1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include <algorithm>
#include <thread>
#include "enumerate/treetraversal.h"
#include "surface/normalsurface.h"
#include "surface/prism.h"
#include "triangulation/dim3.h"
namespace regina {
/**
* The bulk of this file contains the implementation for cutAlong(),
* which cuts along a normal surface.
*
* The way this routine operates is as follows:
*
* - We add an extra set of vertex links to the original normal surface. We
* refer to the regions inside these vertex links as "vertex neighbourhoods".
* These neighbourhoods are typically balls (though around ideal vertices
* they are cones over the corresponding boundary surfaces).
*
* - If we cut along the new normal surface, each tetrahedron falls
* apart into the following types of blocks:
*
* + Triangular prisms, represented by the class TriPrism. There are
* four types of triangular prism, corresponding to the four triangular
* normal disc types that bound them.
*
* + Quadrilateral prisms, represented by the class QuadPrism. There
* are three types of quadrilateral prism, corresponding to the
* three quadrilateral normal disc types that bound them.
*
* + Tetrahedra truncated at all four vertices, represented by the
* class TruncTet. There is only one type of truncated tetrahedron.
*
* + Truncated half-tetrahedra, obtained by slicing a truncated
* tetrahedron along a quadrilateral normal disc and keeping one of
* the two halves that results. This is represented by the class
* TruncHalfTet. There are six types of truncated half-tetrahedra,
* corresponding to the three choices of "slicing quadrilateral" and
* the two choices of which half to keep.
*
* The reason we add the extra vertex links is to keep this list of
* block types small; otherwise we must also deal with _partially_
* truncated tetrahedra and half-tetrahedra.
*
* - We triangulate each of the blocks. There are two types of boundary
* for each block: (i) boundary faces that run along the normal
* surface, and (ii) boundary faces that run along the joins between
* adjacent tetrahedra. Faces (i) can be left alone (they will become
* the boundary of the final triangulation); faces (ii) need to be
* joined together according to how the original tetrahedra were
* joined together. Note that a handful of type (i) boundary faces
* run along the extra vertex links, and so these will be glued back
* onto the missing vertex neighbourhoods at the end of the cutting
* procedure.
*
* - For each block, we organise the boundaries of type (ii) into
* quadrilaterals and hexagons (each of which is the intersection of
* the block with a single face of the enclosing tetrahedron). These
* are represented by the classes BdryQuad and BdryHex respectively.
*
* - The overall cutting algorithm then works as follows:
*
* + Triangulate each block. The class TetBlockSet represents a full
* set of triangulated blocks within a single tetrahedron of the
* original triangulation.
*
* + Glue together the type (ii) boundaries between adjacent blocks,
* using layerings as needed to make the triangulated quadrilaterals
* and hexagons compatible.
*
* + Construct the missing vertex neighbourhoods and glue them back onto
* the appropriate type (i) block boundaries.
*
* See the individual classes for further details.
*/
// ------------------------------------------------------------------------
// Supporting classes for cutAlong()
// ------------------------------------------------------------------------
namespace {
class Bdry;
/**
* A single triangulated block within a single tetrahedron of the
* original triangulation.
*/
class Block {
protected:
const Tetrahedron<3>* outerTet_;
/**< The "outer tetrahedron". This is the tetrahedron
of the original triangulation that contains this block. */
Tetrahedron<3>** innerTet_;
/**< The "inner tetrahedra". These are the tetrahedra
used to triangulate this block, and also to
perform any necessary boundary layerings. */
unsigned nInnerTet_;
/**< The number of inner tetrahedra. */
Bdry* bdry_[4];
/**< The four quadrilateral / hexagonal type (ii) boundaries
of this block. These are boundaries that meet faces of
the outer tetrahedron (not boundaries that run along the
original normal surface). Specifically, bdry_[i]
is the boundary on face i of the outer tetrahedron
(or \c null if this block does not actually meet face \a i
of the outer tetrahedron). */
Tetrahedron<3>* link_[4];
/**< Indicates which inner tetrahedra in this block (if any)
face the vertices of the outer tetrahedron.
Specifically, if this block contains a triangle on its
boundary surrounding vertex i of the outer tetrahedron,
and if this triangle is facing vertex i (so the block
lies on the side of the triangle away from vertex i, not
towards vertex i), then link_[i] is the inner
tetrahedron containing this triangle. Otherwise, link_[i]
is null. */
Perm<4> linkVertices_[4];
/**< If link_[i] is non-zero, then linkVertices_[i] is
a mapping from vertices of the inner tetrahedron
\a link_[i] to vertices of the outer tetrahedron
\a outerTet. Specifically, if we let V denote
vertex i of the outer tetrahedron, then this mapping
sends the three vertices of the inner vertex linking
triangle surrounding V to the three "parallel" vertices of
the triangular face opposite V in the outer tetrahedron. */
public:
/**
* Destroys the four boundaries, but none of the inner
* tetrahedra or the outer tetrahedron.
*/
virtual ~Block();
/**
* Returns the outer tetrahedron.
*/
const Tetrahedron<3>* outerTet();
/**
* Glues this block to the given adjacent block. This
* involves taking the quadrilateral or hexagon boundary of
* this block that sits on the given face of this block's
* outer tetrahedron, and gluing it (using layerings if need
* be) to the corresponding quadrilateral or hexagon of the
* adjacent block.
*/
void join(int face, Block* other);
/**
* Creates a new inner tetrahedron within this block.
* It is assumed that this tetrahedron is to be used for
* layering on the block boundary. However, this layering
* will not be performed by this routine (so the new tetrahedron
* that is returned will be isolated).
*
* This routine assumes that the innerTet_ array has enough
* space for a new tetrahedron (which should be true if the
* correct arguments were passed to the Block constructor).
*
* The new tetrahedron will be automatically added to the
* same triangulation as the previous tetrahedra in this block.
*
* \pre This block already contains at least one inner tetrahedron.
*/
Tetrahedron<3>* layeringTetrahedron();
/**
* Attaches the triangle described by link_[vertex] to the
* given "small tetrahedron" that forms part of the corresponding
* vertex neighbourhood. It is assumed that the small tetrahedron
* in the neighbourhood will have its vertices numbered in a
* way that represents a "shrunk-down" version of the outer
* tetrahedron (where "shrunk-down" means dilation about the
* given outer tetrahedron vertex).
*/
void attachVertexNbd(Tetrahedron<3>* nbd, int vertex);
protected:
/**
* Creates a new block within the given outer tetrahedron.
* This constructor creates \a initialNumTet inner tetrahedra,
* but also leaves enough extra room in the inner tetrahedron
* array for up to \a maxLayerings layerings on the boundaries.
*
* All new inner tetrahedra created now and in subsequent
* layerings will be automatically inserted into the given
* triangulation.
