1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Computational Engine *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "surface/normalsurface.h"
#include "maths/matrix.h"
#include "maths/rational.h"
#include "triangulation/dim3.h"
namespace regina {
namespace {
/**
* A structure representing one end of an edge.
*/
struct EdgeEnd {
Edge<3>* edge; /**< The edge under consideration. */
int end; /**< Either 0 or 1, indicating which end of the edge. */
};
}
NormalEncoding NormalSurface::reconstructTriangles(
const Triangulation<3>& tri, Vector<LargeInteger>& vector,
NormalEncoding enc) {
// We are offering this function to the public, so do a sanity check on enc.
// For our own code this is redundant but it's just one bit-flag test.
if (enc.storesTriangles())
return enc;
const NormalEncoding newEnc = enc.withTriangles();
const int newBlock = newEnc.block();
const size_t newSize = newBlock * tri.size();
Vector<LargeInteger> ans(newSize);
// Set every triangular coordinate in the answer to infinity.
// For coordinates about vertices not enjoying infinitely many discs,
// infinity will mean "unknown".
for (size_t row = 0; row < newSize; row += newBlock)
for (int i = 0; i < 4; ++i)
ans[row + i].makeInfinite();
// Copy across the other (non-triangular) coordinates.
for (size_t row = 0; newBlock * row < newSize; ++row)
for (int i = 0; i < enc.block(); ++i)
ans[newBlock * row + 4 + i] = vector[enc.block() * row + i];
// Record which edge ends we have already examined.
bool* used = new bool[2 * tri.countEdges()];
std::fill(used, used + 2 * tri.countEdges(), false);
// Prepare a stack of edge ends that we are ready to examine.
auto* examine = new EdgeEnd[2 * tri.countEdges()];
size_t nExamine = 0;
// Run through the vertices and fix the triangular coordinates
// about each vertex in turn.
for (Vertex<3>* v : tri.vertices()) {
nExamine = 0;
bool broken = false; // Are the equations broken around this vertex?
// Pick some triangular disc and set it to zero.
const VertexEmbedding<3>& vemb = v->front();
ans[newBlock * vemb.tetrahedron()->index() + vemb.vertex()] = 0;
LargeInteger min; // The minimum triangle coordinate around this vertex.
// Mark the three surrounding edge ends for examination.
for (int i=0; i<4; i++) {
if (i == vemb.vertex())
continue;
EdgeEnd e {
vemb.tetrahedron()->edge(Edge<3>::edgeNumber[vemb.vertex()][i]),
vemb.tetrahedron()->edgeMapping(
Edge<3>::edgeNumber[vemb.vertex()][i])[0] == i ? 1 : 0
};
size_t usedIndex = 2 * e.edge->index() + e.end;
if (! used[usedIndex]) {
used[usedIndex] = true;
examine[nExamine++] = e;
}
}
// Run a depth-first search through the edge ends that meet this
// vertex link.
while ((! broken) && nExamine) {
EdgeEnd current = examine[--nExamine];
// Run around this edge end.
// We know there is a pre-chosen coordinate somewhere; run
// forwards and find this.
const auto beginit = current.edge->begin();
const auto endit = current.edge->end();
auto eembit = beginit;
for ( ; eembit != endit; ++eembit)
if (! ans[newBlock * eembit->tetrahedron()->index() +
eembit->vertices()[current.end]].isInfinite())
break;
// We are now at the first pre-chosen coordinate about this
// vertex. Run backwards from here and fill in all the holes.
Perm<4> adjPerm = eembit->vertices();
size_t adjPos = newBlock * eembit->tetrahedron()->index();
auto backupit = eembit;
while (eembit != beginit) {
--eembit;
// Work out the coordinate for the disc type at eembit.
