1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "surface/normalsurface.h"
#include "triangulation/dim3.h"
#include <set>
// When indicating that a surface is *not* a link of a k-face,
// we use |= to set the "known" bit but ignore the "is a link" bit.
// This is fine, since if the surface is not the link of a k-face then
// there is no way in which the "is a link" bit could have been already set.
#define NO_3D_VERTEX_LINK 0x01 // bits 00000001
#define NO_3D_EDGE_LINK 0x04 // bits 00000100
#define NO_3D_TRIANGLE_LINK 0x10 // bits 00010000
#define NO_3D_POSITIVE_FACE_LINK 0x14 // bits 00010100
#define NO_3D_FACE_LINK 0x15 // bits 00010101
#define IS_3D_VERTEX_LINK 0x03 // bits 00000011
#define IS_3D_EDGE_LINK 0x0c // bits 00001100
#define IS_3D_TRIANGLE_LINK 0x30 // bits 00110000
namespace regina {
bool NormalSurface::isVertexLinking() const {
// The relevant bits of linkOf_ could be any of 00, 01 or 11.
if (! enc_.couldBeVertexLink()) {
linkOf_ |= NO_3D_VERTEX_LINK;
return false;
}
size_t nTets = triangulation_->size();
for (size_t tet = 0; tet < nTets; tet++) {
for (int type = 0; type < 3; type++)
if (quads(tet, type) != 0) {
linkOf_ |= NO_3D_VERTEX_LINK;
return false;
}
}
if (enc_.storesOctagons())
for (size_t tet = 0; tet < nTets; tet++)
for (int type = 0; type < 3; type++)
if (octs(tet, type) != 0) {
linkOf_ = NO_3D_FACE_LINK;
return false;
}
// Might or might not be a *single* vertex link, so leave linkOf_ untouched.
return true;
}
const Vertex<3>* NormalSurface::isVertexLink() const {
if ((linkOf_ & IS_3D_VERTEX_LINK) == NO_3D_VERTEX_LINK)
return nullptr; // already known this is not a vertex link
// At this point, the relevant bits of linkOf_ are 00 (not computed),
// or 11 (it's a vertex link, but we don't know which).
if (! enc_.couldBeVertexLink()) {
linkOf_ |= NO_3D_VERTEX_LINK;
return nullptr;
}
// Get a local reference to the triangulation so we do not have to
// repeatedly bounce through the snapshot.
const Triangulation<3>& tri(*triangulation_);
size_t nTets = tri.size();
// Check that there are no quad/oct discs.
for (size_t tet = 0; tet < nTets; tet++) {
for (int type = 0; type < 3; type++)
if (quads(tet, type) != 0) {
linkOf_ |= NO_3D_VERTEX_LINK;
return nullptr;
}
}
if (enc_.storesOctagons())
for (size_t tet = 0; tet < nTets; tet++)
for (int type = 0; type < 3; type++)
if (octs(tet, type) != 0) {
linkOf_ = NO_3D_FACE_LINK;
return nullptr;
}
// It follows from the matching equations that what we have is a
// union of vertex links. Make sure we are linking just the one vertex.
Vertex<3>* ans = nullptr;
for (size_t tet = 0; tet < nTets; tet++) {
const Tetrahedron<3>* t = tri.tetrahedron(tet);
for (int type = 0; type < 4; type++) {
LargeInteger coord = triangles(tet, type);
if (coord != 0) {
// Some triangle discs of this type.
if (! ans) {
// We've found our first and only possible candidate.
ans = t->vertex(type);
} else if (ans != t->vertex(type)) {
// We seem to be linking more than one vertex.
linkOf_ |= NO_3D_VERTEX_LINK;
return nullptr;
}
}
}
}
// Either we are linking exactly one vertex (ans != null), or we
// have the empty vector (ans == null).
linkOf_ |= (ans ? IS_3D_VERTEX_LINK : NO_3D_VERTEX_LINK);
return ans;
}
std::pair<const Edge<3>*, const Edge<3>*> NormalSurface::isThinEdgeLink() const {
if ((linkOf_ & IS_3D_EDGE_LINK) == NO_3D_EDGE_LINK)
return { nullptr, nullptr }; // already known this is not an edge link
// Get a local reference to the triangulation so we do not have to
// repeatedly bounce through the snapshot.