*/
Block(const Tetrahedron<3>* outerTet, unsigned initialNumTet,
unsigned maxLayerings, Triangulation<3>& insertInto);
};
/**
* A triangular prism, triangulated using three inner tetrahedra.
*
* See cut-triprism.fig for details of the triangulation.
* In this diagram, inner tetrahedra are numbered T0, T1, ..., and
* vertices of the inner tetrahedra are indicated using plain integers.
* For a block of type 0 (see the constructor for details), vertices
* of the outer tetrahedron are indicated using integers in circles.
* For blocks of other types, vertex 0 is swapped with vertex \a type
* in the outer tetrahedron.
*/
class TriPrism : public Block {
public:
/**
* Creates a new triangular prism within the given outer
* tetrahedron.
*
* The given block type is an integer between 0 and 3
* inclusive, describing which triangle type in the
* outer tetrahedron supplies the two ends of the prism.
*
* Equivalently, the block type describes which vertex of
* the outer tetrahedron this triangular prism surrounds.
*
* All new inner tetrahedra will be automatically
* inserted into the given triangulation.
*/
TriPrism(const Tetrahedron<3> *outerTet, int type,
Triangulation<3>& insertInto);
};
/**
* A quadrilateral prism, triangulated using five inner tetrahedra.
*
* See cut-quadprism.fig for details of the triangulation.
* In this diagram, inner tetrahedra are numbered T0, T1, ..., and
* vertices of the inner tetrahedra are indicated using plain integers.
* For a block of type 1 (see the constructor for details), vertices
* of the outer tetrahedron are indicated using integers in circles.
* For blocks of other types, the vertices of the outer tetrahedron
* are permuted accordingly.
*/
class QuadPrism : public Block {
public:
/**
* Creates a new quadrilateral prism within the given outer
* tetrahedron.
*
* The given block type is an integer between 0 and 2
* inclusive, describing which quadrilateral type in the
* outer tetrahedron supplies the two ends of the prism.
*
* All new inner tetrahedra will be automatically
* inserted into the given triangulation.
*/
QuadPrism(const Tetrahedron<3> *outerTet, int type,
Triangulation<3>& insertInto);
};
/**
* A truncated half-tetrahedron, triangulated using eight inner tetrahedra.
*
* See cut-trunchalftet.fig for details of the triangulation.
* In this diagram, inner tetrahedra are numbered T0, T1, ..., and
* vertices of the inner tetrahedra are indicated using plain integers.
* For a block of type 0 (see the constructor for details), vertices
* of the outer tetrahedron are indicated using integers in circles.
* For blocks of other types, the vertices of the outer tetrahedron
* are permuted accordingly.
*/
class TruncHalfTet : public Block {
public:
/**
* Creates a new truncated half-tetrahedron within the given
* outer tetrahedron.
*
* The given block type is an integer between 0 and 5
* inclusive, describing which edge of the outer tetrahedron
* this half-tetrahedron does not meet at all.
*
* All new inner tetrahedra will be automatically
* inserted into the given triangulation.
*/
TruncHalfTet(const Tetrahedron<3> *outerTet, int type,
Triangulation<3>& insertInto);
};
/**
* A truncated tetrahedron, triangulated using eleven inner tetrahedra.
*
* See cut-trunctet.fig for details of the triangulation.
* In this diagram, inner tetrahedra are numbered T0, T1, ...,
* vertices of the inner tetrahedra are indicated using plain integers,
* and vertices of the outer tetrahedron are indicated using integers in
* circles.
*/
class TruncTet : public Block {
public:
/**
* Creates a new truncated tetrahedron within the given outer
* tetrahedron.
*
* All new inner tetrahedra will be automatically
* inserted into the given triangulation.
*/
TruncTet(const Tetrahedron<3> *outerTet, Triangulation<3>& insertInto);
};
/**
* Represents a quadrilateral or hexagonal piece of a block boundary.
* This is the intersection of a block with a single face of its
* outer tetrahedron.
*
* For each such quadrilateral or hexagon, we number the faces from
* 0 to 1 (for a quadrilateral) or 0 to 3 (for a hexagon); these are
* called the _inner_ boundary faces. The enclosing face of the
* outer tetrahedron is called the _outer_ boundary face.
*
* See boundaries.fig for details of how each quadrilateral or
* hexagon is triangulated. The inner boundary faces are numbered
* T0, T1, ..., the vertices of each inner boundary face are
* numbered using plain integers (these are the _inner_ vertex
* numbers), and the vertices of the outer boundary face are numbered
* using integers in circles (these are the _outer_ vertex numbers).
*/
class Bdry {
protected:
Block* block_;
/**< The block whose boundary this is a piece of. */
Perm<4> outerVertices_;
/**< A mapping from the outer vertex numbers 0, 1 and 2
to the corresponding vertex numbers in the
outer tetrahedron (block_->outerTet). */
public:
/**
* A virtual destructor that does nothing.
*/
virtual ~Bdry() = default;
/**
* Identifies (i.e., glues together) this piece of boundary
* and the given piece of boundary, performing layerings if
* required to make sure that the boundaries are compatible.
*
* This routine assumes that this and the given piece of
* boundary are the same shape (i.e., both quadrilaterals or
* both hexagons).
*/
virtual void join(Bdry* other) = 0; /* PRE: other is same shape */
protected:
/**
* Initialises a new object with the given block and the
* given mapping from outer vertex numbers to vertices of
* the outer tetrahedron.
*/
Bdry(Block* block, Perm<4> outerVertices);
};
/**
* A piece of block boundary that is a triangulated quadrilateral.
*
* See boundaries.fig for details of how the quadrilateral is
* triangulated, and see the Bdry class notes for what all the
* numbers on this diagram actually mean.
*/
class BdryQuad : public Bdry {
private:
Tetrahedron<3>* innerTet_[2];
/**< The two inner tetrahedra of the block that supply the
two inner boundary faces for this quadrilateral. */
Perm<4> innerVertices_[2];
/**< For the ith inner boundary face, the permutation
innerVertices_[i] maps the inner vertex numbers
0, 1 and 2 to the corresponding vertex numbers in
the inner tetrahedron innerTet_[i]. */
public:
/**
* See Bdry::join() for details.
*/
void join(Bdry* other) override;
private:
/**
* Initialises a new object with the given block and the
* given mapping from outer vertex numbers to vertices of
* the outer tetrahedron.
*/
BdryQuad(Block* block, Perm<4> outerVertices);
/**
* Layers a new tetrahedron upon the quadrilateral boundary, so
* that the triangulated quadrilateral becomes a reflection of
* itself. As a result, the diagram in boundaries.fig will
* likewise become reflected, and so the faces and vertex numbers
* within this diagram will now refer to different tetrahedra
* and vertices within the underlying block.
*/
void reflect();
friend class TriPrism;
friend class QuadPrism;
friend class TruncHalfTet;
};
/**
* A piece of block boundary that is a triangulated hexagon.
*
* See boundaries.fig for details of how the hexagon is
* triangulated, and see the Bdry class notes for what all the
* numbers on this diagram actually mean.
*/
class BdryHex : public Bdry {
private:
Tetrahedron<3>* innerTet_[4];
/**< The four inner tetrahedra of the block that supply the
four inner boundary faces for this quadrilateral. */
Perm<4> innerVertices_[4];
/**< For the ith inner boundary face, the permutation
innerVertices_[i] maps the inner vertex numbers
0, 1 and 2 to the corresponding vertex numbers in
the inner tetrahedron innerTet_[i]. */
public:
/**
* See Bdry::join() for details.
*/
void join(Bdry* other) override;
private:
/**
* Initialises a new object with the given block and the
* given mapping from outer vertex numbers to vertices of
* the outer tetrahedron.
*/
BdryHex(Block* block, Perm<4> outerVertices);
/**
* Layers four new tetrahedra upon the hexagon boundary, so
* that the triangulated hexagon becomes a reflection of
* itself. As a result, the diagram in boundaries.fig will
* likewise become reflected, and so the faces and vertex numbers
* within this diagram will now refer to different tetrahedra
* and vertices within the underlying block.
*/
void reflect();
/**
* Rotates the diagram from boundaries.fig by a one-third turn,
* so that the faces and vertex numbers in boundaries.fig
* correspond to different tetrahedra and vertex numbers in
* the underlying block.
*
* This is simply a relabelling operation; no layerings are
* performed, and no changes are made to the triangulation
* of the block itself.
*/
void rotate();
friend class TruncHalfTet;
friend class TruncTet;
};
/**
* Stores a full set of triangulated blocks within a single
* "outer" tetrahedron of the original triangulation, as formed by
* cutting along some normal surface within this original triangulation.
*/
class TetBlockSet {
private:
unsigned long triCount_[4];
/**< The number of triangular normal discs of each type
within this outer tetrahedron. This does _not_
include the "extra" vertex links that we add to
slice off a neighbourhood of each vertex of the
original triangulation. */
unsigned long quadCount_;
/**< The number of quadrilateral normal discs (of any type)
within this outer tetrahedron. The _type_ of these
quadrilaterals is stored in the separate data
member \a quadType_. */
int quadType_;
/**< The unique quadrilateral normal disc _type_ that appears
within this outer tetrahedron. This will be 0, 1 or 2
if there are indeed quadrilateral discs (i.e., quadCount_
is positive), or -1 if this outer tetrahedron contains no
quadrilateral discs at all (i.e., quadCount_ is zero). */
Block** triPrism_[4];
/**< The array triPrism_[i] contains all of the triangular
prism blocks surrounding vertex \a i of the outer
tetrahedron, or is null if there are no such blocks.
Such blocks exist if and only if the normal surface
contains at least one triangular disc of type \a i.
If these blocks do exist, they are stored in order moving
_away_ from vertex \a i of the outer tetrahedron
(or equivalently, moving in towards the centre of
the outer tetrahedron). */
Block** quadPrism_;
/**< An array containing all of the quadrilateral prism
blocks, or null if there are no such blocks within this
outer tetrahedron.
These blocks exist if and only if the normal
surface contains two or more quadrilateral discs.
If these blocks do exist, they are stored in order moving
_away_ from vertex 0 of the outer tetrahedron. */
Block* truncHalfTet_[2];
/**< The two truncated half-tetrahedron blocks, or null if
there are no such blocks within this outer tetrahedron.
These blocks exist if and only if the normal
surface contains one or more quadrilateral discs.
In this case, the block truncHalfTet_[0] is closer
to vertex 0 of the outer tetrahedron, and the block
truncHalfTet_[1] is further away. */
Block* truncTet_;
/**< The unique truncated tetrahedron block, or null if there
is no such block within this outer tetrahedron.
This block exists if and only if the normal surface
contains no quadrilateral discs. */
Tetrahedron<3>* vertexNbd_[4];
/**< The four small tetrahedra that contribute to the
vertex neighbourhoods surrounding the four vertices
of the outer tetrahedron. The vertices of each small
tetrahedron are numbered in a way that matches the
outer tetrahedron (so the small tetrahedron vertexNbd_[i]
looks like the outer tetrahedron, shrunk down using a
dilation about vertex \a i of the outer tetrahedron). */
public:
/**
* Creates a full set of triangulated blocks within the given
* outer tetrahedron, as formed by cutting along the given normal
* surface.
*
* This contructor also creates the four small tetrahedra in
* the vertex neighbourhoods, and glues them to the four
* blocks closest to the outer tetrahedron vertices.
*
* All new inner tetrahedra (that is, the inner tetrahedra
* from the triangulated blocks and also the small
* tetrahedra in the vertex neighbourhoods) will be automatically
* inserted into the given triangulation.
*/
TetBlockSet(const NormalSurface* s, size_t tetIndex,
Triangulation<3>& insertInto);
/**
* Destroys all block and boundary structures within this outer
* tetrahedron.
*
* Note that the inner tetrahedra that make up the triangulated
* blocks are _not_ destroyed (since presumably we are keeping
* these inner tetrahedra for the new sliced-open triangulation
* that we plan to give back to the user).
*/
~TetBlockSet();
/**
* Returns the number of blocks that provide quadrilateral
* boundaries on the given face of the outer tetrahedron,
* surrounding the given vertex of the outer tetrahedron.
*
* It is assumed that \a face and \a fromVertex are not equal.
*/
unsigned long numQuadBlocks(int face, int fromVertex);
/**
* Returns the requested block that provides a quadrilateral
* boundary on some particular face of the outer tetrahedron,
* surrounding the given vertex of the outer tetrahedron.
*
* Ordinarily the face number would be passed; however,
* it is omitted because it is not actually necessary.
* Nevertheless, the choice of face number affects how _many_
* such blocks are available; see numQuadBlocks() for details.
*
* Blocks are numbered 0,1,... outwards from the given vertex of
* the outer tetrahedron, in towards the centre of the outer
* tetrahedron. The argument \a whichBlock indicates which of
* these blocks should be returned.
*
* It is assumed that \a whichBlock is strictly less than
* numQuadBlocks(\a face, \a fromVertex), where \a face is
* the relevant face of the outer tetrahedron.
*/
Block* quadBlock(int fromVertex, unsigned long whichBlock);
/**
* Returns the (unique) block that provides a hexagon
* boundary on the given face of the outer tetrahedron, or
* null if there is no such block.
*/
Block* hexBlock(int face);
/**
* Returns the small tetrahedron that contributes to the
* vertex neighbourhood surrounding the given vertex of the
* outer tetrahedron.
*
* See the data member \a vertexNbd_ for further details.
*/
Tetrahedron<3>* vertexNbd(int vertex);
};
inline Block::~Block() {
for (auto& b : bdry_)
delete b;
delete[] innerTet_;
}
inline const Tetrahedron<3>* Block::outerTet() {
return outerTet_;
}
inline void Block::join(int face, Block* other) {
bdry_[face]->join(other->bdry_[outerTet_->adjacentFace(face)]);
}
inline Tetrahedron<3>* Block::layeringTetrahedron() {
return (innerTet_[nInnerTet_++] =
innerTet_[0]->triangulation().newTetrahedron());
}
inline void Block::attachVertexNbd(Tetrahedron<3>* nbd, int vertex) {
link_[vertex]->join(linkVertices_[vertex].pre(vertex),
nbd, linkVertices_[vertex]);
}
inline Block::Block(const Tetrahedron<3> *outerTet, unsigned initialNumTet,
unsigned maxLayerings, Triangulation<3>& insertInto) :
outerTet_(outerTet),
innerTet_(new Tetrahedron<3>*[initialNumTet + maxLayerings]),
nInnerTet_(initialNumTet) {
unsigned i;
for (i = 0; i < nInnerTet_; ++i)
innerTet_[i] = insertInto.newTetrahedron();
std::fill(link_, link_ + 4, nullptr);
}
TriPrism::TriPrism(const Tetrahedron<3> *outerTet, int type,
Triangulation<3>& insertInto) :
Block(outerTet, 3, 3, insertInto) {
innerTet_[1]->join(1, innerTet_[0], Perm<4>());
innerTet_[1]->join(3, innerTet_[2], Perm<4>());
Perm<4> vertices = Perm<4>(0, type);
BdryQuad* q;
bdry_[vertices[0]] = nullptr;
q = new BdryQuad(this, vertices * Perm<4>(0, 2, 3, 1));
q->innerTet_[0] = innerTet_[1];
q->innerTet_[1] = innerTet_[2];
q->innerVertices_[0] = Perm<4>(2, 3, 1, 0);
q->innerVertices_[1] = Perm<4>(1, 3, 2, 0);
bdry_[vertices[1]] = q;
q = new BdryQuad(this, vertices * Perm<4>(2, 3));
q->innerTet_[0] = innerTet_[0];
q->innerTet_[1] = innerTet_[2];
q->innerVertices_[0] = Perm<4>(2, 1, 0, 3);
q->innerVertices_[1] = Perm<4>(0, 3, 2, 1);
bdry_[vertices[2]] = q;
q = new BdryQuad(this, vertices);
q->innerTet_[0] = innerTet_[0];
q->innerTet_[1] = innerTet_[1];
q->innerVertices_[0] = Perm<4>(3, 1, 0, 2);
q->innerVertices_[1] = Perm<4>(0, 1, 3, 2);
bdry_[vertices[3]] = q;
link_[vertices[0]] = innerTet_[0];
linkVertices_[vertices[0]] = vertices * Perm<4>(0, 1, 3, 2);
}
QuadPrism::QuadPrism(const Tetrahedron<3> *outerTet, int type,
Triangulation<3>& insertInto) :
Block(outerTet, 5, 4, insertInto) {
innerTet_[4]->join(2, innerTet_[0], Perm<4>());
innerTet_[4]->join(3, innerTet_[1], Perm<4>());
innerTet_[4]->join(0, innerTet_[2], Perm<4>());
innerTet_[4]->join(1, innerTet_[3], Perm<4>());
Perm<4> vertices(
regina::quadDefn[type][0],
regina::quadDefn[type][2],
regina::quadDefn[type][1],
regina::quadDefn[type][3]);
BdryQuad* q;
q = new BdryQuad(this, vertices * Perm<4>(2, 3, 1, 0));
q->innerTet_[0] = innerTet_[2];
q->innerTet_[1] = innerTet_[1];
q->innerVertices_[0] = Perm<4>(1, 0, 2, 3);
q->innerVertices_[1] = Perm<4>(2, 3, 1, 0);
bdry_[vertices[0]] = q;
q = new BdryQuad(this, vertices * Perm<4>(3, 0, 2, 1));
q->innerTet_[0] = innerTet_[3];
q->innerTet_[1] = innerTet_[2];
q->innerVertices_[0] = Perm<4>(2, 1, 3, 0);
q->innerVertices_[1] = Perm<4>(3, 0, 2, 1);
bdry_[vertices[1]] = q;
q = new BdryQuad(this, vertices * Perm<4>(0, 1, 3, 2));
q->innerTet_[0] = innerTet_[0];
q->innerTet_[1] = innerTet_[3];
q->innerVertices_[0] = Perm<4>(3, 2, 0, 1);
q->innerVertices_[1] = Perm<4>(0, 1, 3, 2);
bdry_[vertices[2]] = q;
q = new BdryQuad(this, vertices * Perm<4>(1, 2, 0, 3));
q->innerTet_[0] = innerTet_[1];
q->innerTet_[1] = innerTet_[0];
q->innerVertices_[0] = Perm<4>(0, 3, 1, 2);
q->innerVertices_[1] = Perm<4>(1, 2, 0, 3);
bdry_[vertices[3]] = q;
}
TruncHalfTet::TruncHalfTet(const Tetrahedron<3> *outerTet, int type,
Triangulation<3>& insertInto):
Block(outerTet, 8, 10, insertInto) {
innerTet_[1]->join(2, innerTet_[0], Perm<4>());
innerTet_[1]->join(1, innerTet_[2], Perm<4>());
innerTet_[1]->join(0, innerTet_[3], Perm<4>());
innerTet_[2]->join(0, innerTet_[4], Perm<4>());
innerTet_[3]->join(1, innerTet_[4], Perm<4>());
innerTet_[3]->join(3, innerTet_[5], Perm<4>());
innerTet_[5]->join(2, innerTet_[6], Perm<4>());
innerTet_[4]->join(2, innerTet_[7], Perm<4>());
Perm<4> vertices(
Edge<3>::edgeVertex[type][0],
Edge<3>::edgeVertex[type][1],
Edge<3>::edgeVertex[5 - type][0],
Edge<3>::edgeVertex[5 - type][1]);
BdryQuad* q;
BdryHex* h;
h = new BdryHex(this, vertices * Perm<4>(1, 3, 2, 0));
h->innerTet_[0] = innerTet_[2];
h->innerTet_[1] = innerTet_[7];
h->innerTet_[2] = innerTet_[5];
h->innerTet_[3] = innerTet_[4];
h->innerVertices_[0] = Perm<4>(2, 0, 1, 3);
h->innerVertices_[1] = Perm<4>(1, 2, 0, 3);
h->innerVertices_[2] = Perm<4>(0, 3, 2, 1);
h->innerVertices_[3] = Perm<4>(0, 2, 1, 3);
bdry_[vertices[0]] = h;
h = new BdryHex(this, vertices * Perm<4>(0, 3, 2, 1));
h->innerTet_[0] = innerTet_[0];
h->innerTet_[1] = innerTet_[7];
h->innerTet_[2] = innerTet_[6];
h->innerTet_[3] = innerTet_[3];
h->innerVertices_[0] = Perm<4>(1, 2, 3, 0);
h->innerVertices_[1] = Perm<4>(3, 2, 0, 1);
h->innerVertices_[2] = Perm<4>(0, 2, 1, 3);
h->innerVertices_[3] = Perm<4>(0, 1, 3, 2);
bdry_[vertices[1]] = h;
q = new BdryQuad(this, vertices * Perm<4>(3, 1, 0, 2));
q->innerTet_[0] = innerTet_[2];
q->innerTet_[1] = innerTet_[0];
q->innerVertices_[0] = Perm<4>(3, 1, 0, 2);
q->innerVertices_[1] = Perm<4>(0, 2, 3, 1);
bdry_[vertices[2]] = q;
q = new BdryQuad(this, vertices * Perm<4>(2, 0, 1, 3));
q->innerTet_[0] = innerTet_[6];
q->innerTet_[1] = innerTet_[5];
q->innerVertices_[0] = Perm<4>(3, 2, 1, 0);
q->innerVertices_[1] = Perm<4>(1, 2, 3, 0);
bdry_[vertices[3]] = q;
link_[vertices[2]] = innerTet_[6];
linkVertices_[vertices[2]] = vertices * Perm<4>(3, 2, 0, 1);
link_[vertices[3]] = innerTet_[7];
linkVertices_[vertices[3]] = vertices * Perm<4>(3, 1, 2, 0);
}
TruncTet::TruncTet(const Tetrahedron<3> *outerTet, Triangulation<3>& insertInto) :
Block(outerTet, 11, 16, insertInto) {
innerTet_[0]->join(2, innerTet_[4], Perm<4>());
innerTet_[1]->join(3, innerTet_[7], Perm<4>());
innerTet_[2]->join(0, innerTet_[6], Perm<4>());
innerTet_[3]->join(1, innerTet_[9], Perm<4>());
innerTet_[5]->join(3, innerTet_[4], Perm<4>());
innerTet_[5]->join(1, innerTet_[6], Perm<4>());
innerTet_[8]->join(0, innerTet_[7], Perm<4>());
innerTet_[8]->join(2, innerTet_[9], Perm<4>());
innerTet_[4]->join(1, innerTet_[10], Perm<4>());
innerTet_[6]->join(3, innerTet_[10], Perm<4>());
innerTet_[7]->join(2, innerTet_[10], Perm<4>());
innerTet_[9]->join(0, innerTet_[10], Perm<4>());
BdryHex* h;
h = new BdryHex(this, Perm<4>(2, 1, 3, 0));
h->innerTet_[0] = innerTet_[2];
h->innerTet_[1] = innerTet_[8];
h->innerTet_[2] = innerTet_[3];
h->innerTet_[3] = innerTet_[9];
h->innerVertices_[0] = Perm<4>(2, 0, 1, 3);
h->innerVertices_[1] = Perm<4>(1, 2, 0, 3);
h->innerVertices_[2] = Perm<4>(0, 1, 2, 3);
h->innerVertices_[3] = Perm<4>(0, 2, 1, 3);
bdry_[0] = h;
h = new BdryHex(this, Perm<4>(3, 2, 0, 1));
h->innerTet_[0] = innerTet_[3];
h->innerTet_[1] = innerTet_[5];
h->innerTet_[2] = innerTet_[0];
h->innerTet_[3] = innerTet_[4];
h->innerVertices_[0] = Perm<4>(3, 1, 2, 0);
h->innerVertices_[1] = Perm<4>(2, 3, 1, 0);
h->innerVertices_[2] = Perm<4>(1, 2, 3, 0);
h->innerVertices_[3] = Perm<4>(1, 3, 2, 0);
bdry_[1] = h;
h = new BdryHex(this, Perm<4>(0, 3, 1, 2));
h->innerTet_[0] = innerTet_[0];
h->innerTet_[1] = innerTet_[8];
h->innerTet_[2] = innerTet_[1];
h->innerTet_[3] = innerTet_[7];
h->innerVertices_[0] = Perm<4>(0, 2, 3, 1);
h->innerVertices_[1] = Perm<4>(3, 0, 2, 1);
h->innerVertices_[2] = Perm<4>(2, 3, 0, 1);
h->innerVertices_[3] = Perm<4>(2, 0, 3, 1);
bdry_[2] = h;
h = new BdryHex(this, Perm<4>(1, 0, 2, 3));
h->innerTet_[0] = innerTet_[1];
h->innerTet_[1] = innerTet_[5];
h->innerTet_[2] = innerTet_[2];
h->innerTet_[3] = innerTet_[6];
h->innerVertices_[0] = Perm<4>(1, 3, 0, 2);
h->innerVertices_[1] = Perm<4>(0, 1, 3, 2);
h->innerVertices_[2] = Perm<4>(3, 0, 1, 2);
h->innerVertices_[3] = Perm<4>(3, 1, 0, 2);
bdry_[3] = h;
link_[0] = innerTet_[0];
linkVertices_[0] = Perm<4>(1, 2, 3, 0);
link_[1] = innerTet_[1];
linkVertices_[1] = Perm<4>(1, 2, 3, 0);
link_[2] = innerTet_[2];
linkVertices_[2] = Perm<4>(1, 2, 3, 0);
link_[3] = innerTet_[3];
linkVertices_[3] = Perm<4>(1, 2, 3, 0);
}
inline Bdry::Bdry(Block* block, Perm<4> outerVertices) :
block_(block), outerVertices_(outerVertices) {
}
void BdryQuad::join(Bdry* other) {
// Assume other is a BdryQuad.
auto* dest = static_cast<BdryQuad*>(other);
// Get the map from *this* 012 to *dest* tetrahedron vertices.
Perm<4> destMap = block_->outerTet()->
adjacentGluing(outerVertices_[3]) * outerVertices_;
if (destMap != dest->outerVertices_) {
// A reflection is our only recourse.
dest->reflect();
if (destMap != dest->outerVertices_) {
// This should never happen.
std::cerr << "ERROR: Cannot match up BdryQuad pair."
<< std::endl;
::exit(1);
}
}
// Now we match up perfectly.
for (int i = 0; i < 2; ++i)
innerTet_[i]->join(innerVertices_[i][3], dest->innerTet_[i],
dest->innerVertices_[i] * innerVertices_[i].inverse());
}
inline BdryQuad::BdryQuad(Block* block, Perm<4> outerVertices) :
Bdry(block, outerVertices) {
}
void BdryQuad::reflect() {
Tetrahedron<3>* layering = block_->layeringTetrahedron();
layering->join(0, innerTet_[1],
innerVertices_[1] * Perm<4>(3, 2, 1, 0));
layering->join(2, innerTet_[0],
innerVertices_[0] * Perm<4>(1, 0, 3, 2));
innerTet_[0] = innerTet_[1] = layering;
innerVertices_[0] = Perm<4>();
innerVertices_[1] = Perm<4>(2, 3, 0, 1);
outerVertices_ = outerVertices_ * Perm<4>(1, 2);
}
void BdryHex::join(Bdry* other) {
// Assume other is a BdryQuad.
auto* dest = static_cast<BdryHex*>(other);
// Get the map from *this* 012 to *dest* tetrahedron vertices.
Perm<4> destMap = block_->outerTet()->
adjacentGluing(outerVertices_[3]) * outerVertices_;
if (destMap.sign() != dest->outerVertices_.sign())
dest->reflect();
while (destMap != dest->outerVertices_)
dest->rotate();
// Now we match up perfectly.
for (int i = 0; i < 4; ++i)
innerTet_[i]->join(innerVertices_[i][3], dest->innerTet_[i],
dest->innerVertices_[i] * innerVertices_[i].inverse());
}
inline BdryHex::BdryHex(Block* block, Perm<4> outerVertices) :
Bdry(block, outerVertices) {
}
void BdryHex::reflect() {
Tetrahedron<3>* layering0 = block_->layeringTetrahedron();
Tetrahedron<3>* layering1 = block_->layeringTetrahedron();
Tetrahedron<3>* layering2 = block_->layeringTetrahedron();
Tetrahedron<3>* layering3 = block_->layeringTetrahedron();
layering0->join(1, innerTet_[3], innerVertices_[3] * Perm<4>(1, 3));
layering0->join(2, innerTet_[2], innerVertices_[2] * Perm<4>(2, 3));
layering1->join(3, layering0, Perm<4>());
layering1->join(1, innerTet_[1],
innerVertices_[1] * Perm<4>(2, 3, 0, 1));
layering2->join(0, layering0, Perm<4>());
layering2->join(1, innerTet_[0],
innerVertices_[0] * Perm<4>(1, 3, 2, 0));
layering3->join(0, layering1, Perm<4>());
layering3->join(3, layering2, Perm<4>());
innerTet_[0] = layering2;
innerTet_[1] = layering1;
innerTet_[2] = layering3;
innerTet_[3] = layering3;
innerVertices_[0] = Perm<4>(0, 3, 1, 2);
innerVertices_[1] = Perm<4>(1, 0, 3, 2);
innerVertices_[2] = Perm<4>(3, 2, 0, 1);
innerVertices_[3] = Perm<4>(3, 0, 1, 2);
outerVertices_ = outerVertices_ * Perm<4>(1, 2);
}
void BdryHex::rotate() {
Tetrahedron<3>* t = innerTet_[0];
innerTet_[0] = innerTet_[1];
innerTet_[1] = innerTet_[2];
innerTet_[2] = t;
Perm<4> p = innerVertices_[0];
innerVertices_[0] = innerVertices_[1];
innerVertices_[1] = innerVertices_[2];
innerVertices_[2] = p;
innerVertices_[3] = innerVertices_[3] * Perm<4>(1, 2, 0, 3);
outerVertices_ = outerVertices_ * Perm<4>(1, 2, 0, 3);
}
TetBlockSet::TetBlockSet(const NormalSurface* s, size_t tetIndex,
Triangulation<3>& insertInto) {
for (int i = 0; i < 4; ++i)
triCount_[i] = s->triangles(tetIndex, i).longValue();
LargeInteger coord;
if ((coord = s->quads(tetIndex, 0)) > 0) {
quadCount_ = coord.longValue();
quadType_ = 0;
} else if ((coord = s->quads(tetIndex, 1)) > 0) {
quadCount_ = coord.longValue();
quadType_ = 1;
} else if ((coord = s->quads(tetIndex, 2)) > 0) {
quadCount_ = coord.longValue();
quadType_ = 2;
} else {
quadCount_ = 0;
quadType_ = -1;
}
const Tetrahedron<3>* tet = s->triangulation().tetrahedron(tetIndex);
// Build the blocks.
// Note in all of this that we insert an extra "fake" triangle at each
// vertex (i.e., the entire surface gains a fake set of extra vertex
// links).
for (int i = 0; i < 4; ++i) {
if (triCount_[i] == 0)
triPrism_[i] = nullptr;
else {
triPrism_[i] = new Block*[triCount_[i]];
for (unsigned long j = 0; j < triCount_[i]; ++j)
triPrism_[i][j] = new TriPrism(tet, i, insertInto);
}
}
if (quadCount_ == 0) {
quadPrism_ = nullptr;
truncHalfTet_[0] = truncHalfTet_[1] = nullptr;
truncTet_ = new TruncTet(tet, insertInto);
} else {
if (quadCount_ > 1) {
quadPrism_ = new Block*[quadCount_ - 1];
for (unsigned long j = 0; j < quadCount_ - 1; ++j)
quadPrism_[j] = new QuadPrism(tet, quadType_, insertInto);
} else
quadPrism_ = nullptr;
truncHalfTet_[0] = new TruncHalfTet(tet, 5 - quadType_, insertInto);
truncHalfTet_[1] = new TruncHalfTet(tet, quadType_, insertInto);
truncTet_ = nullptr;
}
for (int i = 0; i < 4; ++i) {
vertexNbd_[i] = insertInto.newTetrahedron();
if (triCount_[i] > 0)
triPrism_[i][0]->attachVertexNbd(vertexNbd_[i], i);
else if (quadCount_ == 0)
truncTet_->attachVertexNbd(vertexNbd_[i], i);
else if (i == 0 ||
static_cast<int>(i) == Edge<3>::edgeVertex[quadType_][1])
truncHalfTet_[0]->attachVertexNbd(vertexNbd_[i], i);
else
truncHalfTet_[1]->attachVertexNbd(vertexNbd_[i], i);
}
}
TetBlockSet::~TetBlockSet() {
for (int i = 0; i < 4; ++i)
if (triPrism_[i]) {
for (unsigned long j = 0; j < triCount_[i]; ++j)
delete triPrism_[i][j];
delete[] triPrism_[i];
}
if (quadCount_ == 0) {
delete truncTet_;
} else {
if (quadPrism_) {
for (unsigned long j = 0; j < quadCount_ - 1; ++j)
delete quadPrism_[j];
delete[] quadPrism_;
}
delete truncHalfTet_[0];
delete truncHalfTet_[1];
}
}
unsigned long TetBlockSet::numQuadBlocks(int face, int fromVertex) {
// We see all triangular discs surrounding fromVertex.
unsigned long ans = triCount_[fromVertex];
if (quadType_ == regina::quadSeparating[face][fromVertex]) {
// We also see the quadrilateral discs.
ans += quadCount_;
}
return ans;
}
Block* TetBlockSet::quadBlock(int fromVertex,
unsigned long whichBlock) {
// First come the triangular prisms.
if (whichBlock < triCount_[fromVertex])
return triPrism_[fromVertex][whichBlock];
// Next comes the truncated half-tetrahedron.
if (whichBlock == triCount_[fromVertex]) {
if (fromVertex == 0 ||
fromVertex == Edge<3>::edgeVertex[quadType_][1])
return truncHalfTet_[0];
else
return truncHalfTet_[1];
}
// Finally we have the quad prisms.
if (fromVertex == 0 || fromVertex == Edge<3>::edgeVertex[quadType_][1])
return quadPrism_[whichBlock - triCount_[fromVertex] - 1];
else
return quadPrism_[
quadCount_ - (whichBlock - triCount_[fromVertex]) - 1];
}
Block* TetBlockSet::hexBlock(int face) {
if (quadCount_ == 0)
return truncTet_;
if (face == 0 || face == Edge<3>::edgeVertex[quadType_][1])
return truncHalfTet_[1];
return truncHalfTet_[0];
}
inline Tetrahedron<3>* TetBlockSet::vertexNbd(int vertex) {
return vertexNbd_[vertex];
}
}
// ------------------------------------------------------------------------
// Implementation of cutAlong()
// ------------------------------------------------------------------------
Triangulation<3> NormalSurface::cutAlong() const {
if (! normal()) {
// The implementation of cutAlong() only knows how to handle
// triangles and quadrilaterals.
// By calling removeOcts() first, we will be able to use our
// triangle-quadrilateral implementation and still end up with
// the correct resulting 3-manifold(s).
return removeOcts().cutAlong();
}
Triangulation<3> ans;
size_t nTet = triangulation().size();
if (nTet == 0)
return ans;
auto* sets = new TetBlockSet*[nTet];
for (size_t i = 0; i < nTet; ++i)
sets[i] = new TetBlockSet(this, i, ans);
for (Triangle<3>* f : triangulation().triangles()) {
if (f->isBoundary())
continue;
size_t tet0 = f->embedding(0).tetrahedron()->markedIndex();
size_t tet1 = f->embedding(1).tetrahedron()->markedIndex();
int face0 = f->embedding(0).triangle();
int face1 = f->embedding(1).triangle();
Perm<4> gluing = f->front().tetrahedron()->adjacentGluing(face0);
for (int fromVertex0 = 0; fromVertex0 < 4; ++fromVertex0) {
if (fromVertex0 == face0)
continue;
int fromVertex1 = gluing[fromVertex0];
unsigned long quadBlocks = sets[tet0]->numQuadBlocks(
face0, fromVertex0);
for (unsigned long i = 0; i < quadBlocks; ++i)
sets[tet0]->quadBlock(fromVertex0, i)->join(
face0, sets[tet1]->quadBlock(fromVertex1, i));
sets[tet0]->vertexNbd(fromVertex0)->join(
face0, sets[tet1]->vertexNbd(fromVertex1), gluing);
}
sets[tet0]->hexBlock(face0)->join(face0, sets[tet1]->hexBlock(face1));
}
// All done! Clean up.
for (size_t i = 0; i < nTet; ++i)
delete sets[i];
delete[] sets;
return ans;
}
// ------------------------------------------------------------------------
// Implementation of crush()
// ------------------------------------------------------------------------
Triangulation<3> NormalSurface::crush() const {
Triangulation<3> ans(*triangulation_, false, false);
size_t nTet = ans.size();
if (nTet == 0)
return ans;
// Work out which tetrahedra contain which quad types.
int* quadTypes = new int[nTet];
for (size_t whichTet = 0; whichTet < nTet; whichTet++) {
if (quads(whichTet, 0) != 0)
quadTypes[whichTet] = 0;
else if (quads(whichTet, 1) != 0)
quadTypes[whichTet] = 1;
else if (quads(whichTet, 2) != 0)
quadTypes[whichTet] = 2;
else
quadTypes[whichTet] = -1;
}
// Run through and fix the tetrahedron gluings.
Tetrahedron<3>* tet;
Tetrahedron<3>* adj;
int adjQuads;
Perm<4> adjPerm;
Perm<4> swap;
int face, adjFace;
for (size_t whichTet = 0; whichTet < nTet; whichTet++)
if (quadTypes[whichTet] == -1) {
// We want to keep this tetrahedron, so make sure it's glued
// up correctly.
tet = ans.tetrahedron(whichTet);
for (face = 0; face < 4; face++) {
adj = tet->adjacentTetrahedron(face);
if (! adj)
continue;
adjQuads = quadTypes[adj->index()];
if (adjQuads == -1)
continue;
// We're glued to a bad tetrahedron. Follow around
// until we reach a good tetrahedron or a boundary.
adjPerm = tet->adjacentGluing(face);
adjFace = adjPerm[face];
while (adj && (adjQuads >= 0)) {
swap = Perm<4>(adjFace, quadPartner[adjQuads][adjFace]);
adjFace = swap[adjFace];
adjPerm = adj->adjacentGluing(adjFace) *
swap * adjPerm;
adj = adj->adjacentTetrahedron(adjFace);
adjFace = adjPerm[face];
if (adj)
adjQuads = quadTypes[adj->index()];
}
// Reglue the tetrahedron face accordingly.
tet->unjoin(face);
if (! adj)
continue;
// We haven't yet unglued the face of adj since there is
// at least one bad tetrahedron between tet and adj.
adj->unjoin(adjFace);
tet->join(face, adj, adjPerm);
}
}
// Delete unwanted tetrahedra.
for (ssize_t whichTet = nTet - 1; whichTet >= 0; whichTet--)
if (quadTypes[whichTet] >= 0)
ans.removeTetrahedronAt(whichTet);
delete[] quadTypes;
return ans;
}
bool NormalSurface::isCompressingDisc(bool knownConnected) const {
// Is it even a disc?
if (! hasRealBoundary())
return false;
if (eulerChar() != 1)
return false;
if (! knownConnected) {
if (! isConnected())
return false;
}
// Yep, it's a disc (and hence two-sided).
// Count the number of boundary spheres that our triangulation has
// to begin with.
size_t origSphereCount = 0;
for (BoundaryComponent<3>* bc : triangulation().boundaryComponents())
if (bc->eulerChar() == 2)
++origSphereCount;
// Now cut along the disc, and see if we get an extra sphere as a
// result. If not, the disc boundary is non-trivial and so the disc
// is compressing.
Triangulation<3> cut = cutAlong();
if (cut.countBoundaryComponents() ==
triangulation().countBoundaryComponents()) {
// The boundary of the disc is not a separating curve in the
// boundary of the triangulation. Therefore we might end up
// converting a torus boundary into a sphere boundary, but the
// disc is compressing regardless.
return true;
}
size_t newSphereCount = 0;
for (BoundaryComponent<3>* bc : cut.boundaryComponents())
if (bc->eulerChar() == 2)
++newSphereCount;
if (newSphereCount == origSphereCount)
return true;
else
return false;
}
/**
* Supporting classes for isIncompressible().
*/
namespace {
/**
* Manages two parallel searches for compressing discs.
* Each search works with a single connected triangulation with boundary.
* If one search reports that it has found a compressing disc,
* then it will cancel the other (by calling hasFound()).
*/
class SharedSearch {
private:
// Information common to both threads:
bool found_;
std::mutex foundMutex_;
// Information specific to each thread:
Triangulation<3>* t_[2];
TreeSingleSoln<LPConstraintEulerPositive, BanNone>* currSearch_[2];
std::mutex searchMutex_[2];
public:
inline SharedSearch(Triangulation<3>* t0, Triangulation<3>* t1) :
found_(false) {
t_[0] = t0;
t_[1] = t1;
currSearch_[0] = currSearch_[1] = nullptr;
}
inline bool hasFound() {
std::lock_guard<std::mutex> lock(foundMutex_);
return found_;
}
inline void markFound() {
std::lock_guard<std::mutex> flock(foundMutex_);
found_ = true;
// I believe there is no deadlock here, since no thread
// will hold searchMutex_ and *then* ask for foundMutex_.
// However, I also think that we can drop the lock on
// foundMutex_ at this point. This should be checked and fixed.
for (int i = 0; i < 2; ++i)
if (t_[i]) {
std::lock_guard<std::mutex> lock(searchMutex_[i]);
if (currSearch_[i])
currSearch_[i]->cancel();
}
}
/**
* Side-effect: runSearch(side) deletes t_[side].
*/
void runSearch(const int side) {
if (hasFound()) {
delete t_[side];
return;
}
t_[side]->simplify();
if (hasFound()) {
delete t_[side];
return;
}
// Try for a simple answer first.
if (t_[side]->hasSimpleCompressingDisc()) {
markFound();
delete t_[side];
return;
}
if (hasFound()) {
delete t_[side];
return;
}
// The LP-and-crush method is only suitable for
// orientable triangulations with a single boundary component.
if (t_[side]->countBoundaryComponents() > 1 ||
! t_[side]->isOrientable()) {
// Fall back to the slow and non-cancellable method.
if (t_[side]->hasCompressingDisc())
markFound();
delete t_[side];
return;
}
// Compute the Euler characteristic of the boundary component.
long ec = t_[side]->boundaryComponent(0)->eulerChar();
// Look for a normal disc or sphere to crush.
bool found;
while (true) {
t_[side]->simplify();
// The LP-and-crushing method only works for
// 1-vertex triangulations (at present).
if (t_[side]->countVertices() > 1) {
t_[side]->minimiseVertices();
if (t_[side]->countVertices() > 1) {
// We could still end up here (for example)
// if the surface was non-separating and so
// we have two boundary components.
//
// Fall back to the old (slow and uncancellable)
// method.
if (t_[side]->hasCompressingDisc())
markFound();
delete t_[side];
return;
}
}
if (hasFound()) {
delete t_[side];
return;
}
TreeSingleSoln<LPConstraintEulerPositive, BanNone> search(
*t_[side], NormalCoords::Standard);
{
std::lock_guard<std::mutex> lock(searchMutex_[side]);
currSearch_[side] = &search;
}
found = search.find();
{
std::lock_guard<std::mutex> lock(searchMutex_[side]);
currSearch_[side] = nullptr;
}
if (hasFound()) {
delete t_[side];
return;
}
if (! found) {
// No discs or spheres.
// In particular, no compressing disc.
delete t_[side];
return;
}
// TreeSingleSoln guarantees that our solution is
// connected, and so it (or its double) is a sphere or
// a disc.
Triangulation<3> crush = search.buildSurface().crush();
delete t_[side];
// Find the piece in the crushed triangulation with the
// right Euler characteristic on the boundary, if it exists.
t_[side] = nullptr;
for (Triangulation<3>& comp : crush.triangulateComponents()) {
if (comp.countBoundaryComponents() == 1 &&
comp.boundaryComponent(0)->eulerChar() == ec) {
// Found it.
t_[side] = new Triangulation<3>(std::move(comp));
break;
}
}
if (! t_[side]) {
// No boundary component with the right Euler
// characteristic. We must have compressed.
markFound();
return;
}
// We now have a triangulation with fewer tetrahedra,
// which contains a compressing disc iff the original did.
// Around we go again!
}
}
};
} // anonymous namespace
bool NormalSurface::isIncompressible() const {
// We don't bother making the surface two-sided. This is because
// cutting along the two-sided surface will produce (i) exactly what
// you obtain from cutting along the one-sided surface, plus
// (ii) a twisted I-bundle over a surface that will not contain any
// compressing discs.
// Rule out spheres.
// From the preconditions, we can assume this surface to be
// closed, compact and connected.
if (eulerChar() == 2 || ((! isTwoSided()) && eulerChar() == 1))
return false;
if (isThinEdgeLink().first) {
// Since the manifold is closed and this surface is not a
// sphere, the edge it links must be a loop and the surface must
// surround a solid torus or Klein bottle.
return false;
}
// Time for the heavy machinery.
Triangulation<3> cut = cutAlong();
cut.simplify();
Triangulation<3>* side[2] { nullptr, nullptr };
int which = 0;
for (auto& comp : cut.triangulateComponents()) {
if (comp.hasBoundaryTriangles()) {
if (which == 2) {
// We have more than two components with boundary.
// This should never happen.
std::cerr << "ERROR: isIncompressible() sliced to give "
"more than two components with boundary." << std::endl;
return false;
}
side[which++] = new Triangulation<3>(std::move(comp));
}
}
SharedSearch ss(side[0], side[1]);
if (! side[1]) {
ss.runSearch(0);
} else {
// Test both sides for compressing discs in parallel,
// so we can terminate early if one side finds such a disc.
//
// Note that we need to pass &ss as a pointer, to avoid the
// std::thread constructor trying to make a deep copy of ss.
std::thread t0(&SharedSearch::runSearch, &ss, 0);
std::thread t1(&SharedSearch::runSearch, &ss, 1);
t0.join();
t1.join();
}
return ! ss.hasFound();
}
} // namespace regina
|