Tetrahedron<3>* tet = eembit->tetrahedron();
Perm<4> tetPerm = eembit->vertices();
size_t tetPos = newBlock * tet->index();
LargeInteger expect =
ans[adjPos + adjPerm[current.end]]
+ ans[adjPos + 4 +
quadSeparating[adjPerm[3]][adjPerm[current.end]]]
- ans[tetPos + 4 +
quadSeparating[tetPerm[2]][tetPerm[current.end]]];
if (enc.storesOctagons()) {
expect = expect
+ ans[adjPos + 7 + quadMeeting
[adjPerm[3]][adjPerm[current.end]][0]]
+ ans[adjPos + 7 + quadMeeting
[adjPerm[3]][adjPerm[current.end]][1]]
- ans[tetPos + 7 + quadMeeting
[tetPerm[2]][tetPerm[current.end]][0]]
- ans[tetPos + 7 + quadMeeting
[tetPerm[2]][tetPerm[current.end]][1]];
}
ans[tetPos + tetPerm[current.end]] = expect;
if (expect < min)
min = expect;
// Remember to examine the new edge end if appropriate.
EdgeEnd e {
tet->edge(Edge<3>::edgeNumber[tetPerm[2]]
[tetPerm[current.end]]),
tet->edgeMapping(Edge<3>::edgeNumber[tetPerm[2]]
[tetPerm[current.end]])[0] == tetPerm[2] ? 1 : 0
};
size_t usedIndex = 2 * e.edge->index() + e.end;
if (! used[usedIndex]) {
used[usedIndex] = true;
examine[nExamine++] = e;
}
adjPerm = tetPerm;
adjPos = tetPos;
}
// Now move forwards from the original first pre-chosen
// coordinate, again filling in the holes.
eembit = backupit;
adjPerm = eembit->vertices();
adjPos = newBlock * eembit->tetrahedron()->index();
for (++eembit; eembit != endit; ++eembit) {
// Work out the coordinate for the disc type at eembit.
Tetrahedron<3>* tet = eembit->tetrahedron();
Perm<4> tetPerm = eembit->vertices();
size_t tetPos = newBlock * tet->index();
LargeInteger expect =
ans[adjPos + adjPerm[current.end]]
+ ans[adjPos + 4 +
quadSeparating[adjPerm[2]][adjPerm[current.end]]]
- ans[tetPos + 4 +
quadSeparating[tetPerm[3]][tetPerm[current.end]]];
if (enc.storesOctagons()) {
expect = expect
+ ans[adjPos + 7 + quadMeeting
[adjPerm[2]][adjPerm[current.end]][0]]
+ ans[adjPos + 7 + quadMeeting
[adjPerm[2]][adjPerm[current.end]][1]]
- ans[tetPos + 7 + quadMeeting
[tetPerm[3]][tetPerm[current.end]][0]]
- ans[tetPos + 7 + quadMeeting
[tetPerm[3]][tetPerm[current.end]][1]];
}
size_t row = tetPos + tetPerm[current.end];
if (ans[row].isInfinite()) {
ans[row] = expect;
if (expect < min)
min = expect;
// Remember to examine the new edge end if appropriate.
EdgeEnd e {
tet->edge(Edge<3>::edgeNumber[tetPerm[3]]
[tetPerm[current.end]]),
tet->edgeMapping(Edge<3>::edgeNumber[tetPerm[3]]
[tetPerm[current.end]])[0] == tetPerm[3] ? 1 : 0
};
size_t usedIndex = 2 * e.edge->index() + e.end;
if (! used[usedIndex]) {
used[usedIndex] = true;
examine[nExamine++] = e;
}
} else {
// This coordinate has already been set.
// Make sure it's the same value!
if (ans[row] != expect) {
broken = true;
break;
}
}
adjPerm = tetPerm;
adjPos = tetPos;
}
}
// If the matching equations were broken, set every coordinate
// to infinity. Otherwise subtract min from every coordinate to
// make the values as small as possible.
for (const auto& emb : *v) {
size_t row = newBlock * emb.tetrahedron()->index() + emb.vertex();
if (broken)
ans[row].makeInfinite();
else
ans[row] -= min;
}
}
delete[] used;
// Note that there should be no need to remove common factors since
// the quad coordinates have not changed and in theory they already
// had gcd=1.
vector = std::move(ans);
return newEnc;
}
} // namespace regina
|