File: sample.rga

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (2360 lines) | stat: -rw-r--r-- 155,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
<?xml version="1.0"?>
<regina engine="7.4">
<container label="Sample Data File">
<textdata label="Read Me">Welcome to Regina!

A single Regina data file can store a range of objects, from 3-manifold triangulations and normal surfaces to Python scripts, PDF documents and text notes (such as the one you are reading now).

These objects are called &quot;packets&quot;, and are arranged in a tree-like structure as you can see to the left.  To view or edit a packet, just click on the packet in the tree (on some platforms, such as macOS, you should double-click instead).

Have a play with the packets in this file to see what Regina can do.

If you ever want to know what some element of the user interface means (such as a button or a text box), just press Shift-F1 and click on the thing that you want to know more about.  You can try this now with the tree in the main window, or the buttons in the toolbar.  If you ever forget the Shift-F1 shortcut, you can find it in the menu under Help → What's This?

For more detailed help, try the Regina Handbook (in the Help menu, or just press F1).  The handbook includes lots of screenshots and talks you through how to do many different things.

Any questions?  Just mail the authors; see Help → About for our email addresses.

Enjoy!

- The Regina development team</textdata>
<attachment encoding="base64" filename="welcome.pdf" label="LaTeX Document">
JVBERi0xLjUKJdDUxdgKNSAwIG9iago8PAovTGVuZ3RoIDk2MSAgICAgICAKL0ZpbHRlciAvRmxh
dGVEZWNvZGUKPj4Kc3RyZWFtCnja1VZZj9s2EH73r1DeJKDm8j7y0maxWbRFUaStgQTI9kGRuWsh
lrSR6G7333d4yJY3TIO2QdHCgDkczvnNiJzLzerimpqCEGSEoMXmtqBMIy55oYhGgpNisy3elq8r
w0u7b4bOVmumROmGuP5s79q+flb9uvn+4pqYwiAjqfR21oRyxLAq1pQhk+xctVvQo7h8rKgqh0Pc
vO+HiuryIe7crnaeIl5IH4Wauo9c23n2u2oN/zaZe3V1HQ+3EBdYbg6d7b0LN33lD1g5jFESrIDe
Y5Qe3M4mvgvs+2h1irzhNnn83dmxr/eRe4MJ31uwCzlDlhwZzmENCMYst+1oG7f3Tgwr235qtzbS
KaMx7iJ4kd7WLlHJ/tfVWlJebnbtFPmdrftEJoiiwYQjbCJEQNR9P7jaZZ2eHD20bheSwE/Dr+/G
upue+8PVy82KgAQuSEEJRlixQmKBOKNF060+rBAT4XheA3PWSIyL7zpSXA2rn+A3HxFATgkyayAV
rag/M0KfGoGCcKQp4L+I6dI39VkvGoMoYYXQCqUc6953DgOo9pNvZcYjHIFnPxxq1w59RAA+ELqw
RQ0iLHa1nhF7Xq2JVHGR5awlFlqQLDM+6iB/gzGuvMazjAP47jTRs+i3SYIUEhnFtJfQiGrInSBu
UgB95gMEPCgrFkI3WOCMP8hDidndi0zsBkktj6ETxjNGdAAjyVxmotEIC3XKX5Akoxd5QRP6Wgok
uZoFCc5EtBaIaOqXheR/HNIzQwpxRT9G4yxJibDWJxmSc+Qp9u/mxb9AlSU2T6qcA2ANV6tU/5Mq
v8kYMggzkanyMiRCEQPpRY7f5Bteav6loaA5KOADPElBBag4u7U+rqdElB6vB5KBgUOz/9Xm+if3
kPxch8rPfnmS079xV2efgfOhiHGCCBfwfMCDC5pB75e2u/fTAhW4fBhb/25Tbso6csJIo+eRRsOk
EtiHqe3vInl64P3utvbb3xIvWvOGA2Pcxt39mKzaaRqSYljBr/MzRRiFFIxC1rmjo+lxcjB+BdpX
cTo03uru06NQDRMLx7r8IXcRQDcTWlCEAe1PXpXwcGr/3J6kNsGdQIJxz/dwBv7LI18UC/YbX2WY
AjmV8dn38QDiIf9hdJ6hytalg4jxEHfzhOYl3gVYIj3ZvW2gzIAVKT08IW6Gl61h2LJff7QPMYQX
FYXx2dXNDurpcm8DtCgzs97tOHQxFphVM244ZHoUflU3762LfjaVkuVYCVraSsAMm+9GKJlm5yVL
bXZA8/j3B93t13oKZW5kc3RyZWFtCmVuZG9iagoxIDAgb2JqCjw8Ci9UeXBlIC9YT2JqZWN0Ci9T
dWJ0eXBlIC9Gb3JtCi9Gb3JtVHlwZSAxCi9QVEVYLkZpbGVOYW1lICguL2ZpZzEucGRmKQovUFRF
WC5QYWdlTnVtYmVyIDEKL1BURVguSW5mb0RpY3QgMTYgMCBSCi9CQm94IFswIDAgMjE0IDExOV0K
L1Jlc291cmNlcyA8PAovUHJvY1NldCBbIC9QREYgXQovRXh0R1N0YXRlIDw8Ci9SNyAxNyAwIFIK
Pj4+PgovTGVuZ3RoIDMwNjgKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnic7Zo9suTI
DYT9PgVtGaX6/znB2tIeYSO0EYoZQyFD19eXWcVurlyZ2zHGm4dHVqGARCJB8l9XDOmK+nd+/vbz
9de/j+v3f79imDGOma7fX72XMEa5Rsyhl3H9fI0RQ87jqrWFGOf149VKDqPVq5cWcqlY/vGXV28t
tNmv3mfoOXHjxzLCWpnLehuhjoGlhxRt6ZGr26Wf1Uvpb3mVq7cUeiqyjBJmy2y3Qq9NlplDrFyT
e6hJLvXFGdq6esqh8VMWrp5X48fqCcOIM9TVrzZHKF0Lj9RDbO1qo4feuiy5sOm4Gk60oYVHSSEN
7sL10bZl2vlWF9fIULfHrUYukaHVUNmaMLWuU45OMOVMrqHsS0biEiy4kKbOPWYMq2CJcs/rcqYy
y1U5glyQZYVZMhaunXJmcqhObCoRmVHHnIkY93XVQXKqdp+ZxCmBZKYkWzjUarIQx2MZ5IG7Wg9r
KDiz8rfSsOgU3ZaGrxMgzDBms2WEOCoWInCuuS3AqG5LCSt3W1Iaz70+15DHleZznUQiVmJ38HHO
Pux9BVUjOYacOS087Mlx+mGoCgW142l3VPvxGQzGZhj0aoTI0ucBb8R0CmCMbD9rqiHV5AIoZI07
wNY8+7QwF6umeEOJ7JWIL7Hab1mGi6PgdyrlcYIyQW32KeMKmV0LO6S1HAkQwspFlVJtEaqomQL6
585VW0Z/yaAg6QRzUGH4WiKR8O5zbRSwOl5gWABtgf5MsEZUGlYB4/kCIyBHOy0iq2rK+NCqb8Kv
TvQymGxFMV+LHXK9Ej83BhKcEDhfwoe8hi0sMNKVoJJaky01BfZIZHPWagtAI5aJU7W4LQSeAksZ
dJ11COG4UsKQ5GBKkRXblQibwi9L4r8ZC+vPbAvHytfiUCt2G5pcvmbDy32FsDCuAR1Ex4Ydqi1k
XnyAJXtBSIjYVDuTcYMjNPlrZkiZnQrMADuV7U0mgpAZ9ZH6NgwiAU4Aejs3rUqZgwHO5ApOJTUt
XKpS6EgUZYZswjzdLJkEB+4iNHHXUAKQAXRR2nVlX1Od/EsMFpNPXskDMcikKlXvpQJLSZYTLXFC
6k+DiLQ872mGPahgv7It+MolVfi2w801CbY4ZnGm2hDqrwy+R9nXgEiaQCnUobtI6krsVbopTb8T
FNoFUJkjGTZdSKfkxQ47EJ2s0XmIeTaIU19TqXukRazOljB43Vyb8ABWvwDz2q0gDUhtjksEMotj
JUIm+sA6xn2EMRflALTiqcQ0KYMuQEIX2buLWhfVkFVl3h14B7pfEvcPH3x2Ed9F7E9VkXcyxTok
Ne36mBA77J3grzJsWdB4phpAZt57LU4hy5qH/+A+tiXjqdwhXKJ4UjXxyi4vIbuRK9HStqibiAd0
LC0D1IEM19AFk8kj0y0EwLzy7nA5ioRAbbwXzpEIkrysdfcq8CqFXFTpPjgJgkHzg8pynEULfugu
R/FIpxy08F6H86l9vYk0wx5BZJvjoZOsDNAmKvpjN3ssTVD/tIss2oDe1QrGKraQJZKtVplG3pbi
el0C1bgtbsvVTetzTaMaS0z3OnjPHcFVnkVCVaKhmi1t6eKcRqJjP+5wUwKnhqtP1bVTZ6cTHSEN
AuzsVE/YlzPT2WknmAh2kUXvQtnOlXgXSQUfrHMX/EYxk5fD9CQLIq3XIGzpZEvOdxivniaYo9gM
3UcR7hrOonHOOZpS1G+kUIdqoVui5CiebNcY/WZXdIk4Wu0vbrgv/sgJ1f4I3YYpUV7XjM2S5wPl
qaabN06LcTAJ9g5qIiE6+wTdWxiCVvB0TRfGrgjcaQXLcpdyrblmpUIOEU3JyXRJqTT306SGSlhm
M6pcxJQCv0tL7vosEqNYyunBcIH08dOiE7f8vEtSonrZWA7tSGg+tx6UC3z2cG9kAfZ5BKWNynoc
s6uJ5GcklP4kQoOlN/kLImRmSuMeyxaskowbX0kCHi5G/N/9tFNkTbmiug8HW4+ST+hrd8sGKjng
I+dN2hVL17m8V7PWBDvz8AM9wrQ8cCLXfQ2kRPaHhI0ri8ZSdNJRoMG2V3bRg9OoRmIL/oDYgQbY
4pqW1UTm6gRzd+8Kz6gm5tufCr0zL4x256bimRr8u5CS5puqlp+Pbk4VEtds8p47YGs3pJ7HoRm6
blPgu/hn958iiZSujlZJ1lX06qGSaLTWk3ZEo8Lcxq3sUyEu+NEI4elsRV0LDiFu3ltyT4MIbtKa
bIFCOCbK7E5WFp2ybpaOzluBdOG/Sb3sfsQf6HrMGYR9bmkjMuAuIL0pBM4z8zMueXKw/JGg9ORR
TLlIJCkC6PQmahh3KoJ1o0EGt1xGEehnu5PUqJH1o97IVV8suiaHHa1klYOBlMd9CYeTUFlHTC4p
9Mc4c0vHj6RHxjkQTwtaROPD4y6lbj5WXuJQ9Yz31ks6Qb3n9m7l5nntc4BJjJSxOnaeZt+6v7JY
b3u2mo70p/FMKQjIsUqUekCc1U29ToNbUwrJhqU+8VaZaNaokrbDFhV7U/viZg+MZ8JV2vY8q5qQ
pK8SX2dQzmbhT8/r6r3jOWaqbiQHPxZGJLVTZPl/Xvn65ytev3wHpe+g9B2UvoPSd1D6DkrfQek7
KH0Hpe+g9B2UvoPSn3tQ+vUP71L/588/sTRLB1n2LNHpfMS0STyZ4fvQy8NqkJVsy3kli/znzLZQ
Ayvtd4WaVbCoAtlUGrRaznf6KCHAMo5+afgPywH67B2wUNTTZTAdRCzoF+mLZsJTxPWGUkNdq8k/
f7wqtCYlebd1oaDAXQ2KL/ZPbwgBA5IDPrABTFX6TUNkbNrVRNj87jX5jeuPVyHgPpT6tOm7CClA
vk3VmzBUlG29ap3Tr42x0IE0TzZymy1fCi3Ix3y/+S2EQP/r8a72QiiJ6OdtcUbDCqai9T04ZCgw
idTeFCYl2MnV57V3hmL0YrrWsMehzN56adotm20hfIJP7zkcZUJexLA5nGEIpaKy6vPNg2qHnLev
4pO4cUCDInOcaptPdQKaQnqLBfbWwDCI9SGI6WYjobmZKO6dmD0OW9EQujyXUNlAmjqR3v+TBe2o
CgvGs2T+biQqXE1p0yLCsGHLARHotW31OgQgCYgS/khLZZyoaVKaGmSiLcRaA+vUC2U3LRG0CnK2
6Vf+yp2YhqYu8rE65S8qdHB7Pkdgh65gTxzcgh8lOhZEvVRVeSvYwJTLuEtV7IcMmkS06VI19K3j
hFZGG5rrLs73NXrzXedzHZrNrqH3XhaTtnRhnHWGBwgMgF91sNTXjFCDI0kTeo2iRHmEMiBdQfC0
xvUtqoknvDI11UTu3hEeElRapnqg0OcVGoq0TFMalDtU4t5K8PPzDlKv/ksrSMH0rmrWS3Msa0NU
Tw90AD9XaLv3BD9N8Ozg1uiYJT1O2NMSpCsBj2WGrUslD5aGQDr+HryZNPUohMYlGWXoK5xZFqrE
K8O/ClXSXJh3nqo5Gov1uyKeXep4lc5gQRMTrWLpG/sZTmIEwELg9tRA8CVXsDArOOpQUPXuJNPM
JurQwwZ3X4ersLI4nzklBT/S0kxWvBe07L0K1CN6x0KHdvaE4/Y06HnHGPsmdzb1RVUBFuHvQ6sY
4h4mG/45nap+FwyVaYRjoV5N18XV5Wc35psmphByUHLBJNXEJkWHqnmXUKPI9TmKQ+pE6JmDvvb5
hL3HeQ5OedlA0qQHyKdnJPWceCIhienvckBB9hmiPjJSo5pmGq6IwSxwfxRktFnwihklPsGoVLot
09rBz76cqvsToAfWh55HCut44dalj4JgVRVR3xXS9fywCtkC9KODa/Tqu/2u3SWXR3Bfs/ZDzKXm
ZabQECHe/7CAJkZOtcqZg/S71I+eHW6F3lc3NS5Jxf3N0rFMGOjee4gfNO6Ndn6XYB2z+GgfVTL6
uru6nn9ophAArFNG1APV5elgP0wbomU9pMtnoNe3XOIOdY/9LHKo/8G8Csg+0qA3dA/M61ZNRyR9
PsTSKDE8eFe1DVl0GM0CGuw9fA4YTM8TP712aFT1l1j9TICy6Mllm+t+TgxH6EkvyNCTxT9YNHfI
om/MvoLqK6i+guorqL6C6iuovoLqK6i+gur/EFS/vv72+i9rlGygCmVuZHN0cmVhbQplbmRvYmoK
MiAwIG9iago8PAovVHlwZSAvWE9iamVjdAovU3VidHlwZSAvRm9ybQovRm9ybVR5cGUgMQovUFRF
WC5GaWxlTmFtZSAoLi9maWcyLnBkZikKL1BURVguUGFnZU51bWJlciAxCi9QVEVYLkluZm9EaWN0
IDE4IDAgUgovQkJveCBbMCAwIDkxIDcyXQovUmVzb3VyY2VzIDw8Ci9Qcm9jU2V0IFsgL1BERiAv
SW1hZ2VCIC9UZXh0IF0KL0V4dEdTdGF0ZSA8PAovUjkgMTkgMCBSCi9SOCAyMCAwIFIKPj4vRm9u
dCA8PCAvUjEyIDIzIDAgUiAvUjEwIDI2IDAgUiA+Pgo+PgovTGVuZ3RoIDEwOTIKL0ZpbHRlciAv
RmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnic3VZNj101DGWdX+ElXbxM/JU426GVGBASpU/qourq9QOp
HaQpIP4+x8l9SDw27JDQaOZOfGPH5/jYuU/UKlPLn+N5eSx3PwV9/LU8FRYyinAa3OnLe3pNv5RW
VbyHwUHMYmj+464D7rWZukWnT8UkzUGmUacGPRadvaafqdQuk7RH5TnJulS3Qep4r0revI4udClq
XlvvhJB1jtxhNRqTx6wsTDqi6pjk06spHKxxnebU8Ryahze8MPLBNYDFhFyi9jZzs2t1RLfwqtPx
VrEJTjhVDPYbBJfyAczMZCboD/AwkQMitTpi7H86T7bkYQ7LQ77/b2h4VW5MODWQVE9D3z6hyHas
dW7U6FXmXouMFeQNca9jgrjr8y308Q4sS20jsBcxAfexGINUyYwSugKbVQZG91FDF/G1Nfsb+bws
Nm172KhtgqeuYAPFUBSDt31AgDuf43wZ1SHIjCot0ZmgZAMG1AI+IjUsOZ+L4X8W8lVpW/Mp1LDq
zsRTj2iKHCACoEY4cCLellAYfKddULlUlQBdelyKsFVFRVSApjOBSWTNZA1sI1HQEzFWAp7cOjKb
gYwG+ArqjoTRPwlIQVcfmxwdSG0YHHqWWlF6BEQdOrQBJxLgzireYkip/j9x/YzaueAUDlJGusOB
TCavzE9AoLN16sibBTIS5AmJSvYaZ6CxBsSlnHhCxIipGAMQDUM7mAjkiDogluygFEt2kEe2IRKq
QAxUoAtnhCE5dYge7YikI1so1ZeBsX9CplMAZiD5mDTQ6DlnEBAMI/INjA1OGvIQIMBubzkw0p9B
Rh+9NkeZJmTdDTt8zascD7Nj6LGt55L3vxhOn4q2bDKcxbxGDiTSbFeKs3WcPmP4YFBMpkSP6X5Y
NC0YVDYlLWhmXfXua4RtS7LYW6KwtNyc9TklijEqtvEaBs/Gm1pIi2N4p0X92IGi5lrmfo/ftYZM
Uea0aGzO2DE6s7Tac/pdKZUjIBwg2LRk0dcRcIw+iLEjqXbeHtkp26PrYZnbMo60ZRxrkC+ofsrG
YnnMffcYyua4SD2OtI8Ijp5a6yNpzMQuh2UDy4soS+eIALEhq4OYwPxbirQNozc0LNoyeK8dtepN
lkJXQL4eEUg3a6+wDIYms3EmYEFjqel+ULWKMVZSYF84rymID7Xl48wVEjsij0CleVypYq0TXQT2
MfxxtSSJCcNQFUblbyu+df8SnxsnjtYoMLJzNF+/N+hjeUJzzSrLfEK30SlG3mOgG2qK/Ga5fyh3