const Triangulation<3>& tri(*triangulation_);
size_t nTets = tri.size();
// Check that there are no octagonal discs.
if (enc_.storesOctagons())
for (size_t tet = 0; tet < nTets; tet++)
for (int type = 0; type < 3; type++)
if (octs(tet, type) != 0) {
linkOf_ = NO_3D_FACE_LINK;
return { nullptr, nullptr };
}
// Run through the quadrilateral discs and work out if there are any
// valid candidates.
std::set<Edge<3>*> notAns;
/**< Edges that we know the answer *isn't*.
We will stop updating this set once foundQuads is true. */
bool foundQuads = false;
const Edge<3>* ans[2];
LargeInteger ansMultDouble;
const Tetrahedron<3>* t;
Edge<3>* e[6]; // { 2*link, 4*intersect }
LargeInteger coord;
int i;
for (size_t tet = 0; tet < nTets; tet++) {
t = tri.tetrahedron(tet);
for (int type = 0; type < 3; type++) {
coord = quads(tet, type);
e[0] = t->edge(Edge<3>::edgeNumber[quadDefn[type][0]]
[quadDefn[type][1]]);
e[1] = t->edge(Edge<3>::edgeNumber[quadDefn[type][2]]
[quadDefn[type][3]]);
e[2] = t->edge(Edge<3>::edgeNumber[quadDefn[type][0]]
[quadDefn[type][2]]);
e[3] = t->edge(Edge<3>::edgeNumber[quadDefn[type][0]]
[quadDefn[type][3]]);
e[4] = t->edge(Edge<3>::edgeNumber[quadDefn[type][1]]
[quadDefn[type][2]]);
e[5] = t->edge(Edge<3>::edgeNumber[quadDefn[type][1]]
[quadDefn[type][3]]);
if (coord == 0) {
// No discs in this coordinate.
// Do we have any candidate edges yet?
if (foundQuads) {
// Rule out any candidates that should have discs here.
for (i = 0; i < 2; i++)
if (ans[i] == e[0] || ans[i] == e[1])
ans[i] = nullptr;
} else {
// Still haven't found any candidates.
notAns.insert(e[0]);
notAns.insert(e[1]);
}
} else {
// Some discs in this coordinate.
// Do we have any candidate edges yet?
if (foundQuads) {
// Check consistency with our candidates.
if (e[0] == e[1]) {
// Same edge on both sides of the quad.
// Note that there can only be one candidate now.
if (e[0] == ans[0])
ans[1] = nullptr;
else if (e[0] == ans[1]) {
ans[0] = ans[1];
ans[1] = nullptr;
} else {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
// The only possible candidate is ans[0].
if (ans[0] == nullptr || ansMultDouble != coord) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
} else {
// Different edges on both sides of the quad.
// Check each candidate in turn.
for (i = 0; i < 2; i++)
if (ans[i] != e[0] && ans[i] != e[1])
ans[i] = nullptr;
if (ansMultDouble != coord * 2) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
}
} else {
// We've found our first and only possible candidates.
if (e[0] == e[1]) {
// Same edge on both sides of the quad.
if (notAns.find(e[0]) != notAns.end()) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
ans[0] = e[0];
ans[1] = nullptr;
ansMultDouble = coord;
} else {
// Different edges on both sides of the quad.
for (i = 0; i < 2; i++) {
if (notAns.find(e[i]) != notAns.end())
ans[i] = nullptr;
else {
ans[i] = e[i];
ansMultDouble = coord;
ansMultDouble *= 2;
}
}
}
foundQuads = true;
}
// We now absolutely have candidates (or have exhausted
// them all). Check that these candidates don't
// intersect the new quads.
for (i = 2; i < 6; i++) {
if (ans[0] == e[i])
ans[0] = nullptr;
if (ans[1] == e[i])
ans[1] = nullptr;
}
}
// Have we ruled out all the candidates we ever had?
if (foundQuads && (! ans[0]) && (! ans[1])) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
}
}
// So did we actually find anything?
if (! foundQuads) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
if ((! ans[0]) && (! ans[1])) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
// Finally check the triangular discs.
