1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include <algorithm>
#include "algebra/abeliangroup.h"
#include "manifold/handlebody.h"
#include "manifold/lensspace.h"
#include "manifold/simplesurfacebundle.h"
#include "subcomplex/trivialtri.h"
#include "triangulation/dim3.h"
namespace regina {
std::unique_ptr<TrivialTri> TrivialTri::recognise(const Component<3>* comp) {
// Since the triangulations are so small we can use census results
// to recognise the triangulations by properties alone.
// Are there any boundary components?
if (! comp->isClosed()) {
if (comp->countBoundaryComponents() == 1) {
// We have precisely one boundary component.
BoundaryComponent<3>* bc = comp->boundaryComponent(0);
if (! bc->isIdeal()) {
// The boundary component includes boundary triangles.
// Look for a one-tetrahedron ball.
if (comp->size() == 1) {
if (bc->countTriangles() == 4)
return std::unique_ptr<TrivialTri>(
new TrivialTri(BALL_4_VERTEX));
if (bc->countTriangles() == 2 && comp->countVertices() == 3)
return std::unique_ptr<TrivialTri>(
new TrivialTri(BALL_3_VERTEX));
}
}
}
// Not recognised.
return nullptr;
}
// Otherwise we are dealing with a closed component.
// Before we do our validity check, make sure the number of
// tetrahedra is in the supported range.
if (comp->size() > 3)
return nullptr;
// Is the triangulation valid?
// Since the triangulations is closed we know that the vertices are
// valid; all that remains is to check the edges.
size_t nEdges = comp->countEdges();
for (size_t i = 0; i < nEdges; i++)
if (! comp->edge(i)->isValid())
return nullptr;
// Test for the specific triangulations that we know about.
if (comp->size() == 2) {
if (comp->isOrientable()) {
if (comp->countVertices() == 4) {
// There's only one closed valid two-tetrahedron
// four-vertex orientable triangulation.
return std::unique_ptr<TrivialTri>(
new TrivialTri(SPHERE_4_VERTEX));
} else if (comp->countVertices() == 2) {
// The census says we have one of three triangulations:
// - cMcabbgig : S^3, edge degrees 6 4 1 1
// - cPcbbbaai : L(3,1), edge degrees 6 2 2 2
// - cPcbbbahh : RP^2, edge degrees 4 4 2 2
//
// The only one of these that *this* class is interested
// in detecting is the L(3,1).
for (const Edge<3>* e : comp->edges())
if (e->degree() == 4)
return nullptr;
return std::unique_ptr<TrivialTri>(new TrivialTri(L31_PILLOW));
}
} else {
// There's only one closed valid two-tetrahedron non-orientable
// triangulation.
return std::unique_ptr<TrivialTri>(new TrivialTri(N2));
}
return nullptr;
}
if (comp->size() == 3) {
if (! comp->isOrientable()) {
// If the triangulation is valid and the edge degrees
// are 2,4,4,6 then we have N(3,1) or N(3,2).
// All of the vertices are valid since there are no boundary
// triangles; we thus only need to check the edges.
if (comp->countEdges() != 4)
return nullptr;
size_t degree[4];
for (int i = 0; i < 4; i++)
degree[i] = comp->edge(i)->degree();
std::sort(degree, degree + 4);
if (degree[0] == 2 && degree[1] == 4 && degree[2] == 6 &&
degree[3] == 6) {
// We have N(3,1) or N(3,2)!
// Search for Mobius band triangles.
size_t nTriangles = comp->countTriangles();
for (size_t i = 0; i < nTriangles; i++)
if (comp->triangle(i)->formsMobiusBand())
return std::unique_ptr<TrivialTri>(
new TrivialTri(N3_2));
return std::unique_ptr<TrivialTri>(new TrivialTri(N3_1));
}
}
}
return nullptr;
}
std::unique_ptr<Manifold> TrivialTri::manifold() const {
switch (type_) {
case SPHERE_4_VERTEX:
return std::make_unique<LensSpace>(1, 0);
case BALL_3_VERTEX:
case BALL_4_VERTEX:
return std::make_unique<Handlebody>(0);
case L31_PILLOW:
return std::make_unique<LensSpace>(3, 1);
case N2:
return std::make_unique<SimpleSurfaceBundle>(
SimpleSurfaceBundle::S2xS1_TWISTED);
case N3_1:
case N3_2:
return std::make_unique<SimpleSurfaceBundle>(
SimpleSurfaceBundle::RP2xS1);
default:
return nullptr;
}
}
AbelianGroup TrivialTri::homology() const {
switch (type_) {
case L31_PILLOW:
return AbelianGroup(0, {3});
case N2:
return AbelianGroup(1);
case N3_1:
case N3_2:
return AbelianGroup(1, {2});
default:
return AbelianGroup();
}
}
std::ostream& TrivialTri::writeName(std::ostream& out) const {
switch (type_) {
case SPHERE_4_VERTEX:
out << "S3 (4-vtx)"; break;
case BALL_3_VERTEX:
out << "B3 (3-vtx)"; break;
case BALL_4_VERTEX:
out << "B3 (4-vtx)"; break;
case L31_PILLOW:
out << "L'(3,1)"; break;
case N2:
out << "N(2)"; break;
case N3_1:
out << "N(3,1)"; break;
case N3_2:
out << "N(3,2)"; break;
}
return out;
}
std::ostream& TrivialTri::writeTeXName(std::ostream& out) const {
switch (type_) {
case SPHERE_4_VERTEX:
out << "S^3_{v=4}"; break;
case BALL_3_VERTEX:
out << "B^3_{v=3}"; break;
case BALL_4_VERTEX:
out << "B^3_{v=4}"; break;
case L31_PILLOW:
out << "L'_{3,1}"; break;
case N2:
out << "N_{2}"; break;
case N3_1:
out << "N_{3,1}"; break;
case N3_2:
out << "N_{3,2}"; break;
}
return out;
}
void TrivialTri::writeTextLong(std::ostream& out) const {
switch (type_) {
case SPHERE_4_VERTEX:
out << "Two-tetrahedron four-vertex 3-sphere"; break;
case BALL_3_VERTEX:
out << "One-tetrahedron three-vertex ball"; break;
case BALL_4_VERTEX:
out << "One-tetrahedron four-vertex ball"; break;
case L31_PILLOW:
out << "Triangular pillow lens space L(3,1)"; break;
case N2:
out << "Non-orientable triangulation N(2)"; break;
case N3_1:
out << "Non-orientable triangulation N(3,1)"; break;
case N3_2:
out << "Non-orientable triangulation N(3,2)"; break;
}
}
} // namespace regina
|