1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include <algorithm>
#include "maths/matrix.h"
#include "snappea/snappeatriangulation.h"
#include "surface/normalsurfaces.h"
#include "triangulation/dim3.h"
#include "utilities/xmlutils.h"
// The constant regina::quadString is defined inline in the header.
// However, it would be nice to issue a warning if the compiler does not
// support constexpr strings, and it would be nice for that warning to appear
// only once (as opposed to every time the header is included).
// Therefore we put the warning here in normalsurface.cpp.
#if !(__cpp_lib_constexpr_string >= 201907L)
#warning "This compiler does not support constexpr strings, and so regina::quadString will merely be const."
#endif
namespace regina {
NormalSurface::NormalSurface(const Triangulation<3>& tri) :
enc_(NormalEncoding::empty()),
vector_(tri.size() * enc_.block()),
triangulation_(tri) {
}
NormalSurface::NormalSurface(const SnapshotRef<Triangulation<3>>& tri) :
enc_(NormalEncoding::empty()),
vector_(tri->size() * enc_.block()),
triangulation_(tri) {
}
LargeInteger NormalSurface::edgeWeight(size_t edgeIndex) const {
// Find a tetrahedron next to the edge in question.
const EdgeEmbedding<3>& emb = triangulation_->edge(edgeIndex)->front();
const size_t tetPos = enc_.block() * emb.tetrahedron()->index();
int start = emb.vertices()[0];
int end = emb.vertices()[1];
// Add up the discs meeting that edge.
// Triangles:
LargeInteger ans = vector_[tetPos + start] + vector_[tetPos + end];
// Quads:
ans += vector_[tetPos + 4 + quadMeeting[start][end][0]];
ans += vector_[tetPos + 4 + quadMeeting[start][end][1]];
// Octagons:
if (enc_.storesOctagons()) {
ans += vector_[tetPos + 7];
ans += vector_[tetPos + 8];
ans += vector_[tetPos + 9];
ans += vector_[tetPos + 7 + quadSeparating[start][end]];
}
return ans;
}
LargeInteger NormalSurface::arcs(size_t triIndex, int triVertex) const {
// Find a tetrahedron next to the triangle in question.
const TriangleEmbedding<3>& emb = triangulation_->triangle(triIndex)->
front();
const size_t tetPos = enc_.block() * emb.tetrahedron()->index();
int vertex = emb.vertices()[triVertex];
int backOfFace = emb.vertices()[3];
// Add up the discs meeting that triangle in that required arc.
// Triangles:
LargeInteger ans = vector_[tetPos + vertex];
// Quads:
ans += vector_[tetPos + 4 + quadSeparating[vertex][backOfFace]];
if (enc_.storesOctagons()) {
// Octagons:
ans += vector_[tetPos + 7 + quadMeeting[vertex][backOfFace][0]];
ans += vector_[tetPos + 7 + quadMeeting[vertex][backOfFace][1]];
}
return ans;
}
void NormalSurface::writeTextShort(std::ostream& out) const {
size_t nTets = triangulation_->size();
for (size_t tet = 0; tet < nTets; tet++) {
if (tet > 0)
out << " || ";
for (int j=0; j<4; j++)
out << triangles(tet, j) << ' ';
out << ';';
for (int j=0; j<3; j++)
out << ' ' << quads(tet, j);
if (enc_.storesOctagons()) {
out << " ;";
for (int j=0; j<3; j++)
out << ' ' << octs(tet, j);
}
}
}
bool NormalSurface::hasMultipleOctDiscs() const {
if (! enc_.storesOctagons())
return false;
size_t nTets = triangulation_->size();
for (size_t tet=0; tet<nTets; tet++)
for (int oct=0; oct<3; oct++) {
LargeInteger coord = octs(tet, oct);
if (coord == 0)
continue;
// We have found our one and only oct type!
if (coord == 1)
return false;
return true;
}
// There are no octagonal types at all.
return false;
}
bool NormalSurface::isCompact() const {
if (compact_.has_value())
return *compact_;
if (enc_.couldBeNonCompact()) {
// It is only the triangle coordinates that could be infinite.
// Ignore quads and (if present) octagons.
size_t nTets = triangulation_->size();
for (size_t tet = 0; tet < nTets; tet++) {
for (int type = 0; type < 4; type++)
if (triangles(tet, type).isInfinite())
return *(compact_ = false);
}
}
return *(compact_ = true);
}
bool NormalSurface::isSplitting() const {
size_t nTets = triangulation_->size();
for (size_t tet = 0; tet < nTets; tet++) {
for (int type = 0; type < 4; type++)
if (triangles(tet, type) != 0)
return false;
LargeInteger tot; // initialised to zero
for (int type = 0; type < 3; type++)
tot += quads(tet, type);
if (tot != 1)
return false;
}
if (enc_.storesOctagons())
for (size_t tet = 0; tet < nTets; tet++)
for (int type = 0; type < 3; type++)
if (octs(tet, type) != 0)
return false;
return true;
}
size_t NormalSurface::isCentral() const {
size_t nTets = triangulation_->size();
size_t tot = 0;
for (size_t tet = 0; tet < nTets; tet++) {
LargeInteger tetTot; // initialised to zero
for (int type = 0; type < 4; type++)
tetTot += triangles(tet, type);
for (int type = 0; type < 3; type++)
tetTot += quads(tet, type);
if (enc_.storesOctagons())
for (int type = 0; type < 3; type++)
tetTot += octs(tet, type);
if (tetTot > 1)
return 0;
if (tetTot > 0)
++tot;
}
return tot;
}
bool NormalSurface::operator == (const NormalSurface& other) const {
if (enc_ == other.enc_) {
// This is a common case, and a straight left-to-right scan
// should be faster than jumping around the vectors.
return vector_ == other.vector_;
}
size_t nTet = triangulation_->size();
if (nTet != other.triangulation_->size())
return false;
bool checkAlmostNormal =
(enc_.storesOctagons() || other.enc_.storesOctagons());
for (size_t t = 0; t < nTet; ++t) {
for (int i = 0; i < 4; ++i)
if (triangles(t, i) != other.triangles(t, i))
return false;
for (int i = 0; i < 3; ++i)
if (quads(t, i) != other.quads(t, i))
return false;
if (checkAlmostNormal)
for (int i = 0; i < 3; ++i)
if (octs(t, i) != other.octs(t, i))
return false;
}
return true;
}
std::weak_ordering NormalSurface::operator <=> (const NormalSurface& rhs)
const {
size_t nTet = triangulation_->size();
if (nTet != rhs.triangulation_->size())
return nTet <=> rhs.triangulation_->size();
bool checkAlmostNormal =
(enc_.storesOctagons() || rhs.enc_.storesOctagons());
for (size_t t = 0; t < nTet; ++t) {
for (int i = 0; i < 4; ++i) {
if (triangles(t, i) < rhs.triangles(t, i))
return std::weak_ordering::less;
if (triangles(t, i) > rhs.triangles(t, i))
return std::weak_ordering::greater;
}
for (int i = 0; i < 3; ++i) {
if (quads(t, i) < rhs.quads(t, i))
return std::weak_ordering::less;
if (quads(t, i) > rhs.quads(t, i))
return std::weak_ordering::greater;
}
if (checkAlmostNormal)
for (int i = 0; i < 3; ++i) {
if (octs(t, i) < rhs.octs(t, i))
return std::weak_ordering::less;
if (octs(t, i) > rhs.octs(t, i))
return std::weak_ordering::greater;
}
}
// The surfaces are equal.
return std::weak_ordering::equivalent;
}
bool NormalSurface::embedded() const {
size_t nTets = triangulation_->size();
for (size_t tet = 0; tet < nTets; ++tet) {
int found = 0;
for (int type = 0; type < 3; ++type)
if (quads(tet, type) > 0)
++found;
if (enc_.storesOctagons())
for (int type = 0; type < 3; ++type)
if (octs(tet, type) > 0)
++found;
if (found > 1)
return false;
}
return true;
}
bool NormalSurface::locallyCompatible(const NormalSurface& other) const {
size_t nTets = triangulation_->size();
for (size_t tet = 0; tet < nTets; ++tet) {
int found = 0;
for (int type = 0; type < 3; ++type)
if (quads(tet, type) > 0 || other.quads(tet, type) > 0)
++found;
for (int type = 0; type < 3; ++type)
if (octs(tet, type) > 0 || other.octs(tet, type) > 0)
++found;
if (found > 1)
return false;
}
return true;
}
void NormalSurface::calculateOctPosition() const {
if (! enc_.storesOctagons()) {
octPosition_ = DiscType();
return;
}
size_t nTets = triangulation_->size();
for (size_t tetIndex = 0; tetIndex < nTets; ++tetIndex)
for (int type = 0; type < 3; ++type)
if (octs(tetIndex, type) != 0) {
octPosition_ = DiscType(tetIndex, type);
return;
}
octPosition_ = DiscType();
return;
}
void NormalSurface::calculateEulerChar() const {
LargeInteger ans; // initialised to zero
// Add vertices.
size_t tot = triangulation_->countEdges();
for (size_t index = 0; index < tot; index++)
ans += edgeWeight(index);
// Subtract edges.
tot = triangulation_->countTriangles();
for (size_t index = 0; index < tot; index++)
for (int type = 0; type < 3; type++)
ans -= arcs(index, type);
// Add faces.
tot = triangulation_->size();
for (size_t index = 0; index < tot; index++) {
for (int type = 0; type < 4; type++)
ans += triangles(index, type);
for (int type = 0; type < 3; type++)
ans += quads(index, type);
if (enc_.storesOctagons())
for (int type = 0; type < 3; type++)
ans += octs(index, type);
}
// Done!
eulerChar_ = ans;
}
void NormalSurface::calculateRealBoundary() const {
if (triangulation_->isClosed()) {
realBoundary_ = false;
return;
}
// Get a local reference to the triangulation so we do not have to
// repeatedly bounce through the snapshot.
const Triangulation<3>& tri(*triangulation_);
size_t tot = tri.size();
for (size_t index = 0; index < tot; index++) {
const Tetrahedron<3>* tet = tri.tetrahedron(index);
if (tet->hasBoundary()) {
// Check for disk types with boundary
for (int type=0; type<3; type++)
if (quads(index, type) > 0) {
realBoundary_ = true;
return;
}
if (enc_.storesOctagons())
for (int type=0; type<3; type++)
if (octs(index, type) > 0) {
realBoundary_ = true;
return;
}
for (int type=0; type<4; type++)
if (triangles(index, type) > 0) {
// Make sure the triangle actually hits the
// boundary.
for (int face=0; face<4; face++) {
if (face == type)
continue;
if (! tet->adjacentTetrahedron(face)) {
realBoundary_ = true;
return;
}
}
}
}
}
realBoundary_ = false;
}
MatrixInt NormalSurface::boundaryIntersections() const {
// Make sure this is really a SnapPea triangulation.
const SnapPeaTriangulation* snapPea = triangulation().isSnapPea();
if (! snapPea)
throw FailedPrecondition("NormalSurface::boundaryIntersections() "
"requires the triangulation to be a SnapPeaTriangulation");
// Check the preconditions.
if (! snapPea->isOriented())
throw FailedPrecondition("NormalSurface::boundaryIntersections() "
"requires the triangulation to be oriented");
if (enc_.storesOctagons())
throw FailedPrecondition("NormalSurface::boundaryIntersections() "
"cannot work with almost normal surface encodings");
for (Vertex<3>* v : snapPea->vertices())
if (! (v->isIdeal() && v->isLinkOrientable() &&
v->linkEulerChar() == 0))
throw FailedPrecondition("NormalSurface::boundaryIntersections() "
"requires all vertex links to be tori");
// Note: slopeEquations() throws SnapPeaIsNull if we have a
// null SnapPea triangulation.
MatrixInt equations = snapPea->slopeEquations();
size_t cusps = equations.rows() / 2;
size_t numTet = snapPea->size();
MatrixInt slopes(cusps, 2);
for(unsigned int i=0; i < cusps; i++) {
Integer meridian; // constructor sets this to 0
Integer longitude; // constructor sets this to 0
// Note: we are converting from LargeInteger to Integer below.
for(unsigned int j=0; j < numTet; j++) {
meridian +=
equations.entry(2*i, 3*j) *
Integer(quads(j, quadSeparating[0][1])) +
equations.entry(2*i, 3*j+1) *
Integer(quads(j, quadSeparating[0][2])) +
equations.entry(2*i, 3*j+2) *
Integer(quads(j, quadSeparating[0][3]));
longitude +=
equations.entry(2*i+1, 3*j) *
Integer(quads(j, quadSeparating[0][1])) +
equations.entry(2*i+1, 3*j+1) *
Integer(quads(j, quadSeparating[0][2])) +
equations.entry(2*i+1, 3*j+2) *
Integer(quads(j, quadSeparating[0][3]));
}
slopes.entry(i,0) = meridian;
slopes.entry(i,1) = longitude;
}
return slopes;
}
void NormalSurface::writeXMLData(std::ostream& out, FileFormat format,
const NormalSurfaces* list) const {
using regina::xml::xmlEncodeSpecialChars;
using regina::xml::xmlValueTag;
bool stripTriangles = (format == FileFormat::XmlGen2 && list &&
enc_.storesTriangles() &&
! NormalEncoding(list->coords()).storesTriangles());
if (! stripTriangles) {
// Write the opening tag including vector length.
size_t vecLen = vector_.size();
out << " <surface";
if (format != FileFormat::XmlGen2)
out << " enc=\"" << enc_.intValue() << '\"';
out << " len=\"" << vecLen << '\"';
if (format == FileFormat::XmlGen2 || ! name_.empty())
out << " name=\"" << xmlEncodeSpecialChars(name_) << '\"';
out << '>';
// Write all non-zero entries.
for (size_t i = 0; i < vecLen; i++) {
LargeInteger entry = vector_[i];
if (entry != 0)
out << ' ' << i << ' ' << entry;
}
} else {
// We know this is FileFormat::XmlGen2.
int oldBlock = enc_.block();
int newBlock = oldBlock - 4;
size_t nBlocks = vector_.size() / oldBlock;
out << " <surface len=\"" << (nBlocks * newBlock) << "\""
" name=\"" << xmlEncodeSpecialChars(name_) << "\">";
for (size_t i = 0; i < nBlocks; ++i)
for (int j = 0; j < newBlock; ++j) {
LargeInteger entry = vector_[(i * oldBlock) + j + 4];
if (entry != 0)
out << ' ' << ((i * newBlock) + j) << ' ' << entry;
}
}
// Write properties.
if (eulerChar_.has_value())
out << "\n\t" << xmlValueTag("euler", *eulerChar_);
if (orientable_.has_value())
out << "\n\t" << xmlValueTag("orbl", *orientable_);
if (twoSided_.has_value())
out << "\n\t" << xmlValueTag("twosided", *twoSided_);
if (connected_.has_value())
out << "\n\t" << xmlValueTag("connected", *connected_);
if (realBoundary_.has_value())
out << "\n\t" << xmlValueTag("realbdry", *realBoundary_);
if (compact_.has_value())
out << "\n\t" << xmlValueTag("compact", *compact_);
// Write the closing tag.
out << " </surface>\n";
}
NormalSurface NormalSurface::operator + (const NormalSurface& rhs) const {
// First work out the vector sum.
//
// Given our current conditions on vector storage, the underlying
// integer vectors should both store triangles and quadrilaterals.
// The only possible difference is wrt storing octagons.
//
if (enc_.storesOctagons() == rhs.enc_.storesOctagons()) {
return NormalSurface(triangulation_, enc_ + rhs.enc_,
vector_ + rhs.vector_);
} else if (enc_.storesOctagons()) {
// We must have (blocks of 10 + blocks of 7).
Vector<LargeInteger> v = vector_;
size_t posLeft = 0, posRight = 0;
while (posLeft < vector_.size()) {
for (int i = 0; i < 7; ++i)
v[posLeft++] += rhs.vector_[posRight++];
posLeft += 3;
}
return NormalSurface(triangulation_, enc_ + rhs.enc_, std::move(v));
} else {
// We must have (blocks of 7 + blocks of 10).
Vector<LargeInteger> v = rhs.vector_;
size_t posLeft = 0, posRight = 0;
while (posRight < rhs.vector_.size()) {
for (int i = 0; i < 7; ++i)
v[posRight++] += vector_[posLeft++];
posRight += 3;
}
return NormalSurface(triangulation_, enc_ + rhs.enc_, std::move(v));
}
}
NormalSurface NormalSurface::operator * (const LargeInteger& coeff) const {
NormalSurface ans(triangulation_, enc_, vector_ * coeff);
if (coeff == 0) {
ans.octPosition_ = {};
ans.eulerChar_ = 0;
ans.boundaries_ = 0;
ans.orientable_ = true;
ans.twoSided_ = true;
ans.connected_ = true;
ans.realBoundary_ = false;
ans.compact_ = true;
ans.linkOf_ = 0; /* need to recompute */
} else {
// Deduce some basic properties.
ans.octPosition_ = octPosition_;
if (eulerChar_.has_value())
ans.eulerChar_ = (*eulerChar_) * coeff;
ans.realBoundary_ = realBoundary_;
ans.compact_ = compact_;
ans.linkOf_ = linkOf_;
// The following three properties can be used together to deduce how
// they change in the result. However, until we sit down and check
// through all possible cases we'll just leave them marked unknown.
// TODO: ans.orientable_, ans.twoSided_, ans.connected_
// And some other properties are best left recalculated.
}
return ans;
}
NormalSurface& NormalSurface::operator *= (const LargeInteger& coeff) {
vector_ *= coeff;
// Update properties of the surface where necessary:
if (coeff == 0) {
octPosition_ = {};
eulerChar_ = 0;
boundaries_ = 0;
orientable_ = true;
twoSided_ = true;
connected_ = true;
realBoundary_ = false;
compact_ = true;
linkOf_ = 0; /* need to recompute */
} else {
// Some properties change, and we know how:
if (eulerChar_.has_value())
*eulerChar_ *= coeff;
// Some properties might change, and we will leave them to be
// recomputed:
boundaries_.reset();
orientable_.reset();
twoSided_.reset();
connected_.reset();
// All other properties are preserved:
// - octPosition_, realBoundary_, compact_, linkOf_
}
return *this;
}
LargeInteger NormalSurface::scaleDown() {
LargeInteger ans = vector_.scaleDown();
// Update properties of the surface where necessary:
if (eulerChar_.has_value())
eulerChar_->divByExact(ans);
// Some properties might change, and we will leave them to be
// recomputed:
boundaries_.reset();
orientable_.reset();
twoSided_.reset();
connected_.reset();
// All other properties are preserved:
// - octPosition_, realBoundary_, compact_, linkOf_
return ans;
}
NormalSurface NormalSurface::removeOcts() const {
// Work out which tetrahedra will need to be expanded, and in which
// directions.
const Triangulation<3>& tri(*triangulation_);
size_t n = tri.size();
size_t nExpand = 0;
auto* expand = new std::pair<size_t, int>[n];
for (size_t i = 0; i < n; ++i)
for (int j = 0; j < 3; ++j)
if (octs(i, j) != 0) {
expand[nExpand++] = { i, j };
// There should be no other octagon types in this tetrahedron.
break;
}
// Prepare a new normal surface vector, and copy all the original
// triangle/quadrilateral coordinates across.
NormalEncoding newEnc = enc_.withoutOctagons();
int block = newEnc.block();
Vector<LargeInteger> v((tri.size() + 2 * nExpand) * block);
for (size_t i = 0; i < n; ++i) {
// The block for tetrahedron i in the new surface should be a
// prefix of the block for tetrahedron i in the original surface,
// since octagons are always stored last.
for (int j = 0; j < block; ++j)
v[block * i + j] = vector_[enc_.block() * i + j];
}
if (nExpand == 0) {
// We can just use the original triangulation.
delete[] expand;
return NormalSurface(triangulation_, newEnc, std::move(v));
}
// Now we retriangulate.
//
// For a tetrahedron T containing octagon type k, we replace it with
// three tetrahedra A=B=C:
// - Both A and C will follow the original vertex numbering of T;
// - A will contain the original edge k, and C will contain the original
// edge (5-k);
// - The gluings A=B and B=C will each use a pair swap that exchanges
// the vertex numbers of the internal degree two edge between A and B;
// - B will take the place of T in the original tetrahedron numbering,
// and A and C will be appended to the end of the tetrahedron list.
Triangulation<3> retri(tri, true, false /* throw away any locks */);
for (size_t i = 0; i < nExpand; ++i) {
Tetrahedron<3>* a = retri.newTetrahedron();
Tetrahedron<3>* b = retri.tetrahedron(expand[i].first);
Tetrahedron<3>* c = retri.newTetrahedron();
// The two faces on either side of edge k (where k is the oct type):
int aExt[2] = { Edge<3>::edgeVertex[5-expand[i].second][0],
Edge<3>::edgeVertex[5-expand[i].second][1] };
// The two faces on either side of edge 5-k:
int cExt[2] = { Edge<3>::edgeVertex[expand[i].second][0],
Edge<3>::edgeVertex[expand[i].second][1] };
// Fix the external gluings for a/c first.
for (int j = 0; j < 2; ++j) {
if (auto adj = b->adjacentTetrahedron(aExt[j])) {
auto gluing = b->adjacentGluing(aExt[j]);
b->unjoin(aExt[j]);
if (adj == b) {
if (gluing[aExt[j]] == aExt[j ^ 1])
a->join(aExt[j], a, gluing);
else
a->join(aExt[j], c, gluing);
} else
a->join(aExt[j], adj, gluing);
}
}
for (int j = 0; j < 2; ++j) {
if (auto adj = b->adjacentTetrahedron(cExt[j])) {
auto gluing = b->adjacentGluing(cExt[j]);
b->unjoin(cExt[j]);
if (adj == b) {
if (gluing[cExt[j]] == cExt[j ^ 1])
c->join(cExt[j], c, gluing);
else
c->join(cExt[j], a, gluing);
} else
c->join(cExt[j], adj, gluing);
}
}
// Now make the internal gluings to b.
Perm<4> bSwap(aExt[0], aExt[1]);
b->join(cExt[0], a, bSwap);
b->join(cExt[1], a, bSwap);
b->join(aExt[0], c, bSwap);
b->join(aExt[1], c, bSwap);
// Work out the corresponding coordinates for the isotopic surface.
// Remember:
// - Normal surfaces always explicitly store triangles and quads in
// their internal vectors; see the NormalSurface docs for details.
// - We can assume that this surface does not have any *quads* in
// the tetrahedron being processed, since it is known to have
// octagons and the surface is assumed to be embedded.
LargeInteger nOcts = octs(expand[i].first, expand[i].second);
// First fix and propagate the triangle coordinates from the
// original tetrahedron.
for (int j = 0; j < 4; ++j)
v[block * a->index() + j] = v[block * c->index() + j] =
v[block * b->index() + j];
v[block * b->index() + aExt[0]].swap(v[block * b->index() + aExt[1]]);
// Now sort out the octagons of the original tetrahedron.
// These become quadrilaterals of b of the same type, as well as
// triangles of a/c.
v[block * b->index() + 4 + expand[i].second] += nOcts;
v[block * a->index() + cExt[0]] += nOcts;
v[block * a->index() + cExt[1]] += nOcts;
v[block * c->index() + aExt[0]] += nOcts;
v[block * c->index() + aExt[1]] += nOcts;
}
delete[] expand;
// At this point, retri will be destroyed but the surface ans will
// take a deep copy via the snapshot mechanism.
return NormalSurface(retri, newEnc, std::move(v));
}
} // namespace regina
|