (this
// is easy, since it's the same as the number of boundary edges).
std::set<Edge<3>*> baseVerticesAll;
std::set<Edge<3>*> baseVerticesBdry;
SatAnnulus annData;
for (const SatBlockSpec& b : blocks_)
for (ann = 0; ann < b.block()->countAnnuli(); ann++) {
annData = b.block()->annulus(ann);
baseVerticesAll.insert(annData.tet[0]->edge(
Edge<3>::edgeNumber[annData.roles[0][0]][annData.roles[0][1]]));
if (! b.block()->hasAdjacentBlock(ann)) {
baseVerticesBdry.insert(annData.tet[0]->edge(
Edge<3>::edgeNumber[annData.roles[0][0]][annData.roles[0][1]]));
baseVerticesBdry.insert(annData.tet[1]->edge(
Edge<3>::edgeNumber[annData.roles[1][0]][annData.roles[1][1]]));
}
}
// To summarise what was said above: the internal vertices are
// guaranteed to give distinct elements in the baseVertices sets,
// but the boundary vertices are not. Thus we calculate internal
// vertices via the sets, but boundary vertices via edgesBdry instead.
long vertices = baseVerticesAll.size() - baseVerticesBdry.size()
+ edgesBdry;
baseEuler_ = faces - edgesBdry - (edgesInternalDoubled / 2) + vertices;
}
void SatRegion::writeBlockAbbrs(std::ostream& out, bool tex) const {
// Here we temporarily sort the blocks, just for the purpose of output.
// TODO: Possibly we could keep them permanently in sorted order,
// but we should check that won't break anything else by forgetting
// the order of insertion/creation.
//
// Note: creating this secondary array should be cheap, since the
// number of blocks is typically small.
std::vector<const SatBlockSpec*> sorted(blocks_.size());
std::transform(blocks_.begin(), blocks_.end(), sorted.begin(),
[](const SatBlockSpec& s) {
return &s;
});
std::sort(sorted.begin(), sorted.end(),
[](const SatBlockSpec* a, const SatBlockSpec* b) {
return (*a->block()) < (*b->block());
});
bool first = true;
for (const SatBlockSpec* b : sorted) {
if (first)
first = false;
else
out << ", ";
b->block()->writeAbbr(out, tex);
}
}
void SatRegion::writeDetail(std::ostream& out, const std::string& title)
const {
out << title << ":\n";
std::vector<SatBlockSpec>::const_iterator it;
size_t id, nAnnuli, ann;
bool ref, back;
out << " Blocks:\n";
for (id = 0, it = blocks_.begin(); it != blocks_.end(); it++, id++) {
out << " " << id << ". ";
it->writeTextShort(out);
nAnnuli = it->block()->countAnnuli();
out << ", " << nAnnuli << (nAnnuli == 1 ? " annulus\n" : " annuli\n");
}
out << " Adjacencies:\n";
for (id = 0, it = blocks_.begin(); it != blocks_.end(); it++, id++)
for (ann = 0; ann < it->block()->countAnnuli(); ann++) {
out << " " << id << '/' << ann << " --> ";
if (! it->block()->hasAdjacentBlock(ann))
out << "bdry";
else {
out << blockIndex(it->block()->adjacentBlock(ann)) << '/'
<< it->block()->adjacentAnnulus(ann);
ref = it->block()->adjacentReflected(ann);
back = it->block()->adjacentBackwards(ann);
if (ref || back) {
if (ref && back)
out << " (reflected, backwards)";
else if (ref)
out << " (reflected)";
else
out << " (backwards)";
}
}
out << "\n";
}
}
void SatRegion::writeTextShort(std::ostream& out) const {
out << "[ ";
bool first = true;
for (const auto& b : blocks_) {
if (first)
first = false;
else
out << " | ";
b.writeTextShort(out);
}
out << " ]";
}
void SatRegion::countBoundaries(size_t& untwisted, size_t& twisted) const {
untwisted = twisted = 0;
// Just trace around each boundary component in turn.
// Note that we are guaranteed that blocks_ is non-empty.
size_t i, j;
// Count annuli in each block, and work out how to index all annuli
// from all blocks into a single monolithic array.
auto* nAnnuli = new size_t[blocks_.size()];
auto* indexAnnuliFrom = new size_t[blocks_.size()];
for (i = 0; i < blocks_.size(); ++i) {
nAnnuli[i] = blocks_[i].block()->countAnnuli();
indexAnnuliFrom[i] = (i == 0 ? 0 : indexAnnuliFrom[i-1] + nAnnuli[i-1]);
}
size_t totAnnuli = indexAnnuliFrom[blocks_.size() - 1] +
nAnnuli[blocks_.size() - 1];
// Prepare to keep track of which annuli we've processed.
bool* used = new bool[totAnnuli];
std::fill(used, used + totAnnuli, false);
// Off we go!
for (i = 0; i < blocks_.size(); ++i) {
const SatBlock* b = blocks_[i].block();
for (j = 0; j < nAnnuli[i]; ++j) {
// Here's our next annulus to examine.
if (used[indexAnnuliFrom[i] + j]) {
// Ignore: we've already processed this before.
continue;
}
if (b->hasAdjacentBlock(j)) {
// Ignore: this annulus is internal.
used[indexAnnuliFrom[i] + j] = true;
continue;
}
// This annulus is on the boundary, and not yet processed.
// Run around the entire boundary component, marking annuli
// as processed, and testing whether we close with a twist.
const SatBlock* currBlock = b;
size_t currBlockIndex = i;
size_t currAnnulus = j;
bool hTwist = false;
bool vTwist = false;
while (true) {
used[indexAnnuliFrom[currBlockIndex] + currAnnulus] = true;
auto [tmpBlock, tmpAnnulus, tmpVTwist, tmpHTwist] =
currBlock->nextBoundaryAnnulus(currAnnulus, hTwist);
if (tmpVTwist)
vTwist = ! vTwist;
if (tmpHTwist)
hTwist = ! hTwist;
currBlock = tmpBlock;
currAnnulus = tmpAnnulus;
// Gaa. We need a block pointer -> index lookup.
// Use a slow search for now.
for (currBlockIndex = 0; currBlockIndex < blocks_.size();
++currBlockIndex)
if (blocks_[currBlockIndex].block() == currBlock)
break;
if (currBlockIndex >= blocks_.size()) {
std::cerr << "ERROR: Could not index current block."
<< std::endl;
}
if (currBlock == b && currAnnulus == j)
break;
}
// See how the boundary component closed itself off.
if (hTwist) {
std::cerr
<< "ERROR: Unexpected hTwist in boundary tracing."
<< std::endl;
}
if (vTwist)
++twisted;
else
++untwisted;
}
}
//std::cout << "Region: " << twisted << " twisted, " << untwisted
// << " untwisted." << std::endl;
delete[] nAnnuli;
delete[] indexAnnuliFrom;
delete[] used;
}
} // namespace regina
|