Vertex<3>* v;
bool expectZero[2];
int j;
for (size_t tet = 0; tet < nTets; tet++) {
t = tri.tetrahedron(tet);
for (int type = 0; type < 4; type++) {
v = t->vertex(type);
coord = triangles(tet, type);
// Should we actually see any discs?
for (i = 0; i < 2; i++) {
if (! ans[i])
continue;
// If the candidate edge does not touch this vertex, the
// triangular coordinate should be 0.
expectZero[i] = (v != ans[i]->vertex(0) &&
v != ans[i]->vertex(1));
// If this triangular disc type intersects the candidate
// edge, the coordinate should also be 0.
if (! expectZero[i])
for (j = 0; j < 3; j++)
if (t->edge(Edge<3>::edgeNumber[type][(type+j+1) % 4])
== ans[i]) {
expectZero[i] = true;
break;
}
// So did we get the right triangular coordinate?
if (expectZero[i]) {
if (coord != 0)
ans[i] = nullptr;
} else {
if (ansMultDouble != coord * 2)
ans[i] = nullptr;
}
}
// Have we ruled out all possibilities?
if ((! ans[0]) && (! ans[1])) {
// This might still be a *normalised* edge link,
// so do not touch linkOf_.
return { nullptr, nullptr };
}
}
}
// One or more candidates have survived: return them.
linkOf_ |= IS_3D_EDGE_LINK;
if (ans[0])
return { ans[0], ans[1] };
else
return { ans[1], ans[0] };
}
std::pair<std::vector<const Edge<3>*>, unsigned>
NormalSurface::isNormalEdgeLink() const {
std::pair<std::vector<const Edge<3>*>, unsigned> ans;
ans.second = 0;
if ((linkOf_ & IS_3D_EDGE_LINK) == NO_3D_EDGE_LINK)
return ans; // already known this is not an edge link
if (isEmpty()) {
// Treat the empty surface separately.
// Note: none of these edge links will be thin.
for (auto e : triangulation_->edges())
if (e->linkingSurface().first.isEmpty())
ans.first.push_back(e);
linkOf_ |= (ans.first.empty() ? NO_3D_EDGE_LINK : IS_3D_EDGE_LINK);
return ans;
}
std::optional<NormalSurface> mult = couldLinkFace();
if (! mult) {
// This could still be a vertex link, but cannot be the thin or
// normalised link of any other type of face.
linkOf_ |= NO_3D_POSITIVE_FACE_LINK;
return ans; // empty
}
for (auto e : triangulation_->edges()) {
if (edgeWeight(e->index()) != 0)
continue;
auto link = e->linkingSurface();
if (link.first == mult) {
if (link.second) {
// Thin link.
// Note: this vector insertion is costly, but it only happens
// at most twice.
if (ans.second == 0) {
ans.first.insert(ans.first.begin(), e);
} else {
// We only have at most two thin edge links, so we
// must be inserting at position 1.
auto pos = ans.first.begin();
++pos;
ans.first.insert(pos, e);
}
++ans.second;
} else {
// Not a thin link.
ans.first.push_back(e);
}
}
}
linkOf_ |= (ans.first.empty() ? NO_3D_EDGE_LINK : IS_3D_EDGE_LINK);
return ans;
}
std::pair<const Triangle<3>*, const Triangle<3>*>
NormalSurface::isThinTriangleLink() const {
if ((linkOf_ & IS_3D_TRIANGLE_LINK) == NO_3D_TRIANGLE_LINK)
return { nullptr, nullptr }; // already known it's not a triangle link
// This is essentially the same implementation as isNormalTriangleLink(),
// just slimmed down slightly to account for some extra facts that
// we know about thin links.
std::pair<const Triangle<3>*, const Triangle<3>*> ans { nullptr, nullptr };
// Thin links are never empty.
if (isEmpty()) {
// This might still be a *normalised* triangle link,
// so do not touch linkOf_.
return ans;
}
std::optional<NormalSurface> mult = couldLinkFace();
if (! mult) {
// This could still be a vertex link, but cannot be the thin or
// normalised link of any other type of face.
linkOf_ |= NO_3D_POSITIVE_FACE_LINK;
return ans;
}
for (auto t : triangulation_->triangles()) {
for (int i = 0; i < 3; ++i)
if (edgeWeight(t->edge(i)->index()) != 0)
continue;
auto link = t->linkingSurface();
if (link.second /* thin */ && link.first == mult) {
if (! ans.first)
ans.first = t;
else {
// There can be at most two thin triangle links, and we
// have found them both.
ans.second = t;
linkOf_ |= IS_3D_TRIANGLE_LINK;
return ans;
}
}
}
if (ans.first)
linkOf_ |= IS_3D_TRIANGLE_LINK;
return ans;
}
std::pair<std::vector<const Triangle<3>*>, unsigned>
NormalSurface::isNormalTriangleLink() const {
std::pair<std::vector<const Triangle<3>*>, unsigned> ans;
ans.second = 0;
if ((linkOf_ & IS_3D_TRIANGLE_LINK) == NO_3D_TRIANGLE_LINK)
return ans; // already known this is not a triangle link
if (isEmpty()) {
// Treat the empty surface separately.
// Note: none of these triangle links will be thin.
for (auto t : triangulation_->triangles())
if (t->linkingSurface().first.isEmpty())
ans.first.push_back(t);
linkOf_ |= (ans.first.empty() ?
NO_3D_TRIANGLE_LINK : IS_3D_TRIANGLE_LINK);
return ans;
}
std::optional<NormalSurface> mult = couldLinkFace();
if (! mult) {
// This could still be a vertex link, but cannot be the thin or
// normalised link of any other type of face.
linkOf_ |= NO_3D_POSITIVE_FACE_LINK;
return ans; // empty
}
for (auto t : triangulation_->triangles()) {
for (int i = 0; i < 3; ++i)
if (edgeWeight(t->edge(i)->index()) != 0)
continue;
auto link = t->linkingSurface();
if (link.first == mult) {
if (link.second) {
// Thin link.
// Note: this vector insertion is costly, but it only happens
// at most twice.
if (ans.second == 0) {
ans.first.insert(ans.first.begin(), t);
} else {
// We only have at most two thin triangle links, so we
// must be inserting at position 1.
auto pos = ans.first.begin();
++pos;
ans.first.insert(pos, t);
}
++ans.second;
} else {
// Not a thin link.
ans.first.push_back(t);
}
}
}
linkOf_ |= (ans.first.empty() ? NO_3D_TRIANGLE_LINK : IS_3D_TRIANGLE_LINK);
return ans;
}
std::optional<NormalSurface> NormalSurface::couldLinkFace() const {
if (! normal()) {
return std::nullopt;
}
// All edge weights should be in { 0, k, 2k } for some k.
// We store the values k and 2k as we find them; these are initialised to
// zero. If only one value has been seen so far, we store it as k.
LargeInteger k, kk;
bool foundWeightZero = false;
for (auto e : triangulation_->edges()) {
LargeInteger w = edgeWeight(e->index());
if (w == 0) {
foundWeightZero = true;
continue;
} else if (w.isInfinite()) {
return std::nullopt;
} else if (k == 0) {
// First non-zero weight we've seen.
k = w;
} else if (kk == 0) {
// We've only seen one value so far; this is stored in k.
if (w != k) {
if (w == 2 * k) {
kk = w;
} else if (2 * w == k) {
// What we thought was k was really 2k.
kk = k;
k = w;
} else {
// This cannot be a subcomplex link.
return std::nullopt;
}
}
} else {
// Both k and 2k have already been seen.
if (w != k && w != kk) {
return std::nullopt;
}
}
}
if (! foundWeightZero) {
// This cannot link a face of positive dimension.
return std::nullopt;
}
// The edge weights are consistent with a multiple of a normalised
// non-vertex face link.
//
// Now we construct the exact multiple of this surface that should
// be such a link.
//
// In any normalised face link, all disc coordinates are 0, 1 or 2, and
// all edge weights are 0, 1 or 2. It follows that the multiple we are
// looking for is either the scaled-down surface (i.e., divide the
// underlying vector by its gcd), or the double of the scaled-down surface.
//
// We will therefore call scaleDown(), and then double the surface
// if necessary. To identify when doubling is necessary, we observe:
//
// - Any (non-empty) normalised face link must be 2-sided and separating,
// and even though the surface could be disconnected, the portion
// of the 3-manifold on the side of the surface containing the original
// face must still be connected (call this portion X).
//
// - Doubling is only required for normalised face links where all
// non-zero normal coordinates are 2 (and therefore, using what else we
// know, all edge weights are 2 also). In such a scenario where doubling
// is required, the scaled-down surface (where all non-zero coordinates
// are 1) will be non-separating, since cutting the 3-manifold along
// this scaled-down surface will result in X (and no other components).
//
// So, to summarise: doubling is required if and only if the
// scaled-down surface is non-separating. (However, there are other
// necessary conditions for doubling that are cheaper to test, such
// as all normal coordinates and edge weights being 0 or 1, and so
// we will make use of these cheaper tests also.)
NormalSurface mult = *this;
LargeInteger scale = mult.scaleDown();
if (kk != 0) {
if (scale != k) {
// The edge weights were {0,k,2k}, but the normal coordinates were
// not.
return std::nullopt;
}
} else {
// All non-zero edge weights were equal to k.
if (scale == k) {
// All non-zero edge weights have been scaled down to 1, and so
// this *could* be a scenario where we need to double again,
// as described above.
//
// For this we test whether the surface is separating. However,
// in any scenario where doubling is necessary, all edge weights
// are 0 or 1, and so the separating test becomes just a test to see
// if we can find a path from some vertex back to itself through
// the 1-skeleton that traverses an *odd* number of weight-one edges
// (and any number of weight-zero edges).
//
// Here we use a fairly naive test based on Floyd-Warshall. This
// could be sped up by using union-find. However, our naive test
// is cubic in the number of *vertices*, which in typical scenarios
// is very small. So let's not fuss too much about this for now.
size_t v = triangulation_->countVertices();
int* join = new int[v * v]; // 0,1,-1: no path, even path, odd path
std::fill(join, join + v * v, 0);
for (auto e : triangulation_->edges()) {
LargeInteger w = mult.edgeWeight(e->index());
size_t a = e->vertex(0)->index();
size_t b = e->vertex(1)->index();
if (w == 0) {
if (a != b) {
if (join[a * v + b] == -1) {
// We have an odd cycle (a-b-a).
mult *= 2;
goto noMoreScaling;
} else {
join[a * v + b] = join[b * v + a] = 1;
}
}
} else if (w == 1) {
if (a == b) {
// We have an odd cycle (a-a).
mult *= 2;
goto noMoreScaling;
} else {
if (join[a * v + b] == 1) {
// We have an odd cycle (a-b-a).
mult *= 2;
goto noMoreScaling;
} else {
join[a * v + b] = join[b * v + a] = -1;
}
}
} else if (w == 2) {
// This could be a face link, but it is not a case
// where we need to double.
goto noMoreScaling;
} else {
// This can never be a face link.
return std::nullopt;
}
}
for (size_t via = 0; via < v; ++via) {
for (size_t a = 0; a < v; ++a) {
if (join[a * v + via] != 0) {
for (size_t b = 0; b < v; ++b) {
if (a != b && join[b * v + via] != 0) {
// Examine the path a-via-b.
if (join[a * v + b] == 0)
join[a * v + b] = join[b * v + a] =
join[a * v + via] * join[b * v + via];
else if (join[a * v + b] !=
join[a * v + via] * join[b * v + via]) {
// We have an odd cycle (a-via-b-a).
mult *= 2;
goto noMoreScaling;
}
}
}
}
}
}
noMoreScaling:
delete[] join;
} else {
// All non-zero edge weights were k, but the scaling factor
// was not k. In this case the edge weights should have been
// scaled down to 2; otherwise we cannot have a normalised
// edge link at all.
if (scale + scale != k) {
return std::nullopt;
}
}
}
return mult;
}
} // namespace regina
|