1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "enumerate/validityconstraints.h"
#include "surface/normalsurface.h"
#include "maths/matrix.h"
#include "snappea/snappeatriangulation.h"
#include "triangulation/dim3.h"
namespace regina {
ValidityConstraints makeEmbeddedConstraints(
const Triangulation<3>& triangulation, NormalCoords coords) {
const NormalEncoding enc(coords);
if (enc.storesOctagons()) {
// At most one quad/oct per tetrahedron.
// Also at most one oct type overall.
ValidityConstraints ans(enc.block(), triangulation.size(), 1, 1);
if (enc.storesTriangles()) {
ans.addLocal({ 4, 5, 6, 7, 8, 9 });
ans.addGlobal({ 7, 8, 9 });
} else {
ans.addLocal({ 0, 1, 2, 3, 4, 5 });
ans.addGlobal({ 3, 4, 5 });
}
return ans;
} else {
// No octagon constraints.
ValidityConstraints ans(enc.block(), triangulation.size(), 1);
if (enc.storesTriangles())
ans.addLocal({ 4, 5, 6 });
else
ans.addLocal({ 0, 1, 2 });
return ans;
}
}
MatrixInt makeMatchingEquations(const Triangulation<3>& triangulation,
NormalCoords coords) {
switch (coords) {
case NormalCoords::Standard:
case NormalCoords::AlmostNormal:
{
const size_t block = (coords == NormalCoords::Standard ? 7 : 10);
const size_t nCoords = block * triangulation.size();
// Three equations per non-boundary triangle.
// F_boundary + 2 F_internal = 4 T
const size_t nEquations = 3 * (4 * triangulation.size() -
triangulation.countTriangles());
MatrixInt ans(nEquations, nCoords);
// Run through each internal triangle and add the corresponding
// three equations.
size_t row = 0;
for (Triangle<3>* t : triangulation.triangles()) {
if (! t->isBoundary()) {
size_t pos0 = block * t->embedding(0).tetrahedron()->index();
size_t pos1 = block * t->embedding(1).tetrahedron()->index();
Perm<4> perm0 = t->embedding(0).vertices();
Perm<4> perm1 = t->embedding(1).vertices();
for (int i=0; i<3; i++) {
// Triangles:
++ans.entry(row, pos0 + perm0[i]);
--ans.entry(row, pos1 + perm1[i]);
// Quads:
++ans.entry(row, pos0 + 4 +
quadSeparating[perm0[i]][perm0[3]]);
--ans.entry(row, pos1 + 4 +
quadSeparating[perm1[i]][perm1[3]]);
// Octagons:
if (coords == NormalCoords::AlmostNormal) {
++ans.entry(row, pos0 + 7 +
quadMeeting[perm0[i]][perm0[3]][0]);
--ans.entry(row, pos1 + 7 +
quadMeeting[perm1[i]][perm1[3]][0]);
++ans.entry(row, pos0 + 7 +
quadMeeting[perm0[i]][perm0[3]][1]);
--ans.entry(row, pos1 + 7 +
quadMeeting[perm1[i]][perm1[3]][1]);
}
++row;
}
}
}
return ans;
}
case NormalCoords::Quad:
case NormalCoords::QuadOct:
{
const size_t block = (coords == NormalCoords::Quad ? 3 : 6);
const size_t nCoords = block * triangulation.size();
// One equation per non-boundary edge.
size_t nEquations = triangulation.countEdges();
for (BoundaryComponent<3>* bc : triangulation.boundaryComponents())
nEquations -= bc->countEdges();
MatrixInt ans(nEquations, nCoords);
// Run through each internal edge and add the corresponding
// equation.
size_t row = 0;
for (Edge<3>* e : triangulation.edges()) {
if (! e->isBoundary()) {
for (const auto& emb : *e) {
size_t pos = block * emb.tetrahedron()->index();
Perm<4> perm = emb.vertices();
++ans.entry(row, pos +
quadSeparating[perm[0]][perm[2]]);
--ans.entry(row, pos +
quadSeparating[perm[0]][perm[3]]);
if (coords == NormalCoords::QuadOct) {
--ans.entry(row, pos + 3 +
quadSeparating[perm[0]][perm[2]]);
++ans.entry(row, pos + 3 +
quadSeparating[perm[0]][perm[3]]);
}
}
++row;
}
}
return ans;
}
case NormalCoords::QuadClosed:
case NormalCoords::QuadOctClosed:
{
// Enforce our basic preconditions.
if (! (triangulation.isOriented() && triangulation.isIdeal() &&
triangulation.countBoundaryComponents() == 1 &&
triangulation.countVertices() == 1 &&
triangulation.vertex(0)->linkType() ==
Vertex<3>::Link::Torus))
throw InvalidArgument(
"NormalCoords::QuadClosed and NormalCoords::QuadOctClosed "
"require an oriented ideal triangulation with "
"precisely one torus cusp and no other vertices");
// We will use SnapPea to build the additional constraint that
// enforces closed surfaces.
SnapPeaTriangulation snapPea(triangulation, false);
if (snapPea.isNull())
throw UnsolvedCase("SnapPea produced a null triangulation "
"when attempting to build the matching equations");
MatrixInt coeffs = snapPea.slopeEquations();
// Use a static_cast to ensure we are using the Triangulation<3>
// equality test. Otherwise C++20 complains about ambiguity.
if (static_cast<const Triangulation<3>&>(snapPea) != triangulation)
throw UnsolvedCase("SnapPea retriangulated "
"when attempting to build the matching equations");
const size_t block = (coords == NormalCoords::QuadClosed ? 3 : 6);
const size_t nCoords = block * triangulation.size();
// One equation per edge, plus two per ideal vertex.
// (This code is written a little more generically, in order to
// support multiple ideal vertices at some later date.)
const size_t nEquations = triangulation.countEdges() +
2 * triangulation.countBoundaryComponents();
MatrixInt ans(nEquations, nCoords);
size_t row = 0;
// Run through each internal edge and add the corresponding
// equation.
for (Edge<3>* e : triangulation.edges()) {
for (auto& emb : *e) {
size_t pos = block * emb.tetrahedron()->index();
Perm<4> perm = emb.vertices();
++ans.entry(row, pos +
quadSeparating[perm[0]][perm[2]]);
--ans.entry(row, pos +
quadSeparating[perm[0]][perm[3]]);
if (coords == NormalCoords::QuadOctClosed) {
--ans.entry(row, pos + 3 +
quadSeparating[perm[0]][perm[2]]);
++ans.entry(row, pos + 3 +
quadSeparating[perm[0]][perm[3]]);
}
}
++row;
}
// Run through each ideal vertex and add the corresponding meridian
// and longitude equations.
//
// Note: from preconditions, #vertices == #boundaries.
for (size_t i = 0; i < triangulation.countVertices(); ++i) {
// These two branches could be merged a bit better.
// Note: the cusp equations are always expressed in terms of
// quad coordinates.
if (coords == NormalCoords::QuadClosed) {
for (size_t j = 0; j < 3 * triangulation.size(); ++j) {
ans.entry(row, j) = coeffs.entry(2 * i, j);
ans.entry(row + 1, j) = coeffs.entry(2 * i + 1, j);
}
} else {
for (size_t j = 0; j < triangulation.size(); ++j) {
for (int k = 0; k < 3; ++k){
// Quad contributions
ans.entry(row, 6*j + k) =
coeffs.entry(2 * i, 3*j + k);
ans.entry(row + 1, 6*j + k) =
coeffs.entry(2 * i + 1, 3*j + k);
// Oct contributions; signs are opposite of those
// for the quads as with the edge equations.
ans.entry(row, 6*j + 3 + k) =
-coeffs.entry(2 * i, 3*j + k);
ans.entry(row + 1, 6*j + 3 + k) =
-coeffs.entry(2 * i + 1, 3*j + k);
}
}
}
row += 2;
}
return ans;
}
default:
throw InvalidArgument("makeMatchingEquations() was given "
"an invalid coordinate system");
}
}
} // namespace regina
|