Dz/Qb19+f1/uXhOXu2/zz/2P3+Dx8Jy+Ki8e6CWOWfEK7/F/PC6PdH/G5Y4lur539P35Q9nfQ0yL
fsw3wFmQz4/lzdevnp1wp3GX8fb8XTl10JNfHOiAmWDP77Dn+TNNF84dnFmjK/ivt9cIfb3H4dBI
3u++Dk94LVnEBTpxlS6XhoDdW+vp8eJcEs+f6XPnfQplbmRzdHJlYW0KZW5kb2JqCjI3IDAgb2Jq
Cjw8Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlCi9MZW5ndGggMTYxCj4+CnN0cmVhbQp4nF1Puw7DIAzc
+Qr/AXksHaIs6ZKhVdX2B4gxEUMMImTo3zcQ0qHDWTrfnXyWw3gd2UaQj+DwRRGMZR1odVtAgolm
y6JuQFuMheWJi/JCDjfl3x9PsBvIHPyuFpLP+pI39ZFBp2n1Cikonkl0VdV3xvSCWP9JJTCZ4mx3
Z0JTtU32n0qKpg7nScAtBOKYi+YiqYBl+v3inU8p2CG+7wBS9AplbmRzdHJlYW0KZW5kb2JqCjM4
IDAgb2JqCjw8Ci9MZW5ndGgxIDE1NTAKL0xlbmd0aDIgODI2NgovTGVuZ3RoMyAwCi9MZW5ndGgg
OTI5MCAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqNtgVUlF0XNkxISEs3
Q0kzdIkg3Z3SAwwyxAwMQ0uXhIQIktLSId0t3Q0C0qB0g4B8+NT7vO//r/V9615r7vva+9r7nL3P
tc8aZnpNHS4pa5glWB4GRXDxcvOIAWTUpA15+QA8PPzcPDx8WMzMuhCEA/hvOxazPhjuAoFBxf7F
kIGDQYgHmywI8UBUg0EByq4OAF5+AK+QGK+wGA8PgI+HR/RvIgwuBpAFuUGsAWrcAGUYFOyCxSwD
c/KEQ17ZIh7W+fsTwGrFBuAVFRXm/CMcIOUIhkOsQFCAGghhC3Z8WNEK5ADQgVlBwAjP/0rBKm6L
QDiJAYHu7u7cIEcXbhj8lQQbJ8AdgrAFaINdwHA3sDXgd8kAdZAj+K/SuLGYAbq2EJc/HTowG4Q7
CA4GPBgcIFZgqMtDiCvUGgwHPKwO0FFSBWg4gaF/klX/JHAC/moOgJeb9590f0X/TgSB/hEMsrKC
OTqBoJ4Q6CuADcQBDNCQV+VGeCA4ASCo9W8iyMEF9hAPcgNBHECWD4Q/tg4CyEtpAUAPFf5Vn4sV
HOKEcOF2gTj8rhH4O81Dm+Wg1jIwR0cwFOGC9Xt/shA42Oqh757Avw7XHgpzh3r/jWwgUGub32VY
uzoB9aAQZ1ewkuxfnAcT1n9sr8AIgCAPD4+wkCgA7AwAe1jZAn8voOvpBP7Dyfvb/FCDj7cTzAlg
81AG2AdiA354YXm7gNzAAATcFezj/W/HfyMsXl6ANcQKAbAEv4JAsf6T/cEMtvkTP5w/HOIBMOZ5
kB8vgOf388+X6YPCrGFQB8//0P84YqC2obSivC7HXyX/45SWhnkAvLkE+QFcfIK8AF5eflGAsCAP
wOe/82iCIH/tg+c/sUpQGxhA9M/tPvTp7y27/aUB1r8GhA3w37nUYQ/KBQNY/yN0Ex5BHquHH97/
Z7n/EfL/p/LfWf6vQv/fHcm7Ojj84Wf9k/D/8YMcIQ6efzEelOuKeJgCNdjDLED/l2oA/nN0pWEO
1v/rU0KAHmZBCvrK4Z82QlzkIR5ga00Iwsr2T7n8adf7PWgOEChYE+YC+X21ALh4eXj+x/cwXVb2
D9eHy4Mm/3CBH4bnv5eUg1rBrH9PGZ+gEAAEh4M8sXgepMQnKAjw5n0YR2uwxx8qBgC5oTDEQwjg
oTgfgA0MjvX7REX4HoTz2/QnEgYADf5Bog8I9B8kCgBa/YN4H9QIBP8D+fkfkIeVA8jxX4wH26t/
QUEAEPIvKAIAOvwLPmT/VywvDwAI/Rd8WAz2LygEACL+gP/VCytXOPzhRvhDrQ+N+hv/cf2AwR5g
K6z5GZjVs2C7yuDmqwopKneuzZHnk8ybBklsXN7z8BbXn3gYCWzlaYHf4BdSCf2dBIvrcqznLxbo
7rx3G6oxwhrjtZpuXt+ax2mPbzZhzY2R9ozm7kpVfaF5TM2l+2Lr9Z3za/0Ae9QG5DZl5kxnVxE8
zWyiK/duBY+qL0Vfh0JnNrW2yoVUsG+LJrje6kWZBORPMWdZpk+TM6AjuGgw2QmPPPCnzi8mCTNG
7+mU4ziwfPbe8ud5G63wRV9Pey2V6PK5tFMwURiR06CeEw6NP/WW3klUJpv1LvgUoxwa+cmGxmym
TqIFH+Qs8Jm+bV68aHB0dZD8u3mATBH++nhojJXWGrN0/3cHnYxWcsLMKuH8iTte8xwsF63W7TtS
r8jSqTR4kGSPPWJfky8sueudA23wOaskeutO2E7irNAcRXbPF1HfCZbqd/d+L+Lm+CyzEMYd3iAP
3P1WFOGrY5/RUQUo5kfjM92X+xK6Y0jU/YygAV5b+oxn6Bb7Hw36esoI7+0lkKkK346jqNgNff6m
3OaFd9+l/nHXKkhywUx86/oFDsrKrLPupmvwnHWRMXg8OsVOTLkD+mhQ5SaCkU8nu8L4/e6XdGlL
QsmhEjXkQFhwpXB5AQiUmxiezUJZH/bqLP9Sk0ZspHq8cOIN9nfrcmnrd6/HlYrGDkIUzdzfqOGX
FY+CGWVlD3nTi/kN4nPaw7mHxk7blLlJhWbLpmjEk3Qp1Pr3GGokguHkrBQl6oG9JB8TcdaCGFMl
6ozsOi5ss/trOJL0frmX3x+vY91WM8VudI2tmawaqHPL5LHqT5gcqm9tUWe2dNbzP8FDm5KSPHEw
J3DpKFQL1ay7LMJujfa00fEsWJ1ps1x5MtxlIepK4xTdc6G51hdboe4Kn2FTfe5qWxg9HTjRJzsy
n9XYoTkVaZbvQ15XT4fW3j6FtcFVMOKlxz78lZa/ZNv3Yl0xz50syGtTSwxluh+jiQ5vZnWY+/04
iZVHYxFpjhv5hyJK1pRAQnEj8QihuRRBla9TKVXIkxxet08UWrJ4kNna/eAvS+IjxGbLifutspFJ
pXELs4SV9KcD7tBmNjMN7htStU1xa9JEu9GMjFJpHF9bkcGCwz7HBvQHKpk4hqojhfpCk9//2NzH
ucik4DGhuLNRxUmFP5qbeZTQHKDRfe+LubA0vB+dWtqOj4z6DDmYdYBlYYsu4EOHzecg3FtgnpXB
hyDZpN47igIR5KCBn9o9rCb4BcGNI0TZj7rnJ9pSbpmcjoji6ccYaBZPRauitAHPhY1OfArTFmNN
OXa9wCHk+hjGyQOPKdEda7ha2b+tt68IfCJmmn+vL2vEVZ7YUZY8ZbCgkuhUU45zkF1fm+Wr63qZ
dzSjsVvFSxJXQn8dQO0LSn0qLJAbtI0W9X1xou0LBufzRo7BIn15Mqst/i/8FYMUvSL2X7Bt98zR
9tEdmki2paCYsd9AKZs1gXUX6u29uFNtYkdZ+cbJTMMZ1mJjECuSmWS7O5kbNb4NiyFBeJlqzKlY
DvlGVW7fz5XS1mHflV9WmYSzahaPC1bCiehtRM0lNH+U+2DK5xZelEqgzW0lESXUJmFsYgrEN9OI
eIFR9DA5lMn30a4p7J9Q4IhLcCr6lpkV9yHrSZT7PiFc9mV7JEqWqJDBRWwezDE6FYb+ge+qOdYx
BbJ1PZLOiwT/nFC4d/ZFwqj4YGhZcjR6WGRN0wjZcScWndERLKt5Np5S8EaokSru/bXoJ7fntnLt
5oasPZ6xoepXSRisopT522TWgjPi2cuGAkVoTYJE9DFHOIYyqegVcrTKF9HFrXUEJnNTpoZZxOSN
ibTVZam38w7s9VNDVGIvqWu4JKid+oUvEupVG2+qe+eMPvbK+Fb1Opxfn5dEEDZZJ/PmDosBA34C
XtFzEvditSz6vM3C0xrhOMIQ5df3BrQmaL11mNlVKKupXcMVRqJ/RoeC7OnMsbpVfIw7oVyd4Ce1
i4b+eMvt0g4IH5teSAsyotEkYBOosJnh0HAyNH+D8AUIJhrHaBsxidtmyiy7J7XQHd8IaEoRvXe3
tWzzU7zmh8j5BAfWGOPnOe55XSZok1wx0UzeohrLZQp4E4V0O3lpAw2uv+NxPW4KKACZK6Ft1cQ7
2sYXgW1OWJrr/beNnVPr8jG502dkeFyp9bIvafZanhZtfuWUGn/szsXAIVDFtJwnMdGQm/ScsQz8
QoXdAKVZLrwc8ci8n0u55X0vtiXNSE5YzqmRdcxRoW1YYmxlZEy3hIf6fmH2stN6jAvqp/QGBVX/
eY08W4nTjEnY27PJ3cyCdMp2pAXlZ0fKHCaOWCN01MoUN0LkA532FETRM44Bogzo6jgAC9mJDuOW
I8COrZC7txS+lfjz5TI3n9QhfE0kmbxvmBPsEa9dpGY/7Nmo9HCclfLSB5S+zY/XgV7nfln3ZXzr
Z/6EPdSU5mONCeSInuRaeRiSNuA8mOSoDFCpAti0ZL7xZNe5RsbzuQiHKOgLuYPqkMlWmRwrQ93E
CbyMtKjMVKe3edR/aDunXNB/ZRfud1XVaB55buk37Htwa76k/PhOJlBJUlzwOA8NWxfHyyW/et/H
VdUiUW3Ov6iVQfijSuskNurB5XbTyUbokoinBiDS++QkNvd1ppsFG20nt2woNTV/1vxWggpTAgVx
zs7j5GYAJ79fZUrixJJLV7osWdPKpPZ9eHxepy5urf+Q1WeMYr69uCDmgFtPWRO16ic6oopzR1pv
m6fT4TZnCvlmtyaCgmEJjOvzbiTGIS9Hq9lItklVNnTyzKirfaENyaVqlIY3nCJPc4RBuD3WTL8+
LCVgmyGABoQBc56jbX5t3eT5mKclAvVaKt5s88+HkUIMZJutJZpglOAfC0apTvMJlJBgLjD+C813
qveWMa9LLhid0BiE2lTe4qnSaRoOfvOyxPuUYRRqNXHpcx+wz8ZMpjqnYqPBh79UFrC2AmBVn6rW
iy3nqgbft8D9MqJOXHG0ixs8o3TtHUglGllWKhX3J3GWRccDud6zXbfduH7GanflIHaotj7fEKj5
Xu9VaKXqEhZPeqWrjG4shlbiNkJ5G7IVJWkQrn4VqUbC3ohboY4GOTxQtTm1kZ8C5kti5yANvYcR
jAyZg4bpMxdx16R/IEzPvQJNWshS0UqW32sDk+ECubs7u6RqPwsSSaeRUmfl3f36DsGCLNGmJ37V
Ru2aw7ROfcjRs7O1n+Dlkn2asaDgfvwR1XgWLlSqL1ijViRPiiIXL/kVfPJ0kSm2WVIWsmKg7Yx9
ZhIoMROZMyyZXKn1j/yX/Rflr1rd1TR0Y8tlXZSTBrWoGqt/dgR5Yzy+CWjRXW6tO+Mr06eIK1N3
+TYRfXOC79fKLB20YBt18pWJepZz9VQiYyuM8hT2XeXDAoNi+mg53hR+JqC+mG9EmqBAb1iYRfkz
a+1hE01v6vhJqRWvptJS7Oolt0Om1hSyXb88s11GgWY1Fu9Bk5clX3/ZZwP/ZTUOR5W64IaeXhtO
hkUgv29Od/mzm4tE4WygcEfp80EY17Y2s3/E1go0kVpZupb6BXQL+V5Iiud7p207sba8aEWG7gyO
dyxr9tOkI6ZvIbF+YoNntm2Ul/fnMWr3du3bGAUZOHNUe8yx8ihk+sH3C28U1vrc6gLRJS10xFZ2
xZTBTto9Q7X9+Fd+a6KpxUhRmYNL4i8vjaF9H2pLz3qXUaJ3MYknV1pXZ4JEfjD9bGNkAGOOPSec
tqfBpjm2WbYJzkqMicoYxC4jLAysxtF0p5KrEc0/H2VSbwpeEM++K7h/w2BniNZk6IJ6pwannPsh
V169lz6tesuwQ7/HbkPOkUqPrCcVHjc6gILDKclP2L7uIZx4LMRI1XYPoj+NeP5mnbGP6OYOuz+h
3zWPLNIyux4Y/02hrWqREaCoeWlSaGJhubo+zXQBf97KNiwZC/xEeSkaLZ4KI5LWI/ixOy9cxp0p
WLhOLl27rq0ESK7KEwUxkOvTE60/pfF4wvtqK3+3xDnJPuF5YuheFBfAiLc59G1585Ki8WFZyoY8
CLVRx+3FRA7ke6379oQn4511yj1K5+BhKAGzy8A331QTVPB1+NWkKWv04QKW2OYJiK8xV3KcaHHR
OyRzc10hY+Yj5otKsZ4sh5KfX1xAWyI7860KjRP6ETZNZ8pPmrMWW3fzhpSQxS0aDqK5JA/OTZ9x
ne6Soiv46DDRgl7jXK7CcGZr7V1ZDt1TCe7KP3gGIMn/SApeduqq5qMlbojv9lFiX64mk5YZlfCU
TNEw70dGaxb4QHgrtpbw2VJuO1PfNJi3dkL/6NqSM4ghTAUmz2NtGQuibNyjuB/KWLYRUDAbKrF/
x+q93TUstoiFmVzza9mUC6xcN2dJmTBoFTAtSfI543bItv/ShYNwJNsv4mePeY1L6scenUqy9B0a
ThCiwBOC/Pl4fAj+q4G5+kSen+L2FUFeRt5y5NNsNZ+5rwV9/Bmy9n22Fm9NMuCu1hLfjp9dQhqk
qMxbD8JJsGDy5uPJVvbn6qlTkVd0UIvsn26zJNNsfCkJX5PfbTAx7uMKXY97/zrEvC3eXiurNZF3
O9fbM6DBbvN3OMBi9kAzflU9RbAfYifkm0cogz1Fssjw7p2ZvYNM5aEnfuMiM/UvOrYxZmitwbR8
mgYQiViNINmz1K+feGrb99TIuWW/cIEOopQdEsD0KUNmUDeV3SOo6IvpTdF2ItsZHSQDGRkhYJSa
qI80Zeq4GR6gP4kUt6BxEx/gX3bezPYKCfKrAeuEmQtFWa8n09imQtdQeArITRliFUYaGYCp9+gN
56Wt8KGIWrbA6A/qx147omLrQ1Wrdr8c4W7nqZpn0Yy4Eu8yMS39PU6a1s0vmz4NqnbVd2dgexaH
FsUHVZyNCuKPa78Aetvsaskc+xRbD7Rj9s1e+M6tw6u+05ejCjTdZYzHnjdF2WjmwOr2/dvUJjnM
WDiT8A6EzIFfDbxt54b7D/uB4eMpP4bstqt0fCZ+7SuHeWGPu4RGTNduRKzO2JE9Lliu8vVKVfV2
ljJB0p6wZWKLFPNS11FWXfKktjP72P2+9x1NDXJsDzUt24TumO+YihGqFMlPTR60mEB0ZU1SX1YJ
X9G1p115y24da2b3DJhBaK1sLWGGgttUz21R1ScCQeoEc5WFzG950dZm3NB5F1+5SW77CwhVCQco
XsSR7tL/Oq1RP7vrsMte0xCgKWghnm+1XLrfzG14i4zIkj/xPNmq2jw/fnrofequZcxhFKH8Ltu5
HoujYfUF9uG6I5Tzm50aVM5GCccRu0BbgaZc71Fp9Uu8cpHOlCv1ELKCnPt0FYIIMSrT7lxp+qIv
ZOqS/sokEYfbLLNS3Bf27d7imn2dHyQ3mYCW2evMVtrVAaGr0Gb6R+xB6ycpWaLExCIRdIvq+K7m
uuk/UnhrceieHrCjgXPVzZ7muyq9Pr8O5rif4SmsYcAWw0aOtSbTwTgqLe4UKtNzP9dgkJu98aMZ
OzrZfS4f0yXeQ5eJP27MEOLBQ4z0ZP0OO/ncyNs78G3X2TIddzA5zr7IYC9LrdHj6o5hcxDzK2tc
3ya/WMv1HRWDqeJdvUyv0BPki+zIAfX00OwLTiXAGPgA8ngbxUGi9na7dNVqPSe0HY0D6CCdOe5L
jOoVcsm1lYndqo6WZkBCZGDVBI8ZI/oeEk4WJenXqc9p7Y9swvTsUwmCWle7nZlYTaRDds+vfkw1
w+Wld7hsNaMA9lWQrDeo0MTuWR0TNI/AeiCDZXhYRQ4nkcUpfhMHNEl7sWgu84QMmXfGGg/vduAW
JCeHtyjA0PZJ3PhHf4kPmrC/MPNcY/K2vz2QT6nWPpylNN8d1VJ8SDqB8OJ177OXa3HYZW0O7fLe
c0WcJBdpW3miWEQsnBJBDrvUOUbOzi8qLEjDyYllIisOOPGEKBZen+hR7FQa8/UWel/VD21ueZ+Z
V1FHPIjbIb3ZuJ31PGlRrmQ9JDbtabUKPTcP4jtbSV4sgc3R+fTUqXACerTDODRFzX3TUDwN+3U/
bttVVv3Rsjs5H2PTgNjrwbFmoeWsWQHF64q8KXv4sa9SMJJcdJ7j2dRxiltpeLklZ6dxikdRYMBq
H8HLkBd1SStwalWyunaWn3T8g2IWeVLCMjG+hhzmW0mt2owKG1L63QjTCNlla9zWavrHMzz+a+wB
rt/QvnqdWW6QVQQmVVDtFsNfju9/qlSPqMioZT4dp3iFiXTSR6ln+NR2+I1Q7JxG6/bpz5UpgxG+
z2YL5FexyHheCuX7twCIeubESPHdnadNi7nOPcO8xA33K4sLSmkhhW2su75d6QTa2z5rw4PYGuLz
6AZDOR+kz2n7ISFbYAPCJvOdDAcHrUIioTt0CKwgOOCdvHhVLCX/VPKtEeqvpTV1ZtJlLXQz9xHy
paDILu/Up3KlUWLZ9s8B+OHfqY5TqKULPtcpvc5LwMrwnV5ILbdRKYTYe+QBYg68Ohxr6gHYk/w/
56t8HfftsbRzuPL86tbhTYqfd10SF8IXbo3yN0uKuB+Z/uowJcsWp68lsWUbAnS9TrUxViQpclgM
5f8aMGD8LcyrB+8LEICefxj08i6/KZFzx3o8zOS0TQj2Nmm/fGqufaeBUq5TBElh2phgggjPpjrf
84W/sKFxJg5BJDLGd2tCAxahJmWpghuFc2XgITaTrwxNNH31mk8m7rr/IzWVKmypOiOxi0yK1g7c
uDiYD/FQmbxW1rJYpE4UaXydpq0OBunI1oJbw12KXg6kClmkmHzhsFrI1Ozy/ZHSUFdzSXyQK34I
e4q2eMe3k7VahkMxbtRd35HkK8ynpTeh8zW6j98jqVKpi1Yp+D7nAI20gLKAP2dDm1irse6x2lAH
Ju/hokW29aN9WzRrOdCWCWZsFV/xxUGPpDVXT5A647GWFZnIGPSaKdHY/FNgZ2njL/fQcD3jDjXr
7f1drdbkX8s21eEYYzXuYktLjIN4T0131BqfpbLXCcWd366ZqXVOeN4oWDecq1LnC9FXMtOqLDut
xHGmrEOdOkhpVX0NZDleuwxYGygIlVV68mJYFhNjGAqgqSjkVTJ2HwiPb/NPc8FJCQjiBBiguCNS
