1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "regina-config.h"
#include "enumerate/doubledescription.h"
#include "maths/matrix.h"
#include "maths/vector.h"
#include "surface/normalsurface.h"
#include "surface/normalsurfaces.h"
#include "triangulation/dim3.h"
#include "utilities/bitmask.h"
#include <iterator>
#include <vector>
namespace regina {
// Although the conversion routines are template routines, we implement
// them here in this C++ file to avoid dragging them into the headers.
/**
* Put helper classes and constants into an anonymous namespace.
*/
namespace {
/**
* A helper class for converting between reduced and standard
* solution sets, describing a single ray (which is typically a
* vertex in some partial solution space).
*
* This class derives from Vector, which stores the coordinates of
* the ray itself in standard coordinates. This RaySpec class also
* stores a bitmask indicating which of these coordinates are set to zero.
*
* The \a BitmaskType template argument describes how the bitmask of
* zero coordinates will be stored. The <i>i</i>th coordinate position
* corresponds to the <i>i</i>th bit in the bitmask, and each bit is set
* to \c true if and only if the corresponding coordinate is zero.
*
* Since this class is used heavily, faster bitmask types such as
* Bitmask1 and Bitmask2 are preferred; however, if the number
* of coordinates is too large then the slower general-use Bitmask
* class will need to be used instead.
*
* \pre The template argument \a BitmaskType is one of Regina's
* bitmask types, such as Bitmask, Bitmask1 or Bitmask2.
*/
template <class BitmaskType>
class RaySpec : private Vector<LargeInteger> {
private:
BitmaskType facets_;
/**< A bitmask listing which coordinates of this ray are
currently set to zero. */
public:
/**
* Creates a new ray whose coordinates are a clone of the
* given vector.
*
* \param v the vector to clone.
*/
RaySpec(const Vector<LargeInteger>& v) :
Vector<LargeInteger>(v.size()), facets_(v.size()) {
// Note that the vector is initialised to zero since
// this is what LargeInteger's default constructor does.
for (size_t i = 0; i < v.size(); ++i)
if ((elts_[i] = v[i]) == 0)
facets_.set(i, true);
}
/**
* Creates a new ray that represents the _negative_ of
* the link of the given vertex.
*
* \param tri the underlying triangulation.
* \param whichLink the index of the vertex whose link
* we should negate; this must be strictly less than
* `tri->countVertices()`.
* \param coordsPerTet the number of standard coordinate
* positions for each tetrahedron (that is, 7 if we are
* working with normal surfaces, or 10 if we are working
* with almost normal surfaces).
*/
RaySpec(const Triangulation<3>& tri, unsigned long whichLink,
unsigned coordsPerTet) :
Vector<LargeInteger>(coordsPerTet * tri.size()),
facets_(coordsPerTet * tri.size()) {
// Note that the vector is initialised to zero since
// this is what LargeInteger's default constructor does.
for (size_t i = 0; i < size(); ++i)
if (i % coordsPerTet > 3) {
// Not a triangular coordinate.
facets_.set(i, true);
} else if (tri.tetrahedron(i / coordsPerTet)->
vertex(i % coordsPerTet)->markedIndex()
== whichLink) {
// A triangular coordinate in our vertex link.
elts_[i] = -1;
} else {
// A triangular coordinate not in our vertex link.
facets_.set(i, true);
}
}
/**
* Creates a new ray, describing where the plane between the
* two given rays meets the given axis hyperplane. Here
* "the given axis hyperplane" means the hyperplane along which
* the <i>coord</i>th coordinate is zero.
*
* \pre The <i>coord</i>th coordinates of \a pos and \a neg
* are strictly positive and negative respectively.
*
* \param pos the first of the given rays, in which the given
* coordinate is positive.
* \param neg the second of the given rays, in which the given
* coordinate is negative.
* \param coord the index of the coordinate that we must set
* to zero to form the intersecting hyperplane.
*/
RaySpec(const RaySpec& pos, const RaySpec& neg, size_t coord) :
Vector<LargeInteger>(pos.size()), facets_(pos.facets_) {
facets_ &= neg.facets_;
// Note that we may need to re-enable some bits in \a facets_,
// since we may end up setting some triangle coordinates
// to zero that were not zero in either \a pos or \a neg.
LargeInteger posDiff = pos[coord];
LargeInteger negDiff = neg[coord];
for (size_t i = 0; i < size(); ++i)
if ((elts_[i] = neg[i] * posDiff - pos[i] * negDiff)
== 0)
facets_.set(i, true);
scaleDown();
}
/**
* Moves the contents of the given ray into this new ray.
*/
RaySpec(RaySpec&&) noexcept = default;
/**
* Moves the contents of the given ray into this ray.
*/
RaySpec& operator = (RaySpec&&) noexcept = default;
/**
* Returns the bitmask listing which coordinates of this ray
* are currently set to zero. See the class notes for details.
*
* The length of this bitmask is the same as the length of the
* underlying vector for this ray.
*
* \return the bitmask of zero coordinates.
*/
inline const BitmaskType& facets() const {
return facets_;
}
/**
* Determines whether this ray has zero coordinates in every
* position where _both_ of the given rays simultaneously
* have zero coordinates.
*
* The bitmask \a ignoreFacets represents a list of coordinate
* positions that should be ignored for the purposes of this
* routine.
*
* \param x the first of the two given rays to examine.
* \param y the second of the two given rays to examine.
* \param ignoreFacets a bitmask of coordinate positions to
* ignore.
* \return \c false if there is some coordinate position
* where (i) both \a x and \a y are zero, (ii) this vector
* is not zero, and (iii) the corresponding bit in \a ignoreFacets
* is not set (i.e., is \c false). Returns \c true otherwise.
*/
inline bool onAllCommonFacets(const RaySpec& x, const RaySpec& y,
BitmaskType ignoreFacets) const {
ignoreFacets |= facets_;
return ignoreFacets.containsIntn(x.facets_, y.facets_);
}
/**
* Reduces the underlying vector by subtracting as many copies
* of the given vertex link as possible, without allowing any of
* the corresponding coordinates in this ray to become negative.
*
* \pre None of the coordinates in this ray that correspond
* to discs in the given vertex link are already negative.
*
* \param link the vertex link to subtract copies of.
*/
void reduce(const RaySpec& link) {
if (! (facets_ <= link.facets_))
return;
bool start = true;
LargeInteger max; // max we are allowed to subtract
size_t i;
for (i = 0; i < size(); ++i)
if (! link.facets_.get(i)) {
if (start) {
max = elts_[i];
start = false;
} else if (max > elts_[i])
max = elts_[i];
}
// If start == true then this next loop is harmless, since
// link.facets_.get(i) must always be true.
for (i = 0; i < size(); ++i)
if (! link.facets_.get(i))
if ((elts_[i] -= max) == 0)
facets_.set(i, true);
}
/**
* Returns a new normal (or almost normal) surface whose
* coordinates are described by this vector.
*
* The normal coordinates will be moved out of this vector, and
* so this object will become unsable (as indicated by the
* rvalue reference qualifier).
*
* \param tri the underlying triangulation.
* \param enc the encoding used by this vector to describe a
* normal surface.
* \return a normal surface based on this vector.
*/
NormalSurface recover(const SnapshotRef<Triangulation<3>>& tri,
NormalEncoding enc) && {
return NormalSurface(tri, enc, std::move(*this));
}
/**
* Returns the sign of the given element of this vector.
*
* \return 1, 0 or -1 according to whether the <i>index</i>th
* element of this vector is positive, zero or negative
* respectively.
*/
inline int sign(size_t index) const {
if (facets_.get(index))
return 0;
return (elts_[index] > 0 ? 1 : -1);
}
using Vector<LargeInteger>::scaleDown;
};
} // anonymous namespace
void NormalSurfaces::buildStandardFromReduced(
const std::vector<NormalSurface>& reducedList,
ProgressTracker* tracker) {
const size_t nFacets = NormalEncoding(coords_).block() *
triangulation_->size();
// Get the empty triangulation out of the way now.
if (nFacets == 0)
return;
// Choose a bitmask type for representing the set of facets that a
// ray belongs to; in particular, use a (much faster) optimised
// bitmask type if we can.
// Then farm the work out to the real conversion routine that is
// templated on the bitmask type.
if (nFacets <= 8 * sizeof(unsigned))
buildStandardFromReducedUsing<
Bitmask1<unsigned>>(reducedList, tracker);
else if (nFacets <= 8 * sizeof(unsigned long))
buildStandardFromReducedUsing<
Bitmask1<unsigned long>>(reducedList, tracker);
else if (nFacets <= 8 * sizeof(unsigned long long))
buildStandardFromReducedUsing<
Bitmask1<unsigned long long>>(reducedList, tracker);
else if (nFacets <= 8 * sizeof(unsigned long long) + 8 * sizeof(unsigned))
buildStandardFromReducedUsing<
Bitmask2<unsigned long long, unsigned>>(reducedList,
tracker);
else if (nFacets <= 8 * sizeof(unsigned long long) +
8 * sizeof(unsigned long))
buildStandardFromReducedUsing<
Bitmask2<unsigned long long, unsigned long>>(reducedList,
tracker);
else if (nFacets <= 16 * sizeof(unsigned long long))
buildStandardFromReducedUsing<
Bitmask2<unsigned long long>>(reducedList, tracker);
else
buildStandardFromReducedUsing<Bitmask>(reducedList, tracker);
}
template <class BitmaskType>
void NormalSurfaces::buildStandardFromReducedUsing(
const std::vector<NormalSurface>& reducedList,
ProgressTracker* tracker) {
const Triangulation<3>& tri(*triangulation_);
// Prepare for the reduced-to-standard double description run.
const NormalEncoding stdEnc(coords_);
const size_t n = tri.size();
const size_t stdLen = stdEnc.block() * n;
const size_t nLinks = tri.countVertices(); // # vertex links
// Recreate the quadrilateral constraints (or the corresponding
// constraints for almost normal surfaces) as bitmasks.
// Since we have a non-empty triangulation, we know the list of
// constraints is non-empty.
auto constraints = makeEmbeddedConstraints(tri, coords_).
bitmasks<BitmaskType>(stdLen);
// Create all vertex links.
// TODO: Do this by value.
auto* link = new Vector<LargeInteger>*[nLinks];
for (size_t i = 0; i < nLinks; ++i) {
link[i] = new Vector<LargeInteger>(stdLen);
for (auto& emb : *tri.vertex(i))
(*link[i])[stdEnc.block() * emb.tetrahedron()->markedIndex() +
emb.vertex()] = 1;
}
// Create the initial set of rays:
// TODO: Keep these by value.
using RaySpecList = std::vector<RaySpec<BitmaskType>*>;
RaySpecList list[2];
// TODO: Check that s uses the right encoding.
for (auto& s : reducedList)
list[0].push_back(new RaySpec<BitmaskType>(s.vector()));
// Each additional inequality is of the form tri_coord >= 0.
// We will therefore just create them on the fly as we need them.
// And run!
BitmaskType ignoreFacets(stdLen);
for (size_t i = 0; i < stdLen; ++i)
if (i % stdEnc.block() < 4)
ignoreFacets.set(i, true);
int workingList = 0;
unsigned vtx;
size_t tcoord;
RaySpec<BitmaskType>* linkSpec;
RaySpecList pos, neg;
int sign;
bool broken;
unsigned long slices = 0;
unsigned iterations;
for (vtx = 0; vtx < nLinks; ++vtx) {
linkSpec = new RaySpec<BitmaskType>(*link[vtx]);
delete link[vtx];
list[workingList].push_back(
new RaySpec<BitmaskType>(tri, vtx, stdEnc.block()));
for (auto& emb : *tri.vertex(vtx)) {
// Update the state of progress and test for cancellation.
if (tracker && ! tracker->setPercent(25.0 * slices++ / n)) {
for (auto r : list[workingList])
delete r;
delete linkSpec;
for (++vtx; vtx < nLinks; ++vtx)
delete link[vtx];
delete[] link;
return;
}
tcoord = stdEnc.block() * emb.tetrahedron()->markedIndex() +
emb.vertex();
// Add the inequality v[tcoord] >= 0.
for (RaySpec<BitmaskType>* r : list[workingList]) {
sign = r->sign(tcoord);
if (sign == 0)
list[1 - workingList].push_back(r);
else if (sign > 0) {
list[1 - workingList].push_back(r);
pos.push_back(r);
} else
neg.push_back(r);
}
iterations = 0;
for (RaySpec<BitmaskType>* posRay : pos)
for (RaySpec<BitmaskType>* negRay : neg) {
// Test for cancellation, but not every time (since
// this involves expensive mutex locking).
if (tracker && ++iterations == 100) {
iterations = 0;
if (tracker->isCancelled()) {
for (auto r : list[1 - workingList])
delete r;
for (auto r : neg)
delete r;
delete linkSpec;
for (++vtx; vtx < nLinks; ++vtx)
delete link[vtx];
delete[] link;
return;
}
}
// Find the facets that both rays have in common.
BitmaskType join(posRay->facets());
join &= (negRay->facets());
// Fukuda and Prodon's dimensional filtering.
// Initial experimentation suggests that this
// is not helpful (perhaps because of the extremely
// nice structure of this particular enumeration problem
// and the consequential way in which one solution set
// expands to the next). Comment it out for now.
/*
BitmaskType tmpMask(ignoreFacets);
tmpMask.flip();
tmpMask &= join;
if (tmpMask.bits() < 2 * n + vtx - 1)
continue;
*/
// Are these vectors compatible?
// Invert join so that it has a true bit for each
// non-zero coordinate.
join.flip();
broken = false;
for (const BitmaskType& constraint : constraints) {
BitmaskType mask(join);
mask &= constraint;
if (! mask.atMostOneBit()) {
broken = true;
break;
}
}
if (broken)
continue;
// Are these vectors adjacent?
broken = false;
for (RaySpec<BitmaskType>* r : list[workingList]) {
if (r != posRay && r != negRay &&
r->onAllCommonFacets(*posRay, *negRay,
ignoreFacets)) {
broken = true;
break;
}
}
if (broken)
continue;
// All good! Join them and put the intersection in the
// new solution set.
list[1 - workingList].push_back(new RaySpec<BitmaskType>(
*posRay, *negRay, tcoord));
}
// Clean up and prepare for the next iteration.
for (auto ray : neg)
delete ray;
pos.clear();
neg.clear();
list[workingList].clear();
ignoreFacets.set(tcoord, false);
workingList = 1 - workingList;
}
// We're done cancelling this vertex link.
// Now add the vertex link itself, and cancel any future vertex
// links that we might have created.
// Note that cancelling future vertex links might introduce
// new common factors that can be divided out.
list[workingList].push_back(linkSpec);
for (auto ray : list[workingList]) {
for (size_t i = vtx + 1; i < nLinks; ++i)
ray->reduce(*link[i]);
ray->scaleDown();
}
}
// All done! Put the solutions into the normal surface list and clean up.
for (auto ray : list[workingList]) {
surfaces_.push_back(std::move(*ray).recover(triangulation_, stdEnc));
delete ray;
}
delete[] link;
if (tracker)
tracker->setPercent(100);
}
} // namespace regina
|