1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include <queue>
#include "surface/disc.h"
#include "surface/normalsurface.h"
namespace regina {
std::vector<NormalSurface> NormalSurface::components() const {
if (connected_.has_value() && *connected_) {
// We already know that either the surface is empty or it is a
// single connected component.
if (isEmpty())
return {};
else
return { *this };
}
// Shamelessly copied from my orientation/two-sidedness code from
// years earlier. Some day I will need to make a generic structure
// for a depth-first search over normal discs. Not today.
// If the precondition (compactness) does not hold, things will get
// nasty (read: infinite).
if (! isCompact())
return {};
// TODO: First check that there aren't too many discs!
// The components structure stores an integer alongside each disc;
// that integer will be the ID of its connected component, or -1 if
// this is unknown. Components are numbered from 0 upwards.
DiscSetSurfaceData<long> components(*this, -1);
// Stores the component ID for each disc.
std::queue<DiscSpec> discQueue;
// A queue of discs whose component IDs must be propagated.
DiscSpecIterator it(components);
// Runs through the discs whose component IDs might not have yet
// been determined.
DiscSpec use;
// The disc that currently holds our interest.
int nGluingArcs; // The number of arcs on the current disc to
// which an adjacent disc might may be glued.
Perm<4> arc[8]; // Holds each gluing arc for the current disc.
long compID = 0; // The current working component ID.
long i;
while (true) {
// If there's no discs to propagate from, choose the next
// one without a component label.
while (discQueue.empty() && (! it.done())) {
if (components.data(*it) == -1) {
components.data(*it) = compID++;
discQueue.push(*it);
}
++it;
}
if (discQueue.empty())
break;
// At the head of the queue is the next already-labelled disc
// whose component ID must be propagated.
use = discQueue.front();
discQueue.pop();
// Determine along which arcs we may glue other discs.
if (use.type < 4) {
// Current disc is a triangle.
nGluingArcs = 3;
for (i = 0; i < 3; i++)
arc[i] = regina::triDiscArcs[use.type][i];
} else if (use.type < 7) {
// Current disc is a quad.
nGluingArcs = 4;
for (i = 0; i < 4; i++)
arc[i] = regina::quadDiscArcs[use.type - 4][i];
} else {
// Current disc is an octagon.
nGluingArcs = 8;
for (i = 0; i < 8; i++)
arc[i] = regina::octDiscArcs[use.type - 7][i];
}
// Process any discs that might be adjacent to each of these
// gluing arcs.
for (i = 0; i < nGluingArcs; ++i) {
// Establish which is the adjacent disc.
auto adjDisc = components.adjacentDisc(use, arc[i]);
if (! adjDisc)
continue;
// There is actually a disc glued along this arc.
// Propagate the component ID.
if (components.data(adjDisc->first) == -1) {
components.data(adjDisc->first) = components.data(use);
discQueue.push(adjDisc->first);
}
}
}
// Were there any discs at all?
if (compID == 0) {
connected_ = true;
return {};
}
// Create the set of normal surfaces!
// Note that all vectors are automagically initialised to zero.
std::vector<NormalSurface> dest;
std::vector<Vector<LargeInteger>> ans;
ans.reserve(compID);
if (couldBeAlmostNormal()) {
size_t size = 10 * triangulation_->size();
for (i = 0; i < compID; ++i)
ans.emplace_back(size);
for (const auto& disc : components)
++ans[components.data(disc)][10 * disc.tetIndex + disc.type];
for (i = 0; i < compID; ++i)
dest.emplace_back(triangulation_, NormalCoords::AlmostNormal,
ans[i]);
} else {
size_t size = 7 * triangulation_->size();
for (i = 0; i < compID; ++i)
ans.emplace_back(size);
for (const auto& disc : components)
++ans[components.data(disc)][7 * disc.tetIndex + disc.type];
for (i = 0; i < compID; ++i)
dest.emplace_back(triangulation_, NormalCoords::Standard, ans[i]);
}
connected_ = (compID == 1);
return dest;
}
bool NormalSurface::disjoint(const NormalSurface& other) const {
// Some sanity tests before we begin.
// These should all pass if the user has adhered to the preconditions.
if (! (isCompact() && other.isCompact()))
return false;
if (! (isConnected() && other.isConnected()))
return false;
// Begin with a local compatibility test.
if (! locallyCompatible(other))
return false;
// Now we know that the sum of both surfaces is an embedded surface.
// Form the sum, pull it apart into connected components, and see
// whether we get our original two surfaces back.
//
// Note: components() may return surfaces that use
// different vector encodings, but equality testing can handle this.
std::vector<NormalSurface> bits = ((*this) + other).components();
return (bits.size() == 2 && ((*this) == bits[0] || (*this) == bits[1]));
}
} // namespace regina
|