icqn84RU6AmrdCTPuH2RY2RVppEHF2GBRp/GnuW4W3qcNu+SBtHfBncaAB0TOgfaeqg+yK008yIO
SYllyNxMsfgj1aaPOMyELudGL20/fmmlr9bxU1pR1a3/RBb4k88zkMsWkwijaKqcu+rRG1PLMjf4
s5ZVwfCzz2uNXjGxVI3fNTbSahocCZrHdvkznFk5NGj4sAvOooKTZ8/YdlNNiW/CXXATIwWTHiHj
s6laOgSkqJkZO5DU+w+/C+kCbZC2PqJDz+n2AW59NSTD6He/dlgHMkiHl/mgYbO+r9VxQ2wlnHwx
05dyLNoBbTKXHZqWN3BxmaqH9BHPHNbG4hqIOr3qMnVUzXx6V1K9j5Q3/VOgwNl/8BQZp8Ms9IMS
TAzeTAvPuw62nHp7TRq9Rc85Suhb74qILGNejbtVzGdvCzgMmaPCGAVGYwQL/RoWLWcGSpwBm5Mn
NQa5waFmr6TJmDCx3RqzrcyFeHrFVAaIkvuHmSRzQixVp54yg2yFMkv4UC+qB+TeTMtEwCmzE/Jp
emYEGNA07QJ9mNaKlLqXdTONbig/9Q7dzF/Say4zDbnbC5vAyvQWgYcgKn9uY4HhiQjUZWLRYl7S
R70GQpfBhxYST04d+2ZkF8mYlJC/tWk/l3bX2GFyReiCeguRKNbju075FXW/5IR+hDif2gZILjdG
6WOOPwudavAerma4PUys6b1+woEZh2kSxDVDGmnjgixfRO4eTk9H1GpXLUlO8Jh22oWJXiS0x1Ri
KDv8jY3glgPqV41k168zbZEx4ELGoaBfH3MEATQEhe8ZU+WNHPOjYr+gT+XZu5japWgfKK7hPkOm
FX4RgxBAp/7a8DPyHtk8Aniicq1B7aany2NnPChX+71jxNBnjaeM08OduMHdPEvD5O3wih56MDJV
Twp0Lq2I4uNFAiYOp5huswNs8YP+PtHyK6m99UnA020CXKWW18xvQrsL/M3p7UhlRQWMOgfwGraS
XwsWlr/PtfgRxv246GWy/Y/ajaiGjqkPszocO7lxn6Jreqe+4/EYsD2lYJp1kpV3F1+KVFE+sSul
qSj0SLEoi1ZQr3wRyWFWOWp0lMdmjtJhoIvQLyBuLsJaDknKDVZI1bv4rkzRae2m2oaLhdBE/4hE
mmHXTvMDw4pqWtlFK5f4/SvaFiWM6DBqmcsYdonNXtjLmUib11j8mfo2cvHSy/rBCu9V6LhJ9NRI
5oEZugklWAjaDVKw1rK/V2j/1b0an11rbvovHo5UOJYnChUVvqH2Ds9q4IZQSBGeZliDCgth18oS
qYTDVr/bN73PMjSJ1N8G9FDXFwh7RxAft/SuqBkxh9t1tUQY8kLjw1qZmR5folv4vSgzigFfsUg8
Oy56b6xbBzTF1Hh6RvmZKfHDJtZQ416czOxmfi0tleg9gwmLrCgH545veuLZnnNDdH+UC99sdszj
M92JFsYfmhQ0nve/yLneBQknk1yIfjYwxcsAsyclNLqTf9JqfsP7LnayItt4emMrDPsLgw7WYuDO
OYHTuwkd5pi6VIWrCGhJrFpUB86Iy1kdhpUYstvEvJ8KEewrytBAyKsJmMt8W6XnNfV+bll7cqUB
6OQE0lUfW+OMTZNRYBnh5SWgE/TrrVu/2XZauTIK6j73VyfrwdZezQrHs020uahZN9VwOyqvQN+k
cG0Nhs7DpJ3rwitFMaNOhvRJBj8bIAYx2Vx+dJDaTe6ca/P4F4zJJGGvVVYNWQnWgZ3wKC7h25gC
C+/AptvJcJUu8jSsFZGvBHZtSE1gHdr+4yD6ipGNiObAV0vZ6Kuf0oS9dHx5C+Mrl1kngKnOCs9E
LuHKThxsHUakwjUjtB8/6e1BiooNuBBmpNjVhUwSjwvJcXdsClgJQB/aMAQBSSsGEogF3f5mZR+1
eK5SMr18SuTuzzTh8awXQiswHidcyPCilKMzAD2MYfyo+Lmi4RBdmEJV+iI/VpVHIpeF8E/f7OAp
pv0nEt05PRlvBjOjUrBV6ZNyUf0owxQklSPTUbVIyC/otVhwh6VmYnB6EJGy+7buys14Xovs9Cp6
why3Zuld9tlVxz73JGsAG5+Q0oQTFGfTr5VEk/C4HX+oH+xxL0oquk9xe512Woa+7zfAohqni0gs
C//g2Oy0yRpyn30C+O6lSvK0AF3BS9Z330rQj3gK4vXKSHf3JNkzqJkI5br78I2mrClNKZfSHQy3
4wLsoobocKE83aheiMQv2SlU83Y1esuaBAc7kuaKJeNY3YvW1zzM/FZN3zyE5d8o0VLkYLSd6dCW
RVsG+75Qnc4aI1Rdft3fsI6bpNq+dwi6NsDZMldXU0jIE07rBD8Jxio5O0J836/YE0a9sMj2WTe0
yFaEOi0V9V2A4t+pEoYANo/7DLfhic93XcwMLCrPtKs/nHKAQ+CTrZYW7A1jMgkSaZVXAFL4k1et
Z+9vnKKeYBDFtaElRu8YzuMGo0bjdfaPCFUe7sPGMV4UVb6YkbllroI1rmfGOVzcsiqFoCbZFe2h
v0f9eS9BWljhsvclhHeA/AgjN4ZpiDoRRzH221dYa8ud8PKnQe4I0qpDq493VK6j+MfijyW5iSEO
gmcjLv62aTkU3t0FRMEyk1J4O1gnggi2u/PQc6+AhHSEqDdaUTn/Fe/3JTzblUQR5dBZGYrl42DX
n9TZs1TJH8i/fq/qboummayOZKX+VdZawv2e5QNy6VXOk+SCa2bUVHMhEUYL+QiuF18t7Rk94c/2
14ozODnPfNqGqEjlRuCn9CoMVGAZXB7m48tU/ssrLQqJPI6Cnf2rm6/Vh2M2ZbZY4c7PRW+ehqyI
f3fvx8yL8pqsG/7KKIemOZtslosS0i6UZWQP/TnnZ7rjORc4GVmB/5aqQwUnJHr/wOkZJYL8V0ja
yUnJPlUg2Fg+TeBsvTnn42K7gP5LzQxDlW3DoDLAM700aZzF50uT6taVR1OTzHMnoz5TKHjoVk3o
IxTi55jh5xGHP3e/02tUmGdE6ZCm3+LseasVEF5GflIvjrsiOVafRdbjSbJJja9d+EJ8ir8w0HGD
CHP0u8v296/2blwGsuy8Z6ysNyYXR8U5Jhp5a9y5YhvwdpFEnSkTlNQb+HH3cqCdst8HbbvwU0lz
lM+NzelF07pq4XSAAwbF1MP/+Gktp0f7Iytmd9FJXbWiS1Ipqx/hU754006C9x3XRjUDxMd53bzv
hfBaC28qvtnfYirn7X7oysqXnUdsVOqJlkjsDL7d5bNjiXCfHTnAqY/wTHnB56/dlh1jearh91oh
g/yATY4tyrcd83TZNCMWBehn1xqJm87IuMvVMVVVk7vQDGnb0vNSjdQydpuhcbGRJP9c/hF3afrN
9YUBJjFFWp8m84xOANWnBUcJC9a+2Qtaqeh+nMSL73I633AEMZHPRlA6I7l6ymLvmXdaBJcFDVJZ
PzzDhKoZZzmGGKaWZVOX3pzNQ1rUIiEl9CIZpHF1kZXp5DhirP7IY3SYdz+kx3FpljxyV1bjhsF7
9DPd4B2mzBn6I9iHsWAjeh6tIzab9sszUrd2sognGS/quWPqzq62DrXp8SfoOs9DQZEY8WIRJfTp
wld2wFxBSkoVqWhYSomxGUcz0B+IRDhP27X6SDodisMeEhuadhn5PVz54HlRDle06NRiUbk2m1da
0NAzgVeOad4opwW/nDCfTB+Shu2NLbmVjPqoJi0N/JKsGARG+ZmASjenFJc2urq/9pxtlNJBMjxK
ruOCF0+79WWqK2wzdfKH/HDRFXn90PF/0d8rzOn9pA9M/2jAZUXj55VI9lqSV4WkLkO3OJxA+KWB
upFOf6UKb57wXsYg3UWvm0D0U6JiHySUVtkZ4wyO1/R771T8AXxN+/uTGjKSO0WKoaIiJJvH1VkH
rCw+FQeq6kPSexJP5zcpzdX30A1J3+eQMQr3LAeyf66tw79fIFqCF/EyFRM+yQ6r3h+qadepH/Rt
eTITXeQtvMNR65HyoihIjpYDJ01htaxBDcqxg7MRvaG94fZ/ACq986oKZW5kc3RyZWFtCmVuZG9i
ago0MCAwIG9iago8PAovTGVuZ3RoMSAxNDU0Ci9MZW5ndGgyIDcxNDQKL0xlbmd0aDMgMAovTGVu
Z3RoIDgxMzIgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajXcFVJRt8zdS
UkpKI6sCDyCxdHd3l+SyLLDULrtLLSHdoHR3iLQ0iISkiCAtSEpISEn3H33i/T/v953zfec+Z+9r
Zn4z18w1v7nOvcyPtPU4ZWxg1hBFmAuKk4cLKAqQ09BQ4QECgEA+LiCQl4CZWR+KcoL8rSdgNoQg
kFCYi+j/QsghICDUrU4ehLoFasBcAKpuTgAePgCPoCiPkCgQCOAFAkX+BsIQogB5kDvUBqDBBVCF
uUCQBMxyMLgXAmpnj7rd5+8lgBXMBuARERHi+O0OkHGGIKBgkAtAA4Syhzjf7ggGOQH0YGAoBOX1
rxCs4vYoFFyUm9vDw4ML5IzkgiHsJNk4AB5QlD1AF4KEINwhNoBfJQM0Qc6Qv0rjImAG6NtDkX8a
9GC2KA8QAgK4VThBwRAX5K2Lm4sNBAG43R2gp6IO0IJDXP4Eq/8J4AD8dTgAHi6ef8L95f0rENTl
tzMIDIY5w0EuXlAXO4At1AkC0FJU50J5ojgAIBebX0CQExJ26w9yB0GdQNa3gN+pgwCKMjoA0G2F
f9WHBCOgcBSSCwl1+lUj968wt8es4GIjB3N2hrigkAS/8pOHIiDg23P34v6ruY4uMA8X778lW6iL
je2vMmzc4NwGLlBXN4iK/F+YWxXBf3R2EBRAACgsxCcsAIC4AiCeYHvuXxvoe8Ehv408v9S3Nfh6
w2FwgO1tGRBfqC3k9kXgjQS5QwAohBvE1/t/G/4tEfDwAGygYBTAGmIHdSH4T/RbNcT2T/m2/wio
J8AUeEs/HgDw1/PPyvyWYTYwFyev/8B/t5hbX0vRSEf56V8l/2OUlYV5Arw5+XgBnLwCQAAPkF8Y
IHS78P13HG0Q9K88/peviostDPAr2K98bw/q75zd/yIB618Twgb4dzBN2C11IQDW/zDdDCgABN/+
8Px/8/23y/+N5r+i/D+Z/t8ZKbo5Of22s/4J+D/sIGeok9dfiFvquqFux0ADdjsMLv8NNYL8Obsa
EBuom/N/W1VQoNtxkHGxu6U0Jw8/F5D/Tz0UqQj1hNhoQ1Fg+z9p86fe4NfAOUFdINowJPTXFXPr
BQT+l+12ysCOt9cI8pabf5pAyNuRQ/1u5C8ZcjtU/85DwQUMs/k1fbwCggAQAgHyIrht/q0kAPDm
uR1TG4jnb3YDuLlcYKhbF8Btzb4AWxiC4FejBQUA3DK/VH9KggBu2X8kIV4At/I/krAwgNv4H0ng
VoLfdhVm81v1r5zAbgjEbdK/yXSb8N/y7+sBAvGEgAmmJ2FgsWCHmuDW02oZOg/O1SFxnN3UU2Ne
zqFCCzxUj8Ko5VK8XlbmjFqp4nQ3j6KFQ7umrOtp9vzUgfdKLWOdF/8xJ6Piuh2j9cvJm+M74wne
J/SPJ4mbMPKMkmUfir5C9GBoM0SRdOBL2dj16DET+/xR0/UlwYOFokRRSDWkVbOto7okU52SXsTw
xzddVLN1v/6qwCH1HznfnF8ELUebRaRopj9WE287I4j3qCJZ7BvonyXtZuiMClB1D1zdYwpFkSqI
9dPL89+tMpzNv3+Z88p9K53M21qJXHrLpqdsgS35tEbzp/3Kzy3zR6yJHUL2Vom20Tw/0GcMpPBZ
CtlURG7BWqTN1+wwRqzGPsmEE6RhVxpU+f18xTcGR9WwEDWvmfGukcVLN7UUFdPh3mBWDo14ievy
lR++9czvYtxtQzFb/qhOJl1ReEqZybbpaxuU38vklDV7zBoybsRrKpxq36ovWTwrEtzib0zKx3fP
HZpaaXCfu/57390ik2NvNP91/kFbmyzLjGtVlEsMWTR6sXbWJ70w73yXh/tDHTjtTbQc2sN56din
ynPJXL3PGVbkW4FudRbYXpwijY2GiQIYs19vtkcGx1BztUQ8rvi63B1+9LAc86UNRolmbtn5YQDl
p15YKwYfgXtJQPT5FvpqCzMdoEkAr0PjlGo/EDMcbbcT7MvvIcSUnOa42ZdsSdHyV+V3lgEOXuny
NUw2s1P0e7c9zadsWSETIV0KgbqtDmskrmhJE9v7cpJ/ZY29F0ih0x+0Ef8iulVm8bA5J4pt7A3d
+DZRa4lEAB6XyOvvmVuHfHZ0tAeZEvcZTdssGW+sb2CWD/Zk6Q0LF857Az/ebfhp9JhxmwZzpSEr
4/0i6OcG7JkiUiuOLTixkHnXhvdns0e05tuKMWXJI3nfoz28r1lxPSZJ91u3697wODyrDLIruY/b
zmPd1pypWgrysWqzj3ll/Zyt08MkaBdsygJ0SNyrMcYQ8jq1IyBPtafRawzJZ8F57ksGv+Yc3bSd
tACALiYtCXronPjRhhsH6y66B4vtDJYxEOmqWnZMtE9yXJIRlKtRZJAtti8tQzZUL3YByTf84oVj
LodFtHV8+h76YzMeiPBjCL+lLO7yJjkO2exF79A5z+7TkRnSsTvEP4zqa3gH4LBM+YvMsgisNk/J
Adsp5dpzU0ZzfYXjTod03f5IP+6nF4QrK5SbgPRUkjkn4RW08Ww8vOYwJyNL+ZHhyWyATcOjBn8x
G/78Av0i4mkBUY7lc3eKJ2C1F+yzk2JP0cMP7hpHV5Gh7zkCqAp1xhY8eiRBrr3Wgqs8MSrnzUNq
JCwhUpDPEydxEuGbts0N4nsOapexY0yOTU7H88yWh85M5iRpIsuc3UG5q1SOIPWPz2lnz1L1h7V5
vD8HkNNSuORGxE5kK854W+u/G2y1xQ39tp1b4R2hPrrFEt7RQTBgnCWyPFC8eH6yU78gKRVAPrNS
p5/7pR+2o+uRPrYkShD2MAPSvEvA/RM/omWdgb6TmtLrYrvpvm9wbhhqbcY4P6jlsZD/T1dU8KLt
uW8H2dpIIlt1qDC2nu6YcZIXFZl4JrKO1yFJy6J1KaiFhLmD6IVBVkvIorfkeAx3bnnVazln2MIq
cIi53DcP/pXK5ru3PSW/ZCRZ5F0LD/niPWmIzqHN/W6sTRDUxmTEYlG6vV4KD04E5ROjrwmQ7WmW
YYBcXDzsOzwiwhp5XKEG3lizJCA4lLz8cKkPG5EoZKcnb/rw8dyr0H/6CZwclynNYIgeVOxf458l
oMP7jE+UOquRrl/cRGnEm+f0BmyoQlONJchqidB4fBqBCrHx9w+aK9XcCuU1B0NBS8f8BzcSuwyf
EGlv3b2+VtlbsHcqq02/8TE7/GIS4UFeT6uxVcDHwV7fHeku4MtVWiRSTFWd81gQ1FpHeh9ispHu
+xJL8DWvr1oQcMfSsJpy6G303a+D3K8EO/w+RgB/OsrGh/deO+1IesTPG2+Kf1M2ianuxfZ0J3tH
7uu/osjJlPE4w5riEWs92lFeR9caJVbbd3/DobCpO8uRcEWT5pi/YgyX/yztcKF29sZBhj3Dym40
TKf0TQ0+a/F3sY8B1Tr3DBiD5eDW65+kxU675DBEIBssiqasUQT5lyFnL8+KpYaoYxAYkduprS2W
h5Uhd0lHbbXwjOY/Yy6X5JS4nQHnTuJiHLnjK1mqBI6IPoyWnNVPfMEPeMO5oG5i+KzU+ge/cbbp
INBt0IFSUmHcsca/5pFxT4f6y7aG07y+OIOU6uOMZYBGmNO5vjJ9v8votVdGN8Sgt/fmEhkigz2b
GQkL4WMc8jFnBFSZp62s0aGbA+Y0K1mSaBOVJgx4pOtDubhFMMX6RlTubA4rohOZitv8Db5wq2Fi
OU3ZCnq6LuYy4HsR1Hj4vglUVuauZWc+/2qd5JhQdWnyxgvm+bnBoXInxbOgRu9dKpaZVz2bC5VU
S7bheqBqA83DM9ynjP10jqCQXFNK9Oygbeobf7KUKVsV9jlTWxoJTA0ySr4xNubW/deVJAmupZUN
Wqw47Waczx5F0zzM3lLtIlBmo0foHL+sZ9AROC54rk9tre7LLTkk4Ej2g/pEQscjX+taiFLgMvwJ
nWjSFEe+gSWlurZUXH3fAJWmXOWansbxBHR34t6MZNJ90t7hk/BVotV9PvYphydGXVnym8LrUUw/
x3x+Zj9qVIxcGBiMbLqm3ZhRTxCzfE5go5OsqsLU0JLcZdLP+oWa0lnXdZ38pEDVlDrez3aSBEuE
I7lMsPYblSXPecGYnweA8O3Wa3o9DhwpnhdSQXiEB5My4z0LXk6sgcvqd5qHUW9zGbF2DV6S7fxY
x++gKXOWHmWnvHipTyHy8qtCM2aRkZYd50zyZGc0cbXyBnyN+j5IGffhYzwzdOHVexLu0bGHwQoO
hjjeWTwRBzyDQfpvkgzVr0YFvIzUfND+owfLKXs+Mw2ou4UOsjYbIYYSlehpvpkO/UlVv9Y105q2
+usJPqsr99xruAsiyIBIw9CoNOOY6zu5CSdqPS11o7qihhedNbEfF1yEEUYgrieI4ql36p6zemud
vhaJkdOCobJFOcJgyZb1LO1g3BJConBfD3WvyAAs8OOT3JJ0VCCsR4Ckz1Nd/lO7TGpkw/OrHs1i
hs+6eAD1qO1M217PNV551uTAQZfcmpnJzK/Q2ZjS4ZHX0ch7XdOtMUHfzrkQ83jVWA8PFExfc2KV
XzX+OLq/HlQSgH6XvPoCUYlDvLk4ylQkW0qojskd+fK7aJMs5RFgcn6KxV+JLnt0iMdNEGiOtAog
iD9M8klvSWB9Q8mfs/CKdWNPtuaKk9Sx9W1zdm+yY9HS4cVbtYeVzlFz0vOWhTJ/rE11PGsZ6yDD
42DSheA7j8ubYlXEdMTA/T7uVe5FEOIazybIXAk7y6Cnj75nYtu0aYo9Xknzo8YdiS9pgy+0Hqc8
aKKRUyq+75+g+TmnOrZ7wUcMoHZ3R5CkQ2bhZLzPymqlzUGUmxCTCuNZ7Qv/m2uDYmb2c0E6sy8H
DbJrSwkzceIDm6va0UxwLIcK/47eDY8uVMhTaMk8tLJQtXQ8u/FyHPDOoKjn4x5y3aQlyyHEN5/A
7D1KWW7z7u7A2cM0bgL5pVXA2wF8byike5koDatcPK+Krm1z+MrnPZd3Crg6zOkUGFsQzvqKcua5
