File: components.cpp

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (196 lines) | stat: -rw-r--r-- 7,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

/**************************************************************************
 *                                                                        *
 *  Regina - A Normal Surface Theory Calculator                           *
 *  Computational Engine                                                  *
 *                                                                        *
 *  Copyright (c) 1999-2025, Ben Burton                                   *
 *  For further details contact Ben Burton (bab@debian.org).              *
 *                                                                        *
 *  This program is free software; you can redistribute it and/or         *
 *  modify it under the terms of the GNU General Public License as        *
 *  published by the Free Software Foundation; either version 2 of the    *
 *  License, or (at your option) any later version.                       *
 *                                                                        *
 *  As an exception, when this program is distributed through (i) the     *
 *  App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or     *
 *  (iii) Google Play by Google Inc., then that store may impose any      *
 *  digital rights management, device limits and/or redistribution        *
 *  restrictions that are required by its terms of service.               *
 *                                                                        *
 *  This program is distributed in the hope that it will be useful, but   *
 *  WITHOUT ANY WARRANTY; without even the implied warranty of            *
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU     *
 *  General Public License for more details.                              *
 *                                                                        *
 *  You should have received a copy of the GNU General Public License     *
 *  along with this program. If not, see <https://www.gnu.org/licenses/>. *
 *                                                                        *
 **************************************************************************/

#include <queue>
#include "surface/disc.h"
#include "surface/normalsurface.h"

namespace regina {

std::vector<NormalSurface> NormalSurface::components() const {
    if (connected_.has_value() && *connected_) {
        // We already know that either the surface is empty or it is a
        // single connected component.
        if (isEmpty())
            return {};
        else
            return { *this };
    }

    // Shamelessly copied from my orientation/two-sidedness code from
    // years earlier.  Some day I will need to make a generic structure
    // for a depth-first search over normal discs.  Not today.

    // If the precondition (compactness) does not hold, things will get
    // nasty (read: infinite).
    if (! isCompact())
        return {};

    // TODO: First check that there aren't too many discs!

    // The components structure stores an integer alongside each disc;
    // that integer will be the ID of its connected component, or -1 if
    // this is unknown.  Components are numbered from 0 upwards.
    DiscSetSurfaceData<long> components(*this, -1);
        // Stores the component ID for each disc.
    std::queue<DiscSpec> discQueue;
        // A queue of discs whose component IDs must be propagated.
    DiscSpecIterator it(components);
        // Runs through the discs whose component IDs might not have yet
        // been determined.
    DiscSpec use;
        // The disc that currently holds our interest.

    int nGluingArcs;     // The number of arcs on the current disc to
                         //     which an adjacent disc might may be glued.
    Perm<4> arc[8];       // Holds each gluing arc for the current disc.

    long compID = 0;     // The current working component ID.
    long i;

    while (true) {
        // If there's no discs to propagate from, choose the next
        // one without a component label.
        while (discQueue.empty() && (! it.done())) {
            if (components.data(*it) == -1) {
                components.data(*it) = compID++;
                discQueue.push(*it);
            }
            ++it;
        }
        if (discQueue.empty())
            break;

        // At the head of the queue is the next already-labelled disc
        // whose component ID must be propagated.
        use = discQueue.front();
        discQueue.pop();

        // Determine along which arcs we may glue other discs.
        if (use.type < 4) {
            // Current disc is a triangle.
            nGluingArcs = 3;
            for (i = 0; i < 3; i++)
                arc[i] = regina::triDiscArcs[use.type][i];
        } else if (use.type < 7) {
            // Current disc is a quad.
            nGluingArcs = 4;
            for (i = 0; i < 4; i++)
                arc[i] = regina::quadDiscArcs[use.type - 4][i];
        } else {
            // Current disc is an octagon.
            nGluingArcs = 8;
            for (i = 0; i < 8; i++)
                arc[i] = regina::octDiscArcs[use.type - 7][i];
        }

        // Process any discs that might be adjacent to each of these
        // gluing arcs.
        for (i = 0; i < nGluingArcs; ++i) {
            // Establish which is the adjacent disc.
            auto adjDisc = components.adjacentDisc(use, arc[i]);
            if (! adjDisc)
                continue;

            // There is actually a disc glued along this arc.
            // Propagate the component ID.

            if (components.data(adjDisc->first) == -1) {
                components.data(adjDisc->first) = components.data(use);
                discQueue.push(adjDisc->first);
            }
        }
    }

    // Were there any discs at all?
    if (compID == 0) {
        connected_ = true;
        return {};
    }

    // Create the set of normal surfaces!
    // Note that all vectors are automagically initialised to zero.
    std::vector<NormalSurface> dest;
    std::vector<Vector<LargeInteger>> ans;
    ans.reserve(compID);

    if (couldBeAlmostNormal()) {
        size_t size = 10 * triangulation_->size();

        for (i = 0; i < compID; ++i)
            ans.emplace_back(size);

        for (const auto& disc : components)
            ++ans[components.data(disc)][10 * disc.tetIndex + disc.type];

        for (i = 0; i < compID; ++i)
            dest.emplace_back(triangulation_, NormalCoords::AlmostNormal,
                ans[i]);
    } else {
        size_t size = 7 * triangulation_->size();

        for (i = 0; i < compID; ++i)
            ans.emplace_back(size);

        for (const auto& disc : components)
            ++ans[components.data(disc)][7 * disc.tetIndex + disc.type];

        for (i = 0; i < compID; ++i)
            dest.emplace_back(triangulation_, NormalCoords::Standard, ans[i]);
    }

    connected_ = (compID == 1);
    return dest;
}

bool NormalSurface::disjoint(const NormalSurface& other) const {
    // Some sanity tests before we begin.
    // These should all pass if the user has adhered to the preconditions.
    if (! (isCompact() && other.isCompact()))
        return false;
    if (! (isConnected() && other.isConnected()))
        return false;

    // Begin with a local compatibility test.
    if (! locallyCompatible(other))
        return false;

    // Now we know that the sum of both surfaces is an embedded surface.
    // Form the sum, pull it apart into connected components, and see
    // whether we get our original two surfaces back.
    //
    // Note: components() may return surfaces that use
    // different vector encodings, but equality testing can handle this.
    std::vector<NormalSurface> bits = ((*this) + other).components();
    return (bits.size() == 2 && ((*this) == bits[0] || (*this) == bits[1]));
}

} // namespace regina