HF7q051P9E3008+aruFMAJZ9EtAr4jomhdJ4ReUYZwy2Bar5Qj6cctSC7io0w4kJyOzp+OhKLk3U
X2Tju+UQ51tfRz/1Eenv2+Xv731Ukui2KLP/ssnmWJXRDMUXth6LO5VGWlCdeirdcMWF4hFvUWud
hKY/i9pxqFpWpNCfbf18j4MJtBtEq/u1+hxpm1hXUPjFzNkf7MgDe/N07Tle2ODaArZ/p8JmmPVu
FIdcpetBF0volTH5lkpBRu94KjbindnXhveBH26+XehCYFbu8UstCBsquNSP4fHKqkzbCbmhB7hv
Xk82G+Ecw0PHDxxx84OG+mVyGUlYp801VmimSInxSSiOZ19aBFSMTGglvXGaG/7sJUF/WGKBFlCI
DqBBM10HfgRvzwM/OupFwl+8k9nDtH+FQBKGvAu3wlH9lHDtGNXaPKikYD/Osi71ICgEUEC+WEln
lZS1LC0S9SgVZiatngDSTzHXRRH+IEa3V/1By955YiAWyqkwQrsakgB7q2/9ba5dYKWqsf3yHW9i
m2TZDzVPV76uosUPlqhXDBUZGy8/+4wYTTGHAwsGJdYU4qSrWhK5dnktFhG1RaI5rAzKkuWQ9Rnt
wbnacbGqky99U3nBvs5GmRuc+/UaSzJDaKQV0tr3ZXb09FUXskmawjIB2cqNmZK9rBjeHkysFa/w
vizFaSdq3t5Mycr6zjHooXBheiMT6/zPfgsDPvIq1/S68aPd5QM5nMdlN+7tUU1HDtekGDFSqTnn
sx9lGMYa1wS4SpCibeZ9dGLKvJUh72qknNrrasAUZCvXGNpFJ4ePIHgFXzc5UTyxX7hpufvirMVD
kxJmrxwvuFe9F3A3RhJhGUO55MEvPvViLf8oElZiJo2AD7V+2Opt1NgXHUs6d7l6zwTW89+iE3hU
Gp/dAkyK/DYjHfIoucFvRR5/7ImwGNHzvJ91NwdIbIYci81qCTu5vfy4uoA5qbP1rSn0XbEYS/OE
VoTf7f9E5YSqCG7UJWHXwbqg3GshJbvY5tSzD3SixGeyEiJMR3f3+7aomTLYGwXjjs777RHER4+C
8Bkh5WLrH+/7jxr1cJXY+J0oXQMVUpeG8DEK56V5VhqKYjyh1ZGGpa5EcYNNVWWJFSST8O92hZp3
PLzMFybNMmeRvK7OO9dS2VxfitQazo/FvI+O9Jv5A0lCO3Lev3ilmb87TrKI2+a4tdhts+jZqWKv
INEX9Cq8yDzeHAHQj+/wvdeyoxJ4sZ3BO0dT+eReURh22vVmjyl+dQrBRDzY7cqr2UA3wHER6+Xt
F0n9QARd2aeA9tBgn1Zj7fFcw3c9rBvo+ZFNZ2/3d7Fdmij2nMH9dDAJhnzam0HaeEJLMZTj+Dxn
RtYmPwPzq1cNOIolZ7tpNESnc9s1tHewZLRyWCtDkR9s3zCzzl7Ah+S/Kj/mZcFJ5YRHEqrt+lVH
WC8f8j2ScFM40NlITMFj3ZIXF6t1qO4eaDxfmFZZPeNFUjDkNyxcyNTZhSolfNLU64sE9/KOX7ZM
Ici4QueWhSbkYi3kZHOXotarKSTmEC9HrJJ/UmQ6uVaw8prPtadpQuiy1NYTgbUMP6RejcJ5kk/2
CS1iUn/ep3hAaqXtp3fDKKE2dyOlcLamRpeRwVL79CCiAGHGxIvPZDoVze05Cedrw9j6ZmKQV+4a
hFPPjmmViwC8PpEhrEgwEO7t64G9ZIcjiejP7ikUHTs5vrKWdtF5ejAophsX7ZIdH8HrNRxaRRk8
3eD78O262sYXNUP9oCdlwrRL0dlJcAXRNo+BrOwRSgUwGWFCTld5l4TK0UbEK9U+q70PicZsup67
8/EbL7G6PfEFRrhm7Eue4LXIK9Ns5kwD+zHB9X6dzZSqRUTLoU27AUWirtiUvf32XmpzddeKYuIm
NzmfQy79unx+ljUu4I+Tkh/qcyPar4oZq3Zluq03W/sK6i5WnMqZndCHwHSQH/J7gry2nCa/mlnD
3M81KYUn+7ouoydJjzeXHJ/M5RzGS+vlnvuoErLdHCqbYdPhUvhyJI66G0jJi7P5f0zeNS/MuCrc
SXq7F1/+bX5D6XMfaWcCDkZjuj7TuorG8ZJXFEa6MCU/twaDT3Vj+5McCStB2l4cTJw41D3yIWHH
gYfQ/HVcceuzpMyc5jsEyznU4U8fikncy8BW+vr8OVqYREgPAWcJrWGKcDxa+SS9jFdfnBoF0vAP
f59MRfFkoAbic5F6aF317WEaIRFKPUx45A0wZSDcZ3hss03rIduC6+dVEsUkFH6yVg5mgYRnTVFL
D07UzL0vxZZrPRI3CSRXT1OqRrVEVkNlfAep88wIl7wsiDkkPC2jO8sMcN6+6FjIE9TCC3OQnVkW
lgqRCv6+Ko/zNgYjjt409tBLPnG6/a6zUbHlk3jrKNBNso8HG6mK1SJxRRcUBPIB9SLfcXKpZunD
H/P1y0izrHlJv9um/DYWyI2LG4LZkQzjPn6BGqEl9CRMOjh6OkjJLtSwqzxseaojfkjN447U8m8O
0r9T+9VxQiDFxhh5nqwc+ybIxtEILrTq6qU7Kt73cMmTUOKQM9M9HPtSaZjCt9qkeQcNThs/rBrm
ZINi7jsbTi6wlqunJy8b2UW9vnONGJLgfkPczsKjqO+rYL7fype38EqPmZ5Fo8krpsBErjAR3/ps
uak45im+jMcDtQKCk3cA+oq4TPwCBcEVBicjRJg4Lv/1qcaAJa25fnia3x+p7lUMF1I6XgQOiyGf
swuXEp93Eqb6cFaD1Umwgw/r9LFJc3bQfv2kpJiZN3Tq57ShQuNFFUpPn3V8zJGNfrMQ2b4p0YTH
zjIYoC9UJuz3POzlk9TRxd52p6T3wowPGhhret412ateNBZ35tLnszrE3FivslNK+KCi6TjAowlA
sh6gU+Nudd0npLhhiwdGeR/PaOJJHiM74wtFmqCfKZwlXV9rz0ifo2ECQf1Fs2W1NuVYJArPEy4G
WLooAr/g9r4qPH2u3swlBayb45xYntGzkiPCCBRyheinF1K+ErcuIoTDUTWN86PVKH0jLatQ+tE9
fi4tTybPeM/vpPuxp8ZNNLnlH+2E1ZQoLHeAtY8CJmGH6GKjoL3Bj1DRPlyj1qc/sVPUalvbLyf1
sT2+v0a6humXt9kHCiJmNn+qJ7CIGplEdremxQGW7UoL69VtJKMjwjDV7mbck77gmzDb0dMUFc4r
oPzDDnujeAHPQGqebWVc15p55GIGFt3on7ouGSl4b7m7z48tFV8rnqDsdZ+xh8An7scfl3wc00pY
ITRM3NTzqmVtSoRNiwkP+446s+mBGkewJ/bwEf0N5u6fq3c4dXNZJYvYh87xR0t+9PMKhNu3ru+2
+KhwCbh1WuloF5xMBrJZ7b9O0dHpa9hgvbx7wp8gQJ1Ua/EqaD44kEJjoQoWzoAnoMRuJfVJV1Gj
5N5il//1xKDdcuwmvMN2ZgHTBesao02gl4fYprywOW5brXuLzFSdwKvJFb9OtqOBqUv6D5rwAcGN
R0ZbiwRDL88VHjT0qjTvCp5yXKjodzKFxVwPeWVMh+0k3FFOhkOb124MwfbZ5tROLF8X8hS75kSb
35NoFW4wPemPxHskL1qCEUWKEcLMhnmXAkS9nKHhmXDV3/fYUj3lXIr+vQ0Z+7lo2CRwl9dcyJP1
Rws/nLBSW7iVnZ4L212AIRv50Vr8KLbWXF0nFLjLftqgtp009bRRWhLCxTkDKx17sX4tR1NJQ4yd
nNfr7zRAsts7YuZHo/v0AZN7FyxZvihtxi50Ae/aK+BsM3cdxBhO9F1e0wWxzr47eFyJzq20Pw2a
PjUNYCnuYQnruFkbv3TlqowaOGVon/tcFEbVPVS01eeUaOjJd6SfVUp0zKxujabFtdZDj9WJw0Rf
Tui9c/ELpoJ6+GhzaUxcRD2QowVVZLB8gtZPjdaEud/V9PbeYp7hNI1ezuZMfZrTTMYFk6afH+dt
8BQcG/+yQqUDmvkqm7faQVTmr41x/wuWmCPdklm1QWCbnXIsnNtjc02QmPB9v7J4c1ESTXx+Xr5n
zYYGH46N2IU2Yi1qA9/kHq9DRb4ZFW+1Q96HhSlzjbPYz2F+G3L6fGi5iQRbVev8DxIgW+rpAf9r
G1a3QZEC/eknn2iRgp+hvpXBPkA/VAb+xpmKn4E6zZYQirXp1F/VT1zUNqhVNocEPpWbqQ0OZ8uc
E6ZBSY1NdgbVlmi/k9RQuCESc/Ol+F6aiLCRcTS6w48SAFmRphLnTQybSbu9wXpG5caHrOg6BMKE
OHLHfH2rsajndq1FCs7vF5s7LE+Lznj8qJBPYS2e+dArcmeej5tjZLKb1eAA9l2MFRkEaNKNJ0gy
+Z4E2hukxvmA+XaHQqOwBL6lWY6P1q9tTZUDtDVdi7q8xegklN/49kNDo9MKJSw8RBQqmuyy7ft5
/EF4b8fzF5CMISsC4Z6yOH3tFiOLbVa8zv6ecjLsy/FtwfaRkzvcqbWcLz4//gAvmYgrYvsyO5lF
JSSigtCYgPm/p84wHnmxf5qhzYrTduPuzGiVva9qrJoUGbYZbLsqnSoFYI70asHLbAWp2J/Tvmxs
c9g+7+y0+lTADKzW2Aos8H9YJHXm/TwlPGviXTSdK6CgdALDeWCTFWxZPFW2/HhqsvhM+0WXVQ2O
Xy3iTk775taDtsyc8jNKLYbpWgtBuY6yyyXckRUktjJ+ZfFqHvo14huofOBCCRvqFelJoSsKmHzi
X9QPUtt7IRZm3RI0bZrAXfIhPyDblv5FiJVWYzhRU+wcZYsdnJaC5GocwOvOVDGdmG8K700UUf0c
119Tr2B0AypecLtwIh8coW2ovbudQRJtM+VFOxRk56PW4mbhJGWeV3kcYHemxrHfqPwt8IC4m+jR
an3ndqA05bw9k6HEd8vuavs4uu+SKl4ZRSIW49WMzFyN5tphI19fx/oR2n4mmehHn8QSzueNzxkN
l+GPH2rV98hkAsE1hQ4/lOaoTqt1Pg8T8YUcOvOQHBfO4nO3HtWq9u0waze7nFSnUGDFKHFm+WJe
jdykB7ATKnfYSvx0CC+NR4dqNhhyvqIoGDCKKsCkoNH6sT1Md3O6gwawgmklEp3SNfbRm2EPR5t5
EPyZNlUMOyTholJtwBIrGctlCseA9DRM9yKtkw2NDrMf/W8PiaSmBeV1XvKJ6Esr3BNf7xa4bN6F
Pxn3/D7KfJQglWKY8PaNBy4dXU8cip8hMIu9ES8q7HIxV0RofOXtlBz+lkBcIRrPlr35D3kaHHz8
YIGn4v52lAxP+Px0y/WGD2aG81us7Sm4jRsK+mY8RZZH81UbMht78StkE8fYvRI6d5xO9WZLtriE
I8x+NlS2KJlcCRjWxDG9DrsL3cMgN2bBoCpiUr+3OsrLwRP2JW7/9cCML3qYjpCgmlMDvpMQYmfy
DmZ6hYXJT7afV8Klf113nx4gfXcUGwCCePJKrAanBiSvX7gbs9iHkVG9GYydVGIKePI8cvEiNZvY
Q5JnL079rGDgHa5Ok6l/DTmik9xWpHb14EByQzZZLq20U78W8bQdHMTKuRkIErHuMOPzAvf3Lgld
CkvCaDqQCqf370Qo7wHL/1iBPIi6QoDDo+/gqkGSc32fR2VWDAwBP6gVR8z+8K0xH5AfbPmUKhLT
6xsPP5YhpjFeantfU1qaOK+lO6C7HYQROWIWHKZQ9WA7VMl2EvOocACCVzVrHLzvXlBHaf22HlKF
mT094cehfnr4gQJcyNRYdKjhFNVCoFVM/pxleJXkMlWnslKbJuuCPOGrM2F/OC6WHsnUqCbV4JfU
j27y5J98VO+/EsWYTDsnKyDSOIw1lesGij3pIJrNoRqUM5HfjdtjF6gZzIuAiqITyaTDtY1rC6PO
eOYfk974DVBXzHUZR00M4+sBUjH2/wdvSMuqCmVuZHN0cmVhbQplbmRvYmoKNDIgMCBvYmoKPDwK
L0xlbmd0aDEgMTQwOQovTGVuZ3RoMiA2MjYxCi9MZW5ndGgzIDAKL0xlbmd0aCA3MjM2ICAgICAg
Ci9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42o10BVSU7/YuKaGASJcMMXTM0CUN0p2C
wDAMMMQMMTRISCMhII0I0p0SElLSIEiDEhJSkiIg8R/jnPP/nXvXunfNWt98e+9n73fvdz/PB2TS
0eeVs0Faw5SRCBQvmA8kAVDQ1FQVBYBAgnwgkAAhEGgARznB/roJgUYwN3c4EiHxvwAKbjAICu1T
hKDQOE0kAqDm4QQACwLAIhJgUQkQCCAAAon/C4h0kwAoQjzhNgBNPoAaEgFzJwQqIF183OB29ij0
Mf96BXBAOQFgcXFRnt/pADlnmBscCkEANCEoe5gz+kQoxAmgj4TCYSiff5TgkLJHoVwk+Pm9vLz4
IM7ufEg3O2lOHoAXHGUP0IO5w9w8YTaAXwMDtCDOsD+T8RECAQb2cPc/fn2kLcoL4gYDoB1OcCgM
4Y7O8EDYwNwA6MMB+qoaAG0XGOIPWOMPgAfw924AYD7wv8v9zf5VCI74nQyBQpHOLhCEDxxhB7CF
O8EA2soafChvFA8AgrD5BYQ4uSPR+RBPCNwJYo0G/O4cAlCW0wVA0AP+Hc8d6gZ3QbnzucOdfo3I
/6sM+paVEDYKSGdnGALlTvirP0W4GwyKvnYf/j+bdUQgvRB+fw1bOMLG9tcQNh4u/IYIuKsHTFXx
LwTtIvyPzw6GAgiDxEQFxQQAMFcAzBtqz/+rvIGPC+x3EPzLjZ4gwM8F6QKwRQ8BC4DbwtB/hH7u
EE8YAOXmAQvw+9+Bf1qEYDDABg5FAaxhdnAE4X+qo90w2z82evlucG+AGQjNPTAA9Ov377fHaHrZ
IBFOPv+B/94vv67yQw0TE+4/E/87Ji+P9Ab48YIBvALCIAAYLAoGiKJfAv5ZRQcC/9sF6D+pqghb
JAAM+tMt+pr+1bHnXwJw/BUHJ+CfxbSQaNbCABz/Ibk5SBgERT/A/99U/53yf2P4ryr/L5L/d0PK
Hk5Ov8Mcv+P/RxjiDHfy+QtAk9YDhRaAJhItA8R/Q41hf0SrCbOBezj/d1QVBUELQQ5hhyYzL1iI
DyT0xw93V4Z7w2x04Cio/R/K/PEb/pKaExwB00G6w399W9BZINB/xdD6gjqivx/uaF7+CUHc0WJD
/V7jLxuGltM/+1BCQJE2v3QnICwCgLi5QXwI0atHW8IAPzBaoDYw79/MBvDzIZAodAoAPXMAwBbp
RvhrzWD0zvkRv3y/TREhAL8LxA0FhzjZwG1/Ywn/cR7Uw80N3dBvmqCb+Zf9W/QwmDcMSjg3jYRK
hjrUhraeVcvRefGuj0rh7qedmQjwjuZb4KN6lSYsVxL1s7Pm1UuV53rAyhYOHVryrmcvP88c+63V
Mdb7CJ3yMip/tWO0Tpi+OcWcTPL7Qc88TdKEkWucIn9fositF0OHIebuOwIZG7tefSCJP3tt92yS
Fxt5sbKoWlirVvu76uIsDUp6caPdVT1Us3W/wbrwCTV7zqpz/NMvz8yjUrUymNWl2s8JE72q7i73
DfYvkvYwdMYEq3mGrB+whqNIlST76RWF8KqMFvOIL3OKPHcy7vlZPySTV+E0m+BMKk5Yz+w13sEJ
jKgadN6I3fB4LdkV5LBTepkl9ym0nkGExCXLSnf4/fq3uprj4EW1E8abQWrs4Fut8ZWCB7Iv7+/m
H6m0guirnHrKiAGGq/QP9C8QYImTDIIZRl9DgTim8pnBKsL14WaGPsyCXVKRxX22PRMmm2Sz0icx
3XZJn6onzguiU+12Hl0b2FDJ1AdwUUfJXzp+LO4HSgeNKwxBw4Z5I+XyNDVnW/LFblnGkjfzi4vr
4GbrNTLedjq0fV3De2LzOISYoPxqqULJsJfuqsdynOqJ7SfG7B2uC4cf5BXnz4leRT2xauFwfO4u
+5UDPyPBVOXN15KGyHa/rRLpd+6Ts8X5OeJ1n3+MpeqyJwO78i2e3R4raYhir7i3ju360oCCYFLj
u/xzYFg1XiT80NiJYr9Nkud9voZUj44lgHLyAUn0/arwkfOXIHF4hH9vyddOE1FGHb18CfaPPWS7
FFJLXVGJD1I6iJWtD4lXyoVy8DO1+vxUf2JAAUZmlIPf9MzvCFGZPqtUXYzhriH3J1oCcIDlY3T1
2JDlTaGBNuWl5ulPG5b8FJvcfQGYr/OIPkPzCO5817Jt08o7auXID3k9JI6/gX3JaW3sy+x++ehY
vKpfNIHthy7eGwpaNqzrjTFP+rNLfsskASy/n/SC80Ele0OfGqPCSfnYu60SkWIRI0RP9zpuzDml
DlfuRfuXCh4p4kgIrRr9rO72Yl1wzdbJcYc2dm1tZUcU5QCVisvs6LX9v/kKuH1i0J1e+yjfDb2w
S5t48DLxhkb2i/m9ODsLwM0ovZLQMcZDceoNgYx5zCUmuY/zp/Uw1RQMUUNML2F7+iFuQyutJdqf
JYcJUvdd/WbX3p8HHRXFBe/xp0TS36PASQglf6H+82pHrMdncHuWef69Ye41AXdm34t5iYq20MA8
M3IZjEvSLP8BZ0mpJU3++Wk7yPPdfSKkfRZhuoSx53D9wCLzTXktCadDWu6EbutW7GXJpFdDRi4T
rDkqRrIOb1ZZh1xEpVYTL9b54SOTG3FdTywb1+tNUQWzEqH+rJfGj5nzrJPA0VlQrcto1St+IO+3
l/RLGD+lieuaM9mGTt+0tmSZjST9xNYoOsOuNx0ZeMfUQaLB106stAKzzFN42e8GPVZlnmcRdnEK
ZyVuXeuMYDG+7KaM2Lk6memtzDPiIqPNsuB9pGL/OOH8KlKz22aMrdrLFvl0reFRnaV3+hvtvIaP
Zw+RRkkrQPiMmK/VS3KpvvDWcDL9Zaq+Az8OhzE+dT3TZ987LilYPMK/vWju+pJcmIrQG52aTo7s
0YC98d7pmNrMucYPzb1rzEjXJqDVdXuxyZnyBuC3+tRUwG172EVZ/12VbdEdrB95kxzERVXFwtZC
YZICLQGsh/RU1F2khNgKFK6UFBYfrTCmcI3qvS15F0NwllJdzHvnC25i4y7CPhzYivRPOTbhkHxU
qok1XpnfwSpqAY96754gzhHph9gmfa8dokhlqqHyC+Urr9K+t+xjUx8IaXnFUbeuiKKEeL2TtdX9
+Wi71FRSgSPpInwOP8JU4DilVwe50k5239iu57yqC/cjwyb9w4UVjOk4856lhhQEXxxFjsyIpHsG
nJAXCgnIR0oTY/UWTwwfu5YDD598kaqo8B4RshqUQ3aP5jpVdbzQm9W6NZNNRfO1oVvlipuyE8hb
mBSe+vbUKHvCjTimJNeYywYHUYLKmqpY2aClVnQIAy8zYGe27bhdUy8UP0AQ1VSkIz7wkZZotrRi
4r+oYo1T008vSdCyz1u5rCJ6bzPXl4GVetpvosATxc9KFs/IeOBI3XZnTFxZeLQHSCe3/m455HNE
R6BoUcvA8mRjjQvxumzuSlkE6uY292RcUVxU2ZOOY+IvFkJEb3mo0kaZQ1nSEEwNbd8LhgxcVdsV
WLlqxIhFr9zOGIeaaRspRajDjPJlmwI0L51BUjsM29oAddg6exG8IiBmn1aNQVBHO0X7pbwgkiL7
/baxtesNtzCx9ycsH0PKOXdpOfIlbT4s6zdNUfJMNpoU3W3q6jPYuUz1etPn5nl3eU/FdygzJRnC
SjD7dAlJvJpDIjWADlVSK7bYE84oWp60GUn6A/kQnQeDhQ+HJ4XkQJ9JowRVH6UbkmFPncnsPly0
ofLEnud4R2896RYRVHtRbxFLFi1+1gQL0dzljGS5Xo6vuNe1Nnm0zV3m7L4hUboRigXKMDSkwm7r
C6Pna06M9l+Qs2hBUIZhCiPqng/1uIeqQJZM3ycQeoO2pHDG1PMnwnp32dQxEGRDlo2DV9Ul83Fr
rVQhDF2ND/Z6nBm15vQr8CSajHGluiclokkkkBeJ4Fti0dOaaa9+wtnlvwu2iaDe5sZ8tFpuvHTk
krHQt37QhJVImbda8JWUruDttSMPp1jePcaPfYMTdzbrvSwVGnFptOIlJjZMn0QBbQAY7PKnJKd3
w+fXs8jAdU9F9o8rz8SH9ao/ymTtTnm6etwm95drnGn2benT2lCsJhemoLMgL/55OqLaHIL18FXG
5jxsgBq/u375qVVK1UzaGHX2e/hNdIhEAcNJ24KvCHa0cEfyxrMS/JHSD41Sx1iORDkzeiT9BxJ7
b5O+QtQcHjSGjWbPKpA6j9PZZA6r6OBPvnGGPi00+nGl++UwRBKOWQq35+lxu4vKal1YkjIQ49wa
SSnDrDp1l341mtR5WvwESh+ztgN6tDvL8tY6PebCpcaNxk4w1OG+Vup99mByqQ7JFIPs+dWeJLqn
L3nHTQpRV4HTykzPwtox5gllCIbyzAQY3wdw8+rcZvz5fWtXY0FceeP+e+xVW6NPcT/y24XeDxwJ
AUwCOxKqOes+HHLj2fHiDM1RD83VcEU5rwRwJBoSJ9xqHzPteW5oMTEgTcj9rkDtvrJNEvUYsL0u
uoxheFPiQf9XOyXNmDWMGo8b3UQXo2BKFzZRM3HXBVJdpOq3q8sGoxSceE2Bx5Ce+HNAJwcGY8Xl
StCVf43tHP+qcrxb6Tl+Momekeflc4uTY5yDSgLM02H/nhLeZJdZ74d7V/vYZSSx2XiBMux4mzF2
Hb6zlE61xUkRZwfbPK/W6UbrWJoKM5rl3igoV6SnmDq/DLO4vSv7jI+scNZ9uiVhX5rOlukx/eyM
GumriY8Kdx9eVXtQt2xN6VLGTfgoxLdWGrvPUX4h6q5eZYuqDVY1oCNVHglS22uHDR2TfI1l462F
sRq9GnMEUtUS9CxS7qV4OrGcsoscZt6OqRM7S4ohUllqlwuZFc18/bgaPhNJKggzxZ/3HhpeW4/k
96GxfXxAuC19hulqsW6VeBR8UduFQbrxhL0uOwDb6ljwGqdz62iSY2MNXDa9wPika8t3Us9BzuvM
oxIixoLSGqx2zd3HHScuCslnvYv5+cVT8uf62lkftCnytmWfV3TENLylW/MhZfAD7yn3lg3jpXQ/
5Yy2UFYPDgpQ4zv7IMswKORLsjQPbk/+oijIiuVIwxMMOiik6MxsUIVMi+HkltFEn1fR0z8Pd9H5
pOvWoNAFL0/vn3V87Cr/hJGt4Cl5ZOXVy2TzRh0DY/MA9hZh4vfbdwF98wo5vtnxMKl9juZPFO9w
6d0d8/K/Ig/x6sWZQs9mZci9Q8dTV5UakhvuVph1YHavJr48bVKTZltmjpIPOSSg1odmzESf0Nwf
DAgUVgxed1Y0TGm1n9xSDwRrcjq+P5jF59Q5xQfy8juR+qN2cJvSrqFtP6kCk1YM7ljav1uyr8E8
jHU8So3oaF18zvAmYkChocYJcLIMgeOwObKD2vbTGlJ378TvV3uaRiIdxdkGZwVP68grhQVmTfrE
3C5HArcei2yCuZSosFKwX0eYOIbeeb7QZ3PLitfd+Ev9c6stHPOJGPb311tDe21Mq8r1U+PptjVi
8k3TtnNhPYtFHJwYdVXpzLqxy0DrcVnqXlfuRAudRhG5D2sejKU9Acs4oToSDzlwcB2ezqtwqQVA
mK305ictcxpQxAO9LQ8xTuizCvF3/DSXxBgVuWr1eM7WgLxl15WketOfpwMtx/J0fHt1hx3Xl3Bc
b01qchqhxADtFpuU2z+Ias2d1ONzYrEqQlCiLI/XdvJK73lrvZAzUtRxQEXoNshVx5MazIlNQg4i
M0bxiUrlqZWmm8PWLaGVuHpxdzMFPLXuvXdS/pxpyMjetObjvzGohPH6lGxOkO6SocZUGfnKquux
izthNFHUC2DrycC674IiUbsIZkT+x/KBtN3l5EdY78z9alt2FHldtAek4sZbwsI+BaR/UKe/6ddl
M7yTv9bfT3mL/07zlKRP/ovXVz3jMFpfZY00H2DyyeYzjf1zu0qt+ey3BVQ/EbjUFDiFberUpyzb
7WXnJ9OWHRJkkcQPLWo4cVf1Se+J9bcOPmIpqZez56zZlqKtNJ+miqHZMH/Nljifou/ZcnoNpFNP
1d2OXmUHbLwOrMG7ohUSj2Vtm4qlUMFXHACZ+thzcgxuSh6aSaYUpzVXj19Okm768CgtH54vTxn9
7P3QrxYYRTzyo/cY72JNm3eRG87mdAt1H46KZ52tHb0OI6CjzqWc5IkM2DislVq+MBtbY/Vh6MuZ
L+GO4eRIxPV2Bal/Xwve6rlaHJ9pQ1VEvUJlJiUUtjLf5UeF8msGJ1VM3xvyejv//ZwQNsAgym2D
Q2/M+CTvuzWHyFhfpMwc1HLUIe+C8PFCm9GU/QPevBCOS8s+i9JnjBJWfiMyhTfyHYY/8Wbw2HJb
MG+tL56cTl4TzImr9LgaChyd825hgFOhhUGtNgeKb27n0yisv9M7E/ZU31C6gBt9Zrpo2jxvrq+R
dH1BknifBH8DlXCpDRQ19k06Tt1zeFLTtW9oZ+raGrq+txkfp99Jn1K/dGA8Qi5lO7UJ124d3pMu
MFGP09gXYO6VFq9ijcpmkPh0UCH5JfBWOsAqwZFQSZhIuboTk55a3sEpk9RfMXjmQqrUo75dfZ5u
n2aX+cElppgYN58g1dXbFotZUr4doQ8/qKyyaDaSFXwTn4xHrd6ijZ48K18Q7ML2Yx0gM2x58rM4
Hb4+xSfEMhK+3zf6hu0BrXMCwZhB7Y8FHtzNg2fjD0a6issy7ilkU1rkrToQ/dxYVl61qz1s8jMd
PHdqgE178nstufSG+30/GN2xGnsb8DYzTUiwgVG5s7ZbkGMShwd6nESnyjxaJpPz+gHkQHYxvN7m
/aASfUBmrE6ULpceF+vMJLT8snN+joi0SzVi9g5vQk9m0N6xzvgwMy6KuVNqJueFWrPPi833fBaa
aYTnVgtVJ5Oy8Z+54db5dbSub2NsHX1QGpW71u4mNSS5oDDLfBWKw37uuPsJ1HfSixtJ+oAUGjGf
/S/uuzp5FeSE30hSHnnw8gBHPuTgUjrRMesiOYN56k/fMZWXF3x7jZG1QEB650olI26o+VhX4vXA
SwbyO19B098aFT+DV1fVJXrxuB9ccpzMRm6Hmvy4S1RWXyP4ZZbXHC7M7FRY3QOZKXgGZ/fV7MqU
2cM/d+w1B7lr3vNnQHjFzA1NKsnInDWI+cVncn0K6442IarNLiRPTd6gBYfwLKl1HZVEal/o1Zcf
xzYWtJaDCkk/SBzRE1MfSRC3vwJY5W/dcsA0EvyS+8bU+ZDFg6U5WsNqsVEbs0iuVPoEJkHIMCLn
eKM1KES196ZEa4TygLrFEartevaMOTpEjK6IjVN1fjtRNrH81bMCQmeOB8VmQkKujYGuj+57DK6D
dCz5n88V7cjMM3skNe+FvWnLl5R9Vg+oGp2a3ciJTolithbh0Iq7CbAxYoOf0q3QArmAwmXkr3n4
1jcDY4qHjBKRtqdhUD7J/M4P35qib9NDzvljqlyA/ZuBTsWvbhYIuDyYqTWH7c9F0njWLgvposhF
ej8X6Eo72J7okRZ9pzXo/KaxuddbNE9cTzbph+9OzNiLVeQQj8HRuVFSlkT1RgC4tQ/qDeGjeW6F
rPPTCsHhPKWBHXjYkb35ShmfJM++SnVhzRTKKZUSGsEk288lDrjIn+NJJSThFb6QwqvyC/V1e/di
05I6lIOt3x4zyGsEjCu1Yie3+K2vYmBB7K2lkWhSOeUgjGub5eTwh86BS4U1r0qS5bNg76Oh+vZr
crGQyAMelkzzo4eVw7NgYcKI9cUHLLzEm5Uh3ZwCcw97cLeaiMwRYMWnr3+MSFku+NJGQhvdV+Mj
XmRcczJnjxfWSEpSrJ+SJfkLXpfqhPI5BNVv/AD7fbtUfQkgPY1zYaFPIoFKw3UWtHFMNVJILVxq
YZX55bc25b0n6mV9eIRGMVi4uFp1TAUISlez0yv7g0ZPfVbtZg2ky07OWM/MKlLumST5KYK3UBQH
MuqVnleAmiG/67yZlgmHz1np11sUEcwDQkA/hR0/rGO73lId6mb4tOQ9g1xNZkspLD4VLUPltNmk
iMOxyJ6eyBeLIK10DW5+p+Z7X3SHditc203IZwhr9zO9TsZHLIx3vHouD0p1FR9TZ3Y/kRV7wpHM
fP1o4sowm0K4M0OdGXNCWNHg+pgQnprmQevGFO6kzONwIFUVaEKta+ut8KX1hYnE7eMs4EenoBcD
b12Hmuaux3cRuXeTCOm225s6IEdSNh09FmO7rqx4NCQtTfY0Zr1xaWmiL/zxLzAom+KApnlf54JW
CnZ87hxrX/YFGZFhjR6FWE+UgffmsB+LB7z+GYF7GHg7XOCUcrIswUCOrOJ1Qevo4Pmd+zk4CF8Z
jRQ8XenwO4+eRr7T19xa7YB8OzsX66XvZXZMt1PQmIwn/Dj7k7l4LOlV/P0xJ3KWrO08PHHKJPkg
TYc2k+B3gduCExXz1f2nOwglmpZAK4Md92KzhjdkI/M5H+jxa7WqlqZSYQ6rfIpfh+55FBHdFtDW
DR2F0OScOED102xYiuvPkWaP95g7D3YCEhuCu5/jSuyE7XPtUZI3+ICIdjoCvqXt7N26LlF8zIPO
bP2ynGqhJLGn6WyiL0rfh4FhyFZJT7YeVJSJvSvSYL921mX7NCHqvI1W1rm3zgNmVt1NHAUO5DOp
sluPlD14tfm12FFXZUKLzKh1V/ei4xnEYNBaDHNds6lCLcCFwSWw7+7bHW5u+gIq+Jb+Woe+w4Ws
+HS6+Sc78mPRhVS1yIt96WmqDGk6rPBHRD+HIIoJafuzNQ2TcbK+sziZrpMCH2bPa56ldEymivsZ
/XDsFLDiPR2sc+lDGfd/NoV4n2anuDg1LI2x6rDfbrTMtmVmIByd+H6g0HxrvIISGJZU++Cy/nqM
JrqgK5agK3Q5ZV7txlW/qGFSMWrQtTY2Vuudd7O/YKxWTSoR7R1XR8OMpLMSqk9Fp58NX5JNP3Qr
6MjGicGoG2yfaGmdGLb4EvstrYa4RkcTjoFNxkWV4jGoF+r4SfUxM3iZqXLumJ/rUSNM1FBcqarD
GOqVHzQnRLaimNW4s+o+KFZRLpfb/zHftUhTtI70aoXKRE5WjCH+6S3Dz4tTpiPOYBv6/ETmQ0Cd
1UckpXr01+eEL9RZnzGurdNa7HzJ9rF/t7pKJH9bVrm/yb/jfuQQjzajd2rg/Nb1B6c4ADkZcXBP
saHtJ4/tJHFgHTF8amt/wlbbjzWTwawWJ19HNWFDWcnX/wNo+1SWs/+NVmHIxNbJRx51utpHpccj
vWWUfXZz2oAq3Zlxxka7uRBFm0mzKtw+Kaz8NFJSyJO+GV2TLEWvG9YQ3EfEzsKew1rhB9pQ6U6u
feePA8kHddv9PXysjQU0BIpqYNr4zVWrz8B6ra/YWAsq+9vPZJfSq5JD9/PPcBIJdQtRQFQ50RNN
i8fyMnRqoR+JtQIoOIgsDdMWkkEX4RlCnzbdrBcMVgd/EMRZzIjl15nZ1O4+7dFQNKZcIIoBjBay
Rx/lvM5bNNn07QQP3BB83nmrVWlf40Gb4FehymvpeLMwxtRF8bXuuWmgpHxMw3amCbF+0Jwh3LGO
kOgH1cKhX39UVuoHAV3vWXv/s6dMFQsPOSPwLzPySR4IqF5GoiYbqe7AzROeKxzKp/FJG8lk9aR/
Yt20tAhPdn2uaOHhVXeRjt995aOsXHIyRX6H47PcNyOzUCs8pJPHp5eG2vn9EkeNawEte6x2kIIg
+gr8t5TIRye+E51YYhkVOgJKHka134j+B1Y9AigKZW5kc3RyZWFtCmVuZG9iago0NCAwIG9iago8
PAovTGVuZ3RoMSAxMzk5Ci9MZW5ndGgyIDYyNDQKL0xlbmd0aDMgMAovTGVuZ3RoIDcyMDUgICAg
ICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjajXQHVJPt0i29ShUQFDEgIAiB0KRI
712QKkUMIUAoCSShCUgXpDfpVUDpvSq9gxSlCtIJUqWJ9PLHcs75v3PvWveurPXmnZk988w8s/fL
waqjB5SzQlhClRFwNFCADyQBUNDSUhMHgEBCfCCQIBkHhz4M7QD96ybjMIQiUTAEXOJ/ARSQUDAa
61MEo7E4LQQcoO7iABAQAgg8kBAQlQCBAIIgkPi/gAikBEAR7AqzAmjxAdQRcCiKjEMB4eSBhNnY
orHH/OsVwAXhBgiIi4vy/k4HyDlCkTAIGA7QAqNtoY7YEyFgB4AeAgKDoj3+UYJL0haNdpLg53dz
c+MDO6L4EEgbaW5egBsMbQt4DEVBka5QK8CvgQHaYEfon8n4yDgA+rYw1B+/HsIa7QZGQgFYhwMM
AoWjsBkucCsoEoA9HKCnpgl45ASF/wFr/gHwAv7eDUCAT+Df5f5m/yoEg/9OBkMgCEcnMNwDBrcB
WMMcoIBHypp8aHc0LwAMt/oFBDugENh8sCsY5gC2xAJ+dw4GKMvpAsDYAf+Oh4IgYU5oFB8K5vBr
RP5fZbC3rAS3UkA4OkLhaBTZr/4UYUgoBHvtHvx/NmsPR7jBPf8a1jC4lfWvIaxcnPgN4DBnF6ia
4l8I1kX2H58NFA0QAYmJCokJA6DOAKg7xJb/V3l9Dyfo76DALzd2Am9PJ4QTwBo7BNQbZg3F/pF5
osCuUAAa6QL19vzfgX9aZAICACsYBA2whNrA4GT/qY51Q63/2NjlI2HuAFMQlnsCANCv37/fzLH0
skLAHTz+A/+9X34FNWUNDW2ePxP/OyYvj3AHeAIFxQFAQREQQAAkKgIQxb54/7OMDhj2tw3Qf3LV
4NYIbMafdrH39K+WXf8ygOuvOrgB/yymjcDSFgrg+g/LzUAiIAj2IfD/zfXfKf83iv+q8v9i+X83
pOzi4PA7zPU7/n+EwY4wB4+/ACxrXdBYBWghsDqA/zfUCPpHtVpQK5iL439H1dBgrBLk4DZYNgMF
hPlAwn/8MJQyzB1qpQNDQ2z/cOaP3+CX1hxgcKgOAgX79XHBZoFA/xXDCgxij/2AoLDE/BMCo7Bq
Q/9e4y8bitXTP/tQgkMQVr+EJyjyAABGIsEeZNjVYy0RgKcAVqFWUPff1Abw88ERaGwKADuzN8Aa
gST7teYHYgB+xV+u35aYEIBf77f1j0MgLkgktovf3MB28C/7t9ShUHcohGxqAgF5GGhXGdh4XC53
yw24MiRJuJN0bCwIHMp9SoLuUhqxWIzVS0+b1ihUnuoUUH5q16It73ycMTf5wxNTdafaQ/gQeEd5
zeaOZfTE1SHuWJznETPbBFU9TrZRgjyLxDtkF47O7TDqVlIZK5suPQ4qr3uVHV/i3Djp8pVF1YMa
tZtby/PTNBmYxQ23lh6jGyx79VdEDhjvZS45RgUsh5u9StROYdOQbD4hi3Uro17o6e+doem83Rbm
p+7qv7LL/hJNo/Swl1lRmLjMcOYN5XnmO9fNFFpPS5XrsptWXUXz3AnHldr7tpj9TXPW+86dGXWM
nSRbeZoqsS9SsiP7Y2UHY8p/xJhNFAfD5+jcBYZaZOyzfd3LmAb0QyNPXub1B8kLaQg0YkBn5Qzs
m4tTpdsokdR3BA6c5YL77l3dAcUtxjYP5myT9rpt9My4lb94cfY8vcR7qqfFzc2bFeY/IkWqd5QR
oCMyWzo+t65JmoFDxBwWrSO3QeZjWWxNNFZwQwnn0f4+JvF+wULtpP8ZoTCPFSrke99tLQbEEfKr
b/i+58dvi+s/QYKxXl2VF0Jl5US1UE8vQw15mfYnXTDtVBkf7VYqlxlcPxbhNgglqsqog8hw+mb0
U9A8noy91MmgIe2oj+4KLLE2gBVxPgAjW2PmonlUZxkT7jYYhtsaw5BwOK0+kiuMES9k9/o4DSMs
/CoR+lX1jvIbKeA+sjOLSFC3zsmeJ39nPEupKziJujyKKnoe2kdsliHvEx1yBR1ZQVFy3VBW7bwk
v1//Qi4mVfIkzD0CExduXPPVoyBEowyPJfT1glzxrXXZtY4d2hIPqnsntdoUMrIcWiYN6cnp9Lfm
Bsz5GymmS31xeg85fdRuWCuX8T8Z00kZFed2INpJXdWSWWPygj75eG+O70XBRngGG2QX0s9F60sD
Dqu8mthKo3MFZ94O9ICN7Beuk3iGq5oO2Gr7snMAGJOlxo1zuThEJ+SuTXYX8f4cC9DZ1igshKAi
P/WKcmHqgLYSjMVCT6pOboVYuH7bThzNv74PXnO9frP/Bt23q5Suj+AbF26HIBuu+Jf9g5EDOlan
tp942JZwQ66zar9agArHzdZX1n6XnQjXG6jYT40SSpSyGOetGapYdr3TdEUDwCvz1TCj55XIvJ27
UtSlAolY+Ladq6cocJb+odpEqOozzyMOmf1mRdOna3OOQwo3aBT6+Va2Rs+Uh9HzzT4P3ITvF7Nb
prnmDzxSe5IgYRMnHcSw00GsO5Va995jtO2CGv4hVEW8/1Xx6i3ju7kHwWZRMgl3ekpLUtRxmNtJ
9l4Y3Ddd/JAVafTcbGixAFiFEXFpty8ZA0Q0eFJcsu0k91wpfXb8qu5N2Wx6Ow2ulk7Xnr3Te0LU
NRuLli1qkqORx9UYUlcg/Fj/IJmou2uDgMhzRpCVbdrqGiRZgUdQSh4TXFQva3iz4d5wR9izrVW+
Yyu8G/oUZI/b7N++wt++dFo+doxWnl1romJvI4iAzgXlSHKGxxqxdjKg9sYCy77hv8f1ENKvUtVh
Mb7ulBoXAOzqTOQGOZDYqhHyC+7GGlhU1oxxviS/8FYSbd6B31zFjcGdSQpgkdBFbO31sOFQxxrG
bZ66uDRxJlFKgmMY+cYTQi/cK723omrbLOYid8/S9cd/9s17UI4yESq951LqKrqac4w3OG3mWQtK
i25p4xDxCHK4JLlb023KOt2KVqfVC9IZ1W/c8OVaqNzNYM3ll13R+thhrt0N5EPa48NuWklTvpx1
Y6iCFlDRGunk0wxJGwdmDKG/UpFXFHwBBZosJbPiihre0Igc7usRA6hYP0Z+LIriwwgMfpqLIWO0
eG63oJduy9a7rm6diTrRsxFz6bZjsdu2mZlVGrCfk87IdpF1kYmMwTULK36OWMYDtmp0X9ZE/oSP
l/EXKneq6SUM6V8j2J6MLDEeyhIt9g60WA2H+lFd7rsscHTKRCcVQTgnGp/2dvFy5kTjwrY8lo5o
6PeeyHIJS307Mr8mTejBFyOp0gDQhK8JV135fOhZoT0SO+OTsqA49Z72ztVQu3yX6ZTJyt2m4kfc
a2XSxiLXN0GYx/YD7OIzr6lcb/fEz2R+HZGmGyxSPUNuyGrL/NHZIIJKJ6kQ75VhunkO0Y5v2Url
qt0qTGCmwvXk2Via2uJP1bKPwd+KJNdXjXUG3BxKYhbTIrjydKrHfiK0t/xceeLYwbjtcuXPnEO7
iuaWElRDPTMH17X2hMT9FELK5THT1IETsqXD7Y0xHy4UAh8WXiPOBdp6Zh771fdY49N/zCc9fWH1
nj8ofZmjA7SwIe0bsGmUkI/LuqtJt+NubGHjkfFdXMw7b41vaSTz5ZEvvi5XEA3frS1xTrI950zS
Ohla0imcAP91m/S7pku0KxKNu9YcC2CaiYuAmNhJhRFDwhCqD67a+KQ3mHgClgmc+XyT5kQU8zHT
8kEaNp+AhXhF4wnpmLYOSwd7OWD2rWecYFPOIxQJGgwPSQgbzRj6IfyZD8J7Pob75jbVxi2PWSVj
MMPj87m6rWMmFpoC2XrXH7naYrefZZ0eXr6cePHc8ocLIhl0InRUKsHXEfmwQELtLciPccNLMVB5
2hL4zMu7pDN6zlSe8/3nvvv1CXUi1Sq3FyOUbasdgJK+ZqTd9RDhHBPfZr/MoC9zNsuVVVSjhTm6
oTjPhaHE1abZvPVzxu51Nm4t5cwvLo0Fq8cFd/nZkxnkgVTkj4G6NgxH2187XLdJ/YNdQnh3CAed
uvFJjmIAV9oR4yJLt2CvCnVVH0HsYpYPjm9lTDaV/STOJws6kn1/Q1DcHS8gAAnuqUqSSL1Dw6Dv
z060qXX2/akPZ1qTl85hUu3A8TGBNDMB08j5c79IBKkDatdhw7zX6dqBLHpkVfyxBI8FT8fN6Exi
iUVPtIZU4eXYclgp6UfOZzrm05IKDIrrG4IVoU0W1rhsNbuLOCRJ7m3XkrN5YPn8SzI+CpGzcov8
yxYu2ehnj7ZuiT3Cu+SpVisxbXh+K3mcW5DUd75XzFVvxEvyAyWL5Nww8bb+zci3TE34Y2B2smoB
6YPPM2ncOQKo4DWklOPRerw/3bWrGJ7FtktoXWSdgku0E5UEhcmr75zcHQ1T9A94Jr//eP/zmUbm
FqWvtWSWfa7IPEAqtvJFn9SgKZ8QKLHgs+BG3WxMH4KxsCzJAqpYbEPZ4qcIMJBugxT47N8dtaAH
0l+gDml48viJetTzIs4q+BhW4zwJctPOQMKELLefa0gQrzI2Fd3LssMz7IFaY9gjGyFGPQ1RNsaQ
kimNLaOasfzJOyIfxGL1aN/7Ln/2mH5tx9RM2W2TkauaG0Z+cIcdxd+irT0+KvOWOzVWQrZwgIm+
bI7mxFkj4pQOwrRjnUpZvZ/CtHAMiePkbagZof0uG21ffBUtTLijvZS5+jDDwoIUZpJzcmT7Ykx2
WeLUZe8gQj3EeShKgp+QRzXuJ8135QGOENu8+vAH842qJj1djPfNSQftpc+TmtmtVQ6RGuzEaY0l
rXSRpXcD7voHSUp8yTvVHJB7f37jq3MIPXO5ZELdocoYpk13U7tV5wQHLjYs/yXmQ2HYuY+Bif9F
V6i15ylfg5naRMCbKr57qCiCtsFsusEiHD7SokBWSfJtkqAoVyX6mXcvXXGbVsyv2c8MtE4g/WWN
IwMJ7QyGg9VGshNCLLn26+rSovX2Gws7lVb1EUsY+lQfYN28fqpkXVvWSbYy85PH1FerbzgKc704
xOdSL/MqqkgrCIb130bYJa5XRLazMicsvhRO+WIoYBF+ROpDCEU4bURbzSvFpK5bkfC/Vyy09PKM
pWea+zprJMZQ46IcinowUy40RKJJlsNm/+UTgFPaaqfxQ31Imu3kZJ77BOlW+KnvohuVX8WzFcqQ
q8TlehTQR8ZN0AJEcc5x8qUEGl3TpGJ9/L1UU0jxbD7QQl//vsUCux7/qLQ42+FdarVJL8w8D45u
2Hih41EAXOmZmyP5+Kb6vntqr1e2aMFqpgTHjD3TShDlKf2cp65CnV1AepVvkG7P4S581rGV1oRW
mYXE6XhQQjJxLG2n3g8verP50uuK8YHLqEV+akixYp5kmaxTlvGi/XVOHY8Hoh+XectcrPTVDIYn
3z5XD065N9plGWptizn7jL9QQacgN2ydTOqwp+qnRR7L9vDcvDSniV6h8I4IEP9rZ/txR0+CAGD7
u5R/AmSOPfqLmgVrPX+ZEB5zT1a+fGKuL0blKb62i1SlbsfDlCo9e6PzBBnRDzSaSo7v0UR0Egeo
vXGMd4j2c9IQQ1Vw5jydX6499/i50nndN9+fio3xtXlCcibHBW+LrHqUt7We+4lbUbbfegMt9pe4
U5t83AZRr0kmNLhucohJiX9j5Zmve+3DJkGMzHu6Lf+LYBpMuPigKWPFrkBZAe03BuDTHwhueEuy
EB2B6OgEeLV6+HalVDdN90NBVgmpBxc3uzLOfUnZPtuo6X7bHAfjiQJN6ZSov9XKFjylf8a/LIfR
UFfLfdErY/SSvpm5TE4TSXdAcuoZD9uJuh3xGnxqS69SkQdj8ncbOCpdcATTPYlydNWNHIa3rBw5
pivlBps3OxvbzRnheSwOzBOEpkyOWlsq4AzjaRs/kYyahBneZ9078QZvi4p/Gtzt6i8IEgYmso4e
MtI4hzw+7RpHvAI4Unwit+8SrQH6tvaDCFUN+uILLoW6J5sHo+bP6NgjYIXxqA5CfX4gsxWq6ZRA
J6Hl5tsURGzbbF3uNXen5J13pz+uF1RvTUgILmcoFFNR4PUj2dre3M7W/3zacWJa1BOeBQ4LY+pX
ufDLpW2Ma7+YGBFPTyyrEpHd2pEMclVbSpQku48QOSC4VaQcQAF9s1dKw1LLmMQQimH6IpXgSyZb
KRh3t4orP0xlqSUvkZLCz/YIOjrbpD6HpvzwLoLNBFCKti73eIYTRTAU6Pd1gfTCUb97dhUHcnHL
cbeBIC+g6rzGZiffUb5L0HYt+eZKuULcM26qgIN2+1W1RO8N5+5Z/+mNYhkm+9FsF2tmgClDnNlB
RZ6GSBW8mpKWFMNa8WRIlJYwg2VcHTyGDhqMl/mp9wImmYM57sRtaGTTUeeJFZY9tow2OGXBy/fq
L/HvTS0ISOCamqgHCDrsGWut0T4CxoGSia8YqZjC7PVvmG24+B5dUkr7SiSF5rfTa3AonZDAZtW2
X1F/Vd1LLZlSH3ozYnJkgFn/iD9+nHW/H/o0N/yAoLVZptvxrnkLs3j/S5rR96GCvUNSco0Geq/b
CKWJr+G1ultD6G9418iV4nBWh8FRqPHF15h2KVXnuTaHr9zhr0tXN2mAWy4XK0aB7yPkKmQvtSQN
NG/6JRCS0/wYJeZnfZd4YcvcxVLuoDTwYv7elB8Jz36hexIl78lb4YlEUv85B5oBSHaSuMixGkDQ
Z/9N30srLwL4NWHt5rIzhjfxk0heFW+J5HKdswwYM11ZRi78ibcof+xdkzHxhnsPEM4/UpCzcX4L
TUzwqq3t1fcS1aGbJlFv+0wWyEfppL/4aIwGpfHW3g6iuI+hcKrxsENGCMr69GY6kq+Eaeivh+Dx
xQoj6bQUuR/Aj90JNL90DxN+Pfu056mDSQEoXTemHlMhMu9MNnm2PTUUSU53JkawZ5dH2BP8ecOH
dziaq6C0b0lpmPODtPXcPaGL/ofpiR15rOTKj+rUZimlN67dGNF0erk0Cb+4ze3yzM/AaBeMEBI+
IxvEZz0XEd8Otm0/oVha1iUjTOaIkD4Zch9RFwzU16yZ3S8rRwTNTG5LvMJrKMjplz5S4Dhry+w2
7XRs/vagRJ1JeWrouuonU2V553FyhAmZ0fkJ5nAisrxtHH9bTMC7mSX9WunylWRtgeBVCb5ae7kq
xhkdSmgeHv9Wif7tLCOHWZK/VQb7x5bENA4+Dn+XAj0YNVPRnVt6SrgDP9MnA0GSEFW83OhLqhWE
3IUnKjDmCKnnLU+WsXajEG0dm8ulvD5p6hQ7GtbIkeTwDZKNqaFAXR9OENMgwM/JKAJOW6aay5mI
rdRtqbOZPTlrS9mNyKuw8qmIFwCk3tbwIoC+HhlsDpj5apz/3p59oIVAMtknXFcIowK5G+4mKVbo
r/X9EdcHThlkf6edBrmD/BgASnEDPT4aBPt0sZWCf/6VmQzhpUm+VfH61aOF/LWKx59jtQR9qa/I
9KF0K8kQi/iaq/jNNv2BV/gpVC3kO0/Q70aEDxpTzMYYntWfvoLHLHxi9QzcebU6j6GNdJc3Byls
74WxNvBn9Hu61g68CKJNLmdjKEhQslYqODKvf1tdpr4q9TndGUWUIu0iprE1/HboarvOgmOD+1BT
zEB2cbyIW3GNZopoefpjl6vF4V4WZ6GK4gePap683pnzu4ke15jdHsR260YHgBc4UzdvUCFG55/P
PtQ9nCUMsErlqnzRY69iHi3ezaZguxYVZRctVv1c143SfU1hfnHfCOTcb9bBqZqGus5o1rxeA+w1
1lHE3Qv+0TAz3cr5U7YU3jLNHvC50HCiuvSSjOvayA/uxRr303sOa5X+s/el+8YTKmW0NknfxDd8
mPWXrPsiblsCOmQWiRPf0/yCKS8gX8g9yKh+rBBCct+BSAp5EZmHy3mXhgX8JOkmPchg6OotdCnm
ufdNB0tRtF0TndqVJJPJV9nRFqlqgkf4ouaIhBdEjleXeZfuOB+TmI1b+TUEpsublZGx93Bjh+FM
Etb4fRn5TMHkM5rzIVeNHV8T7zQ2tt69txxwcPPEkCmVxZ6vM5+/J8WQrwVcR1vnNflwFuISwMX8
kLbb99FbjS89io4Pnnsxi5whnljSKyh+VjpRyp2XHD68XxwZ+kAnyzI0QVGz++De8IzjLdME2a1H
qzfP3L7O0DmFls63NOXsFDP3Y8hiq2tary/xEF+6YjpgrmJiAJKeROm3DBpkWlyvLm7qzr3rp/n0
JjpKfHfAzMzQ6mPqWWrh5fWa4QKgJP6WsHCgq8zLludRJo6+3/kw5eXL4ojP261W+621HN9Oie40
UV1hvq81/hTpyKLQnHoX+K3fCH9d0c2zOr0964Om7zhdvRvOQpo437dKecMGs+7PCnjhnIKLgem4
t2lqgrWzjCXkSztnYKWtp6dSrmIOxdVfuu48uvs+uz87PVHNa9E/VnaMOD2FWl+WRr/2Q3N7pOHd
xuuP9w8F70KPLXmSzz3y6TLteGqH48eWi5yvU3tSabIElzye3F2t2yJh9wxcb3+deU88pFT+9efp
AtdSQcIvm/amhShDz4ZHq3gBKlXP24qOw9VnYjuUfS2oVXHKjTXxHhLftvCBpC05Cpd/2uZ5q0sK
Cp1Kc97wexSkNeq5Yi/TpxyuR6ba1r81md1uSTzGZNc+ZJf6TGXJfY9IrpGiy7D0cQCdJtXeuStI
7eY+CHcnRHlaOmrpu/bUTTZvqu2VKR1G70xgw8+qzt5Og0du0YUvqc/7dntTgF87cj71b++0z6dM
0Wz6h/+0mJqfJzx8r7mt9zjpzvhYX3a8pH9tYOYrip5zfjZA/ABXnmRToipNqcz6VTHnHRe8IjW9
3Bzkk+Hykoftzx66X/qOO8mTiN2Ny6JwkK2mQYufwgaLDdjYJFsCcy8gjOGyLq24NkNIDNkTyi8F
SgtR1qMhiKeLH86rBzVrZV8qIjWVnh4U6IhwepUMWeK6x837y8lJxokIk5cPCF4GAl9BTduTw9ZL
9ifsy5/ocDmQCLuYCDHSGSDkLgtzNsLylmwT7jhl944OHxWjRp4euH4MOEjGr77F2TVEdHZv24u7
VsaTl0eeULZqrWFzf71mwzcm6czPz+OCUEFvxDtZPies8B1szWHsXG/CKQeQeW8KhUlsumTBSa74
cUCywnk/MsBuPriqN0vnqXyI06b+La9k4uP2n6bG8NILh2ve04I/uo+6t2KA4aKXhIoSsklVxyuS
u0bxZsFsE6g9WrGNWcnHNd0COAAVZcsho2I3xssi5RYQyIejN0QUBV9snARn3krjZ4/e7dUoCRBF
XveJpqyPYl3srgn8/jjqKvJ+x/4e6Sddt50WKo6iLSvpI1IIl/KQnCcrlR078OmguXp5bBQNtNBV
+6i/L9jTbVAt7O7NTWsaybD3R3UOYZ2Jyoe5l1ss5lDQhYZqpL9fqHX1GlUf8nqqcyRLS51FLmle
s9wDGc1n8aHUwecXZ67lnjm81D6H7jifKEDtA5X05C34jij5AS9Orx+kBzIxkdzOt5W+u1feL4/o
ERUvLYrir+F5WfMxU40CHcRU+7zdUXFTNGnIZ/pexD7vJAQJ7Emn7DbfPB4aJi7cwp/aaqe+143i
me4JegAp8VJXpaCwHp3V58puWuUtCgGUffM4iZ54laMy1ddXochuqMzwmIEfvxoe03HtfwDugPkM
CmVuZHN0cmVhbQplbmRvYmoKNDUgMCBvYmoKPDwKL0xlbmd0aDEgMTk2OAovTGVuZ3RoMiAxNTcw
MAovTGVuZ3RoMyAwCi9MZW5ndGggMTY5MTUgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNqM+QNw5NvWwA3Htp2Obdu27XRsc+Jk4kw4sTmxPbE9sW1MMDHenHvvc895nu+ret/q
qu7/b2mvtfdau6urKUiU1RhEzB1NgZKODm4MLIzMvAAxBVUWZgAzMxsjMzMrHAWFurWbHfA/YjgK
TaCLq7WjA+8/DMRcgCZunzJxE7dPOwVHB4Csux2AhQ3AwsnLwsXLzAxgZWbm+R9DRxdegLiJh7U5
QIERIOvoAHSFoxBzdPJ2sba0cvtc5n8eAdRmNAAWHh4u+n+5A0TsgS7WZiYOAAUTNyug/eeKZiZ2
ADVHM2ugm/f/CkHNb+Xm5sTLxOTp6cloYu/K6OhiKUhDD/C0drMCqAJdgS4eQHPAXwUDFE3sgf+u
jBGOAqBuZe36b7mao4Wbp4kLEPApsLM2Azq4fnq4O5gDXQCfiwPUZOQBSk5Ah38by//bgB7wn70B
sDCy/Dfcf7z/CmTt8C9nEzMzR3snEwdvawdLgIW1HRCgJCnP6OblRg8wcTD/y9DEztXx09/Ew8Ta
zsT00+BfmZsAJEVUACafBf6nPFczF2snN1dGV2u7v0pk+ivM5y5LOJiLOdrbAx3cXOH+yk/c2gVo
9rnt3kz/PllbB0dPB9//gIW1g7nFX0WYuzsxaThYO7sDZcT/Y/IpgvtbZgl0A3AwMzNz8bABgM4A
oJeZFdNf4dW9nYD/UrL8Jf6swN/XydEJYPFZBNDf2gL4+QHn62riAQS4ubgD/X3/qfjfBMfCAjC3
NnMDmAItrR3g/o7+KQZa/Js/D9/F2gugx/zZeywA5r9e/30y+Gwvc0cHO++/zf91vkwK2rLq8mp0
/674vzpRUUcvgC8DOzOAgZWDGcDyV5NxfT74/+8wyibW/0njH74yDhaOAJ5/Z/u5Tf+Tscd/GoD6
P8NBA/jfsRQdP7sWCKD+u8n1mTmYzT7fWP4/t/q/XP7/dfhfUf7fmvz/JiTpbmf3LzX1v/T/P2oT
e2s77/8YfDatu9vnACg4fo6Bw/811QL+e2gVgObW7vb/VyvjZvI5CCIOlnb/3UZrV0lrL6C5srWb
mdW/u+Xfco2/pszO2gGo7Ohq/de1AmD4PJr/o/scLTPbz6vD9bMl/6UCfk7O/15SwsHM0fyvEWPl
4ASYuLiYeMN9HvIncQB8WT5n0Rzo9a8mBjAxOji6fboAPsvzB1g4usD9daKc3AAm8b9E/yYeAJPE
f4mLGcAk+TdxApjk/0vcnzrlv4kVwKT6N7EBmNT+JnYAk/rf9Lme9n+JhwvAZPI3fepM/6bPXMz+
SxyfOjNHu89t+h8JO/tfEnv7v/3/2j8m838gC4AJ+A/8TNLib/yLrP+h/Uza8h/4Gd3qH8gBYPqn
8Wfetv/Az+Ts/oGfmdv/jZ/DyOTwD/zMyvEf+JmH099Ffdo6fV7IDnZAC7e/pSz/kf57mP4r/jwR
p88RcvxHzZ9fR0zOf5/nX+QOdP1Xf/1t81mbyz/wszbXf+BnVLd/4Gep7v/Az1I9/oGfpXr+Y08/
0/f6B37m7f0v/F89a+bu8lmL279ulc+G/h/+13cEEOgFNINbWXQ04wu1qQ/tfKwVwfdkOJgS+EVx
oPWdhsF3xaXL/RkJOoWmJit4y+VeJGW0D2V9T4L6j/Aq8ZvvWVsjdER7kkrHi9+r0TfV2YMOuOUZ
rKHpojORhkFCWAIGdeFDvzdnP80gW/A20J+yFHnO7txIygXoj54DUl4NgxVrE+GLByqHNZxy8K8V
cwyxGjH6QaXzFPmm2Qs4pFBuDIQwtGi/vZDn/9z/Qsud/iCW/UYH538ey1bsq7vNGve04LNRqc7q
2oNLjquLQwj+B21iltJX9DhVFnvJt6x4fWjZq42/mDgXkT5tnQGF8Zg1s8ZaNdqhpb/OY2Klm2U/
LwUQSoU/hL6fVFfegmHkQqqEWdNhFI3uVsdmCyQ87rYQ3ei81+y1sEkjWOWZa/gAzCPqWJ0Ftvb6
vjQ6b4yODTE8hKe1P462jO31+muVCg0KEVh6stBKWOlFra/xZhKmQVa4TYL1aAFlMFDoVz1SuF8h
TcL4fYOvRZ/xWHaLmJl1uSH7QScILjny/K7j/Kuafit2b8+jLtl5ohmEfIRwKn6Y/kz7/bsI14pN
wjgrnDo/U6I3Mn8znkqFrx7YNB9SwfR7uwqLUbzcm1g+cZdj+XqYvJhdRqr/YKl6NEo/2NvmiaeQ
8VKzSqMjgaNQhWT/PJph8rgpaEQ0JGyA5978ePf+xw9RQ8wTR82n31WeX0VH43bUuULzI7tVA3N7
XJXSpUSiwUoe9hb6YU3JLtRFPUjsW+KRtdQFnvcme0pePekrZMQpqIpXFAblTvgj/FYMlsWL+3Fr
A4WxIv+0BLLWdyk9UoMgZKFsxFFkHa6Bkxl1jbZoXr/jieKrqT8WkPlsg/QvzU3ukYzP7pH72lXp
l7IPtAL4OGLSwe2+UZIs7QVm3G4JUMdEvVtEtW5qeIo0rhLUZc4PAbfORyYgRMmgu9iYMQSnzqUB
ReVUWZvyxXQYH4tJOTa7PtnCz8TxrQLVrvr1mxh/+MN+COj36ICSb4kLfdU4hZ05fOVMyZ3zkspX
cRj+gZ8RhbtvXUOxmJxDsjQLJ88Kgl2nl5OBerdXHEBDEmMRph0MY3aMGg0Dsse/QIUxUh+feq2K
rswmkU8SysBbh0qFuv0+I4Iki1zDCLkyUC8mOwUi61YBQtnvywWVwFkHRxakOdM/03O2sCi9gJ90
G81UPoYkuWTpSSrJkRzvea32ldyv5iPIUYV/6mgqDR5+1vhLM382EQtzuR9M+gd/x4n9VWPL03LW
5qjV78280K2qk0CYpqba2kyhUVxjoVuu1DMseKOJPEi9lO5bbi9lfnaWBcJbAbfpR2mQVWREPs70
tlZ/Fzl3lhO2lwwNMRBI6wysRmm3qvrZX/733jhEi+9fzIgo9LecrwL129sP2ZXYPUj0Mo0eZNoL
aq8aal4xhw7NovGYtwh/3CjIPink6jBXTsR7+HJu4SQv6j/2A8Bccp1HM0jZcAUewJOz1ed05BjX
5XBOR2l66bGlxuR8Tb6K6YpK5XTBERF6r1EjRclRhfezKjH/0kyr5pRRJie3ezl5rmxlSMLe1uvB
OZsHTo5GPw7jweDKTSxRslJYJpvW+EQ8yE7gptO7O35RqGQdwPHZdE9Mz4uY56TN6KAtQRzsQ/wx
+8Hzc6psS2igUC4Zy4wGZ3z6YUf/t2WuWxWlUPle3PTA3YsDlPqZZ1fSYSd5nrmivlhrZtHUqtL9
4rRwsRarF/ExtzOJvPlc9R6+49mXfRZNppgRUQHhurvnCxLmxF6dfEefJ/KLp5mH4UCKgaqfs6OY
njubO6wGjhX9W4BqozchGatxZPfjfFH7S0kobN4mFiSY5VRzmPIRb86H4J7VTQChJGJZKI68A4fa
jSdlOcPZr9qaHCmfxzKeUxyBEarEfeqJt06ZVyvF58ZF330lNADSdxZweQ+zBXtMSOumkh7KEVKF
81P7AeEWrYXwKpyiKvt1Uwrmle+QtM/GGWfQA/lJW0lMFn/6s+26KJQlWPN5iTRFaNRE5ZkO+Suw
LjnQK8RyRAq3HrLt+Kp9x3vgqcnal7UhHSShEklhokG+g4Ry+6ouOyai9g6oY1PvG2n9BjMVeQ+Q
83NUgDdCX/yVpoW69U7wrQvRe1/h+IMz8EdenWHXg4lbDjGMsBLLWT5TNojkNXFyM5s3EVn6nhmy
gsLSjNSg7tuGHrh95Ue7z3SMZAAULJpdxdMP0j5ZwWogxLKmaLyWKIH/kSZNAsS62siaNS59/lXQ
ZumVKhpWK1ZxV4dk7DB4RZdyNuNxlzzEbKDXI0QJjpHelLbmV1Ts4ds7lbwaRHXljz8eIXlPcMAx
+kSn91W8EJcAq6Tn1iR3rOuE0BhjOjtfPJgHoMrDYoKRsAU2Jxue9JayicesD67GJKZRbe4kxpDu
DxYi2or94Vi0mngFumFTp8BwPt+NignYoCoVNqxjTU2+5fzOya+/kBDRqpUYlXK2rek7ubl/LBKF
nPeHh1nmCugLbAuTSm4/y0k+quebvnz/1q0ZFGdHbWdZ3Zu9ajpXFbtB0npcsZC6MK6/8/Zkwq7C
gl078QXwg2fXWbO4tXSiGJDoamh7UeBqHpfpgOTzrRcGuqrwqIh3kUA+xwfXIA71d4ULfFRxQUWI
h6J4d7SCFBcPuYy89TtlksiyJf6Ogx2nN2iELGy8pFLTDb8c7MGZ8mSRUpyICM6YR3hSwOacXQHl
UdOjzsFSI9XKFIjW6sxBCGVPAXOQHOAdFzODyRrWemXOHdY0B69PDI57eMBHRLp4IZcNFM6b8UYv
z6ttd8ONRcS9qiIbwUlkmlGPvVBtmdXUM5nODOBWXnSpCMTDsSIQn6jfgB8kTSch+rL/g4+Oy0m/
yNMLF01nVwrOcINDonpy/TgJE40g12i9LVWq6WHn90kgNZEIgl0L+uwli/E6tzvjrTvd5d4K6fOt
IN9v+gCf0cZZCjjHjpqtPC/wEebvrsGoiyO4aFoskl7Tl/PHaVsAy3f7b7FNXpref5pWUWezSQ3I
fL7gpJU6edz0ImYThn9Lv18eLGN0EeWJJMd0aNURqxJjeR5wqzAXJnso4waZsVWMmI+WqwXN+8VX
2HM6n2QXJPlMDQW/HKN4G1UCyre9U2z+Xtn3cgGaWIXyukXbGcU/VJKfsjeIHopeAe7aU8LD3yQV
jygmYRymeVJgtd01OkCBqZI0JVnsqNw1sDuLGhJAXpHQRTrLxtb5oMyzxHOuG+vKEwFKZbxXRYR4
7rKq9cSrmFx8PuL6689wcguxMJRFCEKWIaHWRhglK7snWrmdD/wh+Tyr1hV6vedG2NC5Eo/pR+EB
qVJJLvrYpFY/rSSawQZTibF3RYxKHezX0WR9lZQ+fEnainVrdazr2GNDRcC9uVGhgnFIUbgahXqD
YrscV3wNDJ1q+uK5nktx5uuIzp9B9AsdZ6B/Z90yAUJx9MOyToTy8x3clCSohkTB+e17zO9fciE9
C8jSMVT1TYKguirCU8gyK9tuFIX7H6lZPXplNFwDlN2veVZTDtkIdbgnOlTzayZ9zer911TaLgHz
W+lMDkYOKeCy8vlY8DDUqcJw9Ud54zMZcFVNioS+cpJNW2u/DW0zTTf7HE6/YF0Yy9cUGsCsmRRp
5IO2Dfq+fkXz2L2S31pvPyxgT7pj+U4egO5iL/Jx6ZqC0Td0e+OguwVOm94hUP4w5vrnt2Mmhqmw
7zfvRXgYEjEx4mhfbDMYRq0A3ebzK6JDZmwH+G1TpzBLV+Xv5uQMs/r3NVPzmZTy/E4/IdBake3Q
EfzavmQ2ch8/M44OpDbTWUwN+3iXeYQQ7xjVi/pUj0Xkht+xCnnMd8JAgZ3edv5ZiujXBjUpJOHG
XSiyh0tdi8Cx9FwhgYaDeeQ6kITVEfZWM/hyHZYLll71ZOcounhSmQRLnJrtQcL8dNwSJZkcjLCx
9XxZLrFlovc12OJR2Ys9UDosD9PvFFrrtZFvTYpoEQNFB52UTfSOY+X29fBxR1qf9NcPPahHltSp
9AszDsVHngonQVYu2Q7Rt9smVybwy6hmS+q7ci9MFXokN0G96l3uySQp18HWIF5iVXIeA04Myq/P
9t7VNNZNuFEeoyc2ffdaZdHyA6qihoSqoiZ2P8+8GozylnSyees5FEprILYOL9cwrqKg0eM6qpCb
8APKXphsisK2B1fySfw3jZMvz8QptQgCRyr2F1W028ihpLdKj5An3GSKqjphA0YWGFd0CK6Flx0w
f7ikohjdnTusB/XBIHYrve65iShCMsgjOqRGpwlBGm1iGRqFrVliJDZ9ycEaiueLNSaqnbkokxON
2PzNCRxo7l0nrvnWCieYfGz3U8XpWzjej4KAXzQ94c3ZT03FN0yxfNBquFQIhm1/ePfdIGTrbIRP
Mbx+NIRIUDNLjfFNtWOuqTiDxZUPJ9uqU7X9zkHhy+FPcMZ3WN53D3KzkxdjSdIeAHBM4qXBOX9b
GnCeKw4S2o+e8WERU6PrIShUZun/QgQcBVNjnYRn+yGbqrA6FppiR339q4kchqgdOKpywGTvpMgh
xwWq9QaM8qPpX1veNImSTq3a1m37VcPuHqvh/3Nw4Kj/rgwKQwMwSzKeqpNyfgryRDIPKgMzr3NQ
9isXV47i2KxYoqb1nOglU0B0ZULGAD9QDYrlAUB2+6sd1QppQk8lXN6qQofhIPiLmsu7twkHQEFZ
R6p8YYaPiAcilsAAonwWWwcEKzpMmCMwcWNrlhoP7jHrmyB8dn9Iy6i4tE1EAcqeK6YLZrDXeirc
IWOf4OrMYk1N/rRtWvWq3QAfZWoNGf/RakbtDTCBxmJ2X9In07hluEWoYE/GDERYTZoylf8DsjPx
EgLo4QDCjR6ULRlMoL+nWVfBNnhrUiVC4u3ducd7/YsOI8eMpNDrN2RqsOm0wvti5A6ThT/bVmrm
2XjJ8B6pVHkqatURlYWC6yz0PLG2lsab/+t9U0urzkBTrCF84PwShc3kMIl091W0kvQHzOhkHLHR
U3M033FE/dRNwLdd2VaPfKT6IIN1MjjyFegK5DUqMSuhII50/lA1nDfCjovx2t5r4aQqnGzYDJPK
xkAGjHSRALOo8BM7Ry3QRgXqm3goF5CWUrI146UZBx1fmzVjNj87MA/CauN2Khm7vLeA7TqSg8bX
/D+/lPvGzn2TC6Akar5fCUw5mRwbwgctW50p2YIbZ7dcZu45PT4jVHG7e6+Tu9ykbtymuMNZ+Js5
99Nx9Hp/IXnbMFjIfsZ/7DlH0qCvAu12y6M5tOaVvsnrVgobWKOuNgIqBZ0QSmp2vzvPQGEJVrof
bw8wSPF+3bke8AnJCcuU1tWniNe48FjuASFCnPHZM8TZHheN9aYIVFTfbW1mE8Cp1j7bFuq0x5BN
fMRi+MUW+kBovbckLbyeEGQxHfJm26rKeJb5582DKnDYnhGNalJtr0+8Y2LFzvuVGIcrCasAQefP
olhD1aD9SZNhc42UO4eRVCb0Y9MKS8kLshtTzDz8+3bsxO5vuG32yDqWKoevRi/igv5OUHSHFhWW
PFbkhM9lg6AGwlcKT8bLhnNtUnL3fBw/oIo8h886IPZlXJyvRMrYLESCt3RQrd0rA/s29vtvumav
zufQdFxQTgjF/9zzxseumhNBqxaDbwCSRNxQEc4YKhLoMWh2200qikbbrXanefTmS90/YNSOcHjk
EnFDUQfU5cpNtMn3PS1Hk5qVQvR2wbyi8Z2HQwq9IWSoUz86bVA45EsrZHrMmvz9rIh6yL/5iO+i
a0z3JXh26MTSdb1V6vJOXR0NTBcNZrH8vGmyC1gB9uAPgxq7PwqD4flBVJ4TYy6ufz1uzBgyXOXE
v2TK8Z59MTb5nY9WMoIYpVczFYViPNc9IZFT2OeJ1wt5bkKEj5Dvc2h9I28Sio3mbzNWezQq/FIY
deA/GOCFfHil1QwJnX7gEOEa953ZgRbJF6nGTki33Oc2OmUMLVqw9Yj7gtiJQX6WcqTwBfxKzlgQ
YNxYRtFnnFpwufFz1LVCqN1jvGPIUP81kjYRc/FNZWynTNHUIoxurbN7MzTHkRQ2dqVUA7bTZ/bW
8tRy0mQ/LsG9UTJvNp2/H1372XujtaJyBuyZthNsxPL+g11Im9WgL4G9TDpjsiBz6SbDsHfGWR7o
WJ/1XePi9gvCQ3Fi4gyX4DnNUNFturRDQg5Ye1mVCBfpia94uCo/E6vbm8Lg8N2T60FJ4Istj4z2
XaJFYXnWLPjux/TbCx36Som2xHlpKsoI4+kOSc9MPymt7JoaF1LPqg5RDQzBMeSVzRoiIeXcisix
LALdj8OvP9s6YNBW0QT+pCrmH5BzetSr4anroEaSreFUy6d9sE+VXh4JZYJMU92fP/Q/BUhim2tK
yS/S0x1huWJWSr0XbRsytZY7N/ZDjN6DWsUMIlc+PekSVfqEipe7CSOwPQDRMjJzjxWWhQVtaPi1
rIz3FTq/Cn4sFYx+fNkBbl9oissu+KW1t2sj+8+WirlEjWAPqY+IjBzDW+C8gX0vTExW9ueDjCL9
1Sl3/4ts6pt6XguS5MOz/hHe24PhfBI4IR44PF86bI/fqSpAXH8gGFHafZ7zQ2XwbeY7VbYK24gp
nxdZaxwx2y2x2gRvhY0p6sUaRaub7DdoJsGxfKWPyyxCF83NoD5cL4PaNqhOQZrdq9zeJoNAu+wn
cA7HbhS9o/wZST4UekXKMip06/Io/TpFlV6ZG+n5ybsZ4h4hdd4L4WXJK+wjxQ94aDXt3g3mOv5K
mg6rba1FqKAudos2SfEWq/g1xuUGdTAaQzXIWQaiMAdP/zd6+K+6iq0SmDNioHc1D/A68LGqkMAm
n775+99snXP6cM3Lbhfv7zo7HMbx2JJfjDK9emNDwDVy/KKptBObhiNCpYSRNRZROGXg9YnTQ4/W
7wVfeUc1jV7ARgUXSnhoZZj9sX416ZP6LmPCXLFprPoMXY+670tmWYBPrBSF/VHeKhujkUj4yo0c
/KpRnPXsSVP92xI9ahzTeZ5329yGrLitZh3zqxW08zB8cVanqyMiQ5twIpwcuBRX/B5plZ/KTATY
YcXzAUD3xsfVLyzYv3BAfqFRDT2qmDfQomLBvrO0T4TtKn7xtxo864AA7rdFvQbzluWkV9ks/fUG
LKIqghsss/NVnMDXJ2Q/qHG3bhuW2aFMkSOX9yjM6p7Z6nfcCVmPPno5Yj9Q2JvGsOkUzc2EhCy4
76+ZKqGNeuub/Bq92rwEEMGra0JmdPcU23WwF4od66JqHDzhjyG9DaCxFTmk/YsDWQ2Wx+onnRv7
hqblWoMwUGvU9bTkgBhPqMrHYxrMqJikvTBDDEUSl6p+HZ9i/uJwSmyXND4RcxkxfGOmr0H+cAw2
AFBOH/1xuxvkibeoLDl2PNrJIDkG3KUNrWK1A+XoyWqRCimqkAGsgfVn7IaZuQmJK9blGWllrl7s
GqILnX2tUYZ6yVE0CYVvSwYZI6KRu7nkaCAG16wU/Cpth7tfDsGtDHeI9k4mzmsDCofJVod9zUuc
PGdDCUGsn61PiR1heFySJjV8HXzG/TnVDG4FlI32LrCCIpvUAZ0q6k4qxYqqeqVRD0qORW9aSpwV
jOZDO1V4wiRHS2nHIoZ41dhHcvDV62ItfBRu6xOLYR1MkIdqdK1avYh6rej5AMQzBNspaVEy01/M
cMRfpJ7gJfjiKohG0iEU0+YkOzF77vbNHR+frAbFl71BxVqk2VQcdg/gJgL36SeQrPSwxCgRYZsH
c0Gsc/3e32+BJ42uAhxSeGIDla58bXTmsIQsESN/dAogddD4mErmIKUJDOfNWkbsrZKDwIKu+DTA
PZCGCHSlqna68o6mKpV6Tp4izV41bY5hqgFj1W468AJzSJpUawMsE0R3hi4i88+3ybNK0i5FvM+S
SaBPyvgrqa0baM+EeybhQWNl2WZvVEF6QxUcFQUS0lehfKLN6YNk3o4etdw17kn3Rjf1tBdNWtQn
zpYqML6gIHXcKd+j5mbv1pkaYYTzxjhJlZMgvIEK1XdOPnFJXnNKI8nfUxZdfgU7sQH3g15wWyN8
O+4xfL/L4fKxN+Z3JiPVeNEKrHzJzuJu1EiusrqUON1Ab63eYrabpqIaG8jnkx1jy+EyYo6I5NY2
rx9n3nIwvevl+IWt2Xc2x6tShlDHwduUVTRc8CaesFTykMGHA41IvtV9g7fXiyM01sGkCPxDha9t
8KdLFPcu53g4srwzwEwZIcrV4BarJJiXhfAAT1g7fbT0AALupdJg56o7BFVR3Ibu6ceHiRCmr/0g
W17OeabZ1RdK6LPaypcsbE44RhBtEZCvXkgRj6UVL9o0ormYz/i3q4/JJzwHp8fWPZHBNvXtVDAx
0zbxCSt4Y9+ECDFsabiYBhV/ZV0JJSZuwE/0WRxGakqXmCa1Wff227lUGM+5Zwo4rq20xozySxeC
7zmH5SvtBBCKtpGXemcEL521M3mLnSavwg9zgXLxdZi5n/rUX5jE35B/69cfjS/DbqqL31Xx4llA
YW5OqTlnOlNGoNe9FnVOu7Tg+sODxiUxFvOdWnLooqBgc9H2TwrdCUQ/iiL1dbcntDSUgudPNi2S
jxeNomXvDv1uqIX73V3hBATa4a6r+LZ5LcnvnbGKXDJqKsCcI9kI/VZUbB9AWTIHoXvjkV3lSohG
YHhK/COPt3+jilX57ft9a3cX5cXiHLSu4A09SryiuHnGfcfLM/6OmUQg4iw/BBjxKPlING4kpPMQ
DMmzVZUxogkSa9cQz/erl+UO9jlR/h5PRN3xcZjgW93jwr26dx7wcpFTQArjrg/3bTla7gbEUx5G
Oa4hPXSLKXz11QT5Eng8LttOycVJsXQDdS4aNWb17YcnhO7gB6aVqMKhKtcL6UifsTi7g2qQSWhY
DjS/7gq7HUNxD2lIDGjLWIxM/qZV00dTSrnZz5+8zdy4P4EiR1xc9Wpoh0M21u89PAUpyzAWdAGe
+DDHKWk8SkNUvQu12Ht+XWyMTR7CY9Je09jHpHspHkLS9iN839Hip0jxmmyPQDGiMjBbHgIEsp8p
CyZ216IozANVY4NAY+pIxXvl2gLWC74P4Dlafh/kRMVtJTD5tttKwocVr4iFCKuUugErZSWHC2H1
s6V7pcOLUOc4iGokoE2BCN44M/20zvmpDuGW+zJ8L1s+9jm+QR52A+vtgW2l9cJ3BELMyqayGiLi
TBmx2D376ximeopxbH9o/sDaTRAhLa328qVQJh8L5sdD4vV8Wb7Czh8wsfuLUEJRaidJpnT3kj2M
/Jjzk2F5+EgkxSjPVIaL9lWifo2MYSEXrwQFVOhTVP29kumovatLMtaH/YaPwSKSy0DH+A7+lFfy
cPgu8vHRsRoxEMpECAKlWyemjGAVVHLV3vjYV6DCoxqjrKKRMVb4nJ7zgE+zaEPFk4fRQ8IHY1+f
hDjlZbE+3duA5DGJv3wR1PQ7RELahcRmTAjV5I0mlnTelNoXDHzzbydYv8x2gawMH1EVYLKlHp6d
SRogLj+cXcJocRmRCqZY87U3PFTHp2ZhOTFzU8r1cYyAywtK3yMgKPSHrr+pP2W3D0ci8KMr4Xyn
SrXJcZvijp9ndPY9yymK4QswYqKOOTJg03ebwZ07dVs0EYzQMA4XzLfF4CR1ceUsedUXSpwV6Jzo
T0GwExck2BhBA4stGTKqKRO+o6541dj5dQ5tfx2YowuNnz/o4qlqZyKvvVjlYatx95O/ETLUjbmX
+wB+/XrlQXws1U80OHX8yKp6w6CWG3Gm8WiDAAkuEIZq3e+Rvj5M/2FLZw46qIBtd/F3NusKcuBe
BCtpLX8nCYZdbXFjjRtPVhUS8TGjx4gKOewjh9nxaxq4s1lAzehsPBWEgeNvg1zjcjLzAQC+N4mL
j60BjfzdvI8shz2ZUVpG4LHPHBcpK4rOKkpZEdDyKi+d5kHmPX/U/sE/W/V+PNb6gy9jnldoUmwI
eaMwubC8rEklITJYnbqtzG83eRlHA+EL9pKzX05LDFl5Ntt7AuO9TetGZlKZaTPLfWv0D5bsCxme
lmXmk7GQ9u7EHP/gGSuR7fCtSlKp7ieXibD9A5C+y/LUM5eljxeyC0DYkWg372IeZrqW+Z8TcgE+
NBA53jxrOJHka89rLUqpquCPQQ/FDmiPoOg6pyqCrXRvu8vlIj8zbNeUs2RuqKKxJxHGzlEmZ2h+
NyJhYtTXWB2jSC7rBNDvWo90iH0MoqIF8sE4BE4F5X5pJfMLFoJs2IL66ePujA2XjbqUFoJovE8r
IdZl9D5x0NXs9porDh5hwmlwkhsw7r+ed5qWPsLp6gOEhaUnHkZPNilfwn9KTyJM5L3orGbbOckw
IIlXnoFZufOKGLNHYv204vAK4yR1o1p2gcLnVm2RC9xXQ3pj9wsdM6OoNr87ZqXFCOwa2oYD5zql
4c7V1fXDE8MId/SMzXFB/1LBEy2sY95nWvh0vlp73/7uWCLM8lZd0d9QPEGQ1rgH+sK1utMd8OAv
Q8wCdV/PlNe4ZmP4s/xjLknCOF1lg9nsG/oqankARLTjl6qOk9UgylIElp1f+BBnZtks8h/bgYEg
36jJ3/lOU0cTdfXy/miXk+a8RoNRHiBCnTzntQtNqFTcDaP/aPgJMt7Ufn02pYd8cH4jUPuzGo4x
7THDQAub/FFC60Ro8ZagQg1tJ7Gvpo1im3RBbjKrQ5jTKR9jycJ8MyZeA23e36Cy9TtcVGLBWB/S
rO9buOM6PELZnSYTKyFIVDnoU8e6DgZuuJnF/ahOcKmWE84xJjQ8GJg39SzHgfL2ibDi2xVT4Gxy
bowtdZ4dc4HjpiwADxMM/Ue9K8Tpa1ZFod/FTRyeyxJemCEZ2HtWvtojuxm5HFOk1WMwxdFyOYWk
KiOeLmere4InbFiWt/Cr1w+YZZA4E6mvzt/b7QPwoRVZv2Z9w6QecVJhMo1Nh5xBcFAwW/5xYz66
XlbRnrhiXxnSdZvMSBJ+3L7QLCN3Mdo23Jy3eDiLheEQDK8AITwrMMZbO4l9sHocy1aZDCxuqwSk
FGa54QiJ7DvSa3Y2ZR1WP5wQnVvukGVHGxO29hcWx1Z2C0blPfaQFD9kO9rVhXMHZgUzY9S0hXlf
0R7HQvaiwVGB9LqNtq5KevT/mfBzapFa6fixpE1X9IF+xH8J/qhfnJCjV4M4AalKOP9zUJCRE3l8
Rv0DytzNg83pciKHyBhXJ/xMXq6HCAL7PevoMPtBrnFI4unoFhK+H5BUW6tS0v3l95UtfG+d6Nfn
jxi/uo46Z5nXgXX2HXVfy645CIUOMJVmZikhHwqIJ3BMi2Uk6IezFk+4XOfOzPTSjEJQc40dl02E
eApM7e255F9hDFYuFr4OzNWnyxOQg6peFGjc5lqdYh39VaXdXf2+vC91ImZKiKFnViSvmQhyWis/
pJTl0AGKpuCtav713fjTo4NfzJVunuaryOUhNRkpUL8IthKTmRmOyRadJcUi+VGulyXFYpqkJ9yB
xNb3lQeP75K/0B2T+XACjsL0fdN/NWIGzE43zNe0xmdP8Q+yr1MJ+0XU4Zel+7a3NecXCdYmtW80
iKbMNhv9mrXqeneYzghMDvyimHuzVScDq45pO3uvzlV0FZCmZEUCmsVekcKaLVNQ6HnzdPRKWrxA
v3ds4oYi9+GTFD8CbpqlSfRDVEBoeiEx46LOi5S1HNTcTKuI9Ztxpk50tZc0EhZ2sCSS4v7+4cSY
dnsUy9jBaIPjdPcxTAyFjJyk+wfq49Bp64a84xldcyd/jYAmAF2yTVhCxWjX7nW1t1Lzq8cUhlTH
bXr2mrPF7/LcM61tGkIBZsoI1z89tK1xLCPbO/A39vp3HDeVBfMlMpo8NZcb48hlt15TVq99fBLH
jEgKVDkzZYAsJQuYq47uaVbCAe3vLXr6hAeL0OPRJ3zjZA9G7Y6y1PR2FgrKlgv3v5/V6qEQX1ce
miAFTg/0Sw2gZuQymmpI5U0GoBld7oqYld31EHq2eGm/nmB3fPulIYUEy9gKboaHKzsVfYVTdYr7
PDLx+asXF9lfwc+W7JdROypsFBTohlHRko84BfkbrN6UFLAu9N3nAXMjhBNZZJNWdI7FRXXkXv0S
0HX4VYBd4e6Dxnge5OcA+NTPD/pwi57F72t8jf0E7iy3Vxx1ld1zrg75x1YCSuW/y5BBJUPVevnJ
4iXQ5S5wbtjA04Axlt8jCfYR333hN8x/+VbztV37qMWEjGtGIBV0Z8M/IJGU4CquxWLvclVuLUgi
dFJTFaGYJM9LPEuJp14uf8UiDa7BvODWroYjirsr5hWVLghr6ApSLGsbhXR2BEGRpao3OVv128Ud
nwAF46Fb6RK7QxzIiKCtrB5mDmyd9qEVEqCfsLNNiX3wyEeE7wUgCUGm5QNCuAgWBpulq06wfTf8
Vsyel7ao9ReJOuM6lHzjxjfEJiMp8kSJzzvuOGiOM6XuR8ok7t6KBFTxfHevCNOFulK9R43HVeIV
vvrziI3YviAcosRR7sQytR9OMuy+pkOHJue8xLSAdbiSYla7GtD3Jp762xGfNNJNOF8L0CFsSK1C
NMSrTPZhGPh4XZcSLag2/7wNwY6PboYL1IzKebtxdLU7YZl6IFeskt322CdevqC1JO8s6IWK+B7H
DfYetsO8ki9XbJ7LBck+4S4eWHnTXBRplt7y5xsSmOq9HESyqJ9Mn2tz88ZK2BupZJxfDMnphQvw
FdU2MMftrH5tmzGA5T5e44cxy+VULk2zoEruV73irPmva51hBp6gP7v0GmyoUZ6pjuW8QOuM/exW
62PhlrS7q8dvE3vIDnFsRCGMcSXnDNYq5o0aiWR7NcHnBwyK69LXJjNbGL02dFdcmKKuQJNUJw6s
vg1XyObqwCCtU//gzfeux67yP3QySHC0JuiW+GAQuozmcIHBWqA2Fave6xtAnXpT1KofN+WzDUqS
xDw7X5akyLOb8hmRFINPIz5GxH+eJLBbnD6UNHjaAXJ/e6n6pQI13TPx+2JtmDYYKmD7g8js0prA
oaIHTTQPpvC3Sx8rSQWyTB2cGo0okkNhVcmxPntppF93/TCwHVKHgdFYQsZSKvp4jLIr6dEnYeiy
fKEhxW6VT1cHI6F5vkXl5yYDOgIlJdGHGwVVeOIS3Ep8X8UxOwL1n1bkyhty1uwtw69ms618WXuj
J/TwwueiMaXgpP0tK7ucA3MzDyCBGndpY17uSZcbLosnNCKmFxNX5HYPyiMh4rMHoce0dy5jksjp
u+oPqAwiDxYdxNf20SnK+isnG/o7T7UktuxR4orVg6QMJC2mgVaYE5Zf0d12087iuJZoUy/Vc4lh
tsC7a1ElFzIIw1CisuLlrlAYUfbZhvxf3U9f/emhC+xKOm5G543GcUZnTiGJ49rnNzp8eiNDuLxj
wcrdKnksxr+ZgwgfZSafzw4yOWW1LszmEgdz8dH98oXt8t2d6sy9JIhMbi7D8d9jZijAXwXNenB0
x9hjvG/5Um+E9c4szMPAfbu5ClqMCvPGkF1WwsUtGVNmLBIdmW03/uJpgHp3AYfCpMjYP11/mnsJ
n7GXQXCtgb3GltlRRsbxg9mWxTQfgdAiIBLrtNQ4cSKslgYFRmhgol38BmV1WE3uAQXPaW3O/qyN
V444K/UgPSV+Sw9/gW+EE42+lQNbL1EjYkZuafayFQUxcg8H60WqREs75f4E/ysupDjaCHCmeB5R
Ed2EyjFjxQnfi3EUu2mMe4ge/uPE7gbx5d7RFPnRfn3i+GCRfmLtt8cJvh4M3VTTSB6iIeRxiG2s
+enQ8biI1wmGMyBdKdldfDpkStEk+VbLVUaU+lRvL+Thi6vrF65UTK73Fp7qgCzEbmfWKTOf0Otr
/jLtORb3c1yM0nhN1Lt5O7u57904B7wUQfJZdj/UY3fdL2ZrMFdnutEnQUVFYu5NUlokJPDxVZ4M
MmNMV1w8Hu4CfKFJ+YP3uTj01RwPtnISSn0XfPNWsZtP8475ziTjKuJritwFUBDlPcmVKowFxxsM
g1auzrSjdMM5xTexYLhYLZzUuUqWd/Rz2Nk8WvD2N7lroPDZ0eGHcsaLiWT5JVhcUmpbULlXYWC+
VDu0J7qEYRbzfij+WDEITr+fD5NzebAMKsFoTyBKNS8VdFgutSQXnnlx/i0MrUWwP1Q0p4PlSstb
35Gz/s3OaicKZOI3zGzeneO+c6MdHM4NNs1TdhUR9sa4bDL6yjW3Hb/sW91s9QehVRGmzhzyxkup
NxV2uTmKr1FGCcHgYKu+/08BKu0ZmvdRmBXorUmprJXCOTgTEzD5ITNms0eyyR+JRajDvuSZtEpw
AkDoBT6Y2VUs1hJwFVIWbz671qQzucxkTT8UgnuWin7tU+oNoTT1Z/UkFexu/nK/36HFPsU9DbUI
P39M92URBn7vcH+70uRSNTweohjpRW5BKAASxh2ImK7CNk0Tm09hCs2l1gt4JD4i/ubJDhd8rp+p
Ln86XR7crQP7isL0q67ipPC+lzzxVShis/bejIpMaLeCjs2CTrMzG5v7t6gGdbjp7Kog/81PfIW2
Q9myFXUSD3xmbJuBMgTjbfBvjjN8exZIpXWGg5L3Zg0u70s2pSHfvDJ/X+TeSm/hwfEyu8t+/oQB
KILPDn3bdOvqgXNH1q9q2UK48HEp6RFcROimnWsgLTlzfmBd+Kbu2aOufSIiYZApIQvafQc3nXp6
Q038OswkqbJJNT/k2qp5cc6amdNvyFTU1mKh0T/ug0MU71AbXEa3rYLcW2fZS4QBSa6cqMtaRHaL
fhbn0EUb4TzNzH7awJF/LvzL7jVzsSWrGTEi0yPdQLiYGmcKOxRRzfJuIMCY6VQas51f/o0zkrRH
LItZe8R11FSUYb5QWiCX2wibMbXBFTb3wLwQ4nKHqaGzUjQ9Ur+cznzudyOscuXbpRGEz8R+cDGX
8fDRw1eikC8g9nG0JPJePHypCNepP6Zuf/oJVJA5WT9P6N4krsChMkICZ3cSQWhJ9srnxJV4uWTV
Ig7svnrYs4yfIGz6SdKT36Vyl6BIDLIWds1ySpT4lK5X7OPfuWxybwmCIAPNdXqyZ+NIFHiHE1Zx
0I/W7vsMqamJqazBCLRjJHW9oiA0cyy8ZVVwXwN1QVKEjlKhMmEryuT5HxuxU2g1z9u69CRpUQOy
elvmEYwcFLYeTafeVBXn0ix/6YAGDklIGatqOgcVS58K8RFqHsMlvZfgmHdqFmI/bi/bd0P0N0hY
CLf2M2Za32Hg9nMdy13TDpeQIUKteBttC/BaOdlo8Wu/U5fzmsPvJimYKMsa5qnozuEzE+a4zqRk
mv6IyGbK1NSzghF4xSELVsOwge+XQ9ZDm8RLgNZr21OUMUQeJjaq4kTSBGPZ9HeVW24BTtbEI3hr
nO3BSVM3KZmAlbtAcibIgYO6TbAFnBu6VkNNmXltakb2ghmuFRMnBW3K5jE+aGAXdpegO3mv5j/Z
dQwNOy6ISYu13F2WOEblWKfaTb9EbNfsbVW56BTqAvOrsSsPzMqank7GeIJYH6qYNO8ZCUUvQxRI
TEAOu5O7pFYkhGOLbZ8vk+RcGU5zA0GpnVLwTJPrdIdSEFnS0qC8S9rmWHqzqBcn2EUvVq7u3/yG
L3PzELXwuLgTp4GW3mMCbyX4etxkDvtW6DG/oxnKxhldWrNIYqsvmc4IYTmejG7pfcYAHcPwzvsI
LiE7tTybbd3b4sEunPw9i49U468E0y1VDhyy/rcPJqSJ99UEEuALEHcsPvUUKEPaW1Dp5rgqRKX2
UBkyuLm3RbHhJJjiFd+jmcXlQe/bmoY4FAVqbJSDeHyYc7wrCJWSpt6+RKQhiiDcJ5bJgU+GITfI
iqOTg7jVsNq2nAHGhvoz1A05uJsgmbzwK3BPIbFvPsrrQ+cTfhI7IHC4p8lNvDvKHITZ75bxDNVN
I/DDIF80uQ6/ILBSnbud/PFh2aQkk72cahMUKTotk58eT8ikqZR26MBZyT0kmRLBhxTDH0sDh++4
9LBZJJB8L1JQGYr92EoGgzmHoJ8UooeTPNjdhwC1c5bad8qcvr8wrDW8x/uI9ygaD3ReRzp9wWN7
J6a20Wx/ICq7DYPly2WKLIVjp1uMk1JhjrOLc1EcfZDJy2KG3vAqd68yC/05GP34UJgF6k79gMoM
wHjGbjqcFY5dOc5a6bJZILSA4vg++6Bj8xsBWd/fLKMB0Rw5KFSHPFPRr7er4w8iYS3ih9ROhqhu
DH2Z7XXElPmTwh/NfAc3xEbETMsD1U1YypxApxC7prI/ofhWPrr4RW8qpgFaDP35laz2Bn9M6/zx
0XQcvi49iKzvxTY1BEIKsvRYDrHDq6VvmfyIcG6d0+lX1TspXx8wKBBBWszqUR8NsoNhRW2Qfyy+
lCleGCaVx4xHb40Q9Tt20CradE+LXM9tmZE84FNp4F/kvjqcQt93jsAS0Tr+ru9WvRqzgulzX1UV
mal4M19Z+RDigN6smHQdiJbwGPLm0DjnN0zELOtKcyk8zi4Yf0fHaBJrVVJSAa9MC4cKFuWoqOzg
tn2FF923RAuv9j2Z7UAy/rXttb6jFIquYpK1lOYP31hdQp8nOlE0h+Vueig3yA67UBdH6bVli9jP
J4yO3t93O5S0EAyAQ2sldq2L1S6k5x8iAdJvP83AzeftsnHvtckiH9hmf2BSTxFpDR2l/u6rQQ1u
o1N4l3xXRuXNEhoB/IzYP5YCA3mw3pk0JJ67GEej20VihOyt9RfeNl6hkyR3jSn0eFuchMvt5cwq
9/XiTDAcUtbvzjvql0aYk5MjVv2I4yHxXN08P34hctjnwWWKTYfiikG87pKH9kKFFmrJiCm5EzbE
mqUtKEcnRHZWajlgCkuZ/a6X/S74yNV2dg48j+Yr+27nHpS1GJweCR7XEOCCJtq+P0FGsaE57k6m
ZnKaY1dwysrXUJN2RlbKh1r/4zEt21vcWCyCBuh+BMUsEAfZAsK0c7NDZ+MbE9030hPDP2YR+oNp
HGV77CEMxyCGLOKWveFdmPCyJ6i96J1PWmX85wD0iAchM6CZMZ3+bSpLKehK8mlbkDqoTxIWOnoR
1rPt/ZKp0rPzpwTf3UNWglfZwgxbbetWona8eLE+Fe9viLXRcVISJYfeU7gYxgjFzfUVwRQRz827
1/eOgBdwRTuOpwqu4u/nRlpTA4uHTe+sDtdqTZuuqi26K4kqmV9WTwhUGfhWqrpipWV+VOvdWx7e
PmCiyzVFgKUfgLgeQi+fQfue4h4XvUbWPGGzDaFAdjbPX+BSxOlzR84u5dJF2DDX2uoYeUg4PvwK
ghcnz/SqC3z9cQUUz6kOIpO/wtLL1rvPrH+I1QLlv6PXJTqwjsGQ6ntyrGYnQORh/mEx58udYj3R
VBTotze2sX5YmxYNm8/2R+cyCNfSLmbgkesbRqfgsnRwLWgv/8FQuGXPRrE7xjWlBC2ZJ78eVQcN
JCn+XSL6h/C2Ij//XQScT4VFLcKcVpFzYwziVcLAFiMdXOiKmJQYe7dVJaWnbYSztYsR4wz8paBJ
Jy1HWJ/9c5Ze2ze2b8Xy2Na9018ezGgj4PNxL3gBKOUWkc+SeMSRgRfneI9XeOCLC7Zisb0+g4++
kxwCLqzVaeDIZgdjDJpR/o6L/LVsFmjiWtz5bxdQz4vhVFZs52BtteDtY5oqUNCc5nkCjU6BmWrF
8j8jsgh/gmEMgUixu2vo6timzMJUn+l4xV65xePxcLJ7Z6obRo+Tr1ikB132Vjd14QQqm1F+fLS1
BxYRror2fI0ry/y8Zrci+5LfERAtU9FZU7ZGWhriVQ+vkYjzmUr5Rmdd1jC+RSkoCPcReojJt8VS
wdu3pcgkfzQvoxTP2Syb2Tg0W/MyyxViYKmGJi/tAizbxTFMGIxDGWVW+lN6RpsoGcHpk5qZiDEX
c28bwcDqHxjEXDoO8av0nRsuXJfCaERffP5Qa3XBXGd5OiAvRd5/oeIpcgqq3fxJKOHU0xoZONxb
o5mnkI8vGkCnVPDdbKDJ1edRweGgLay+2w+hPJdqrDXrm9ouEr1EXGY1tx7u0FkUhwszMNNp8Rpr
QVB3os3lnCun92XVht9bpuPeZKjaXG84oEq0duHhTq6rl8WHqi2n3LqY1o9UZip6D+eof8B2zU/l
3JlFu2yCCJrQPaWxyxd9+DeSZ1hHqP6b1MMiHws/VXjubod7PPJOPzJedwDT7doPCPEU/tveNT/z
fMlJPTEdEAnurF6WcKFK2nJm+XOCZCOe8ym5ADxQNNQT8M6U0lL/WCouuF1hq6bwIW8/xsr6+SZO
CUnM7QQRJnI9L/JNk5pEfuOfPi9ouX1CIuoJZH7AEkwj20BrC0Oeht/4NeyahULkaSen5aZpgsUY
+QZAHU3ZjYdwcnolWM8v4mnv3RLiAVIK+1xvlmYhg8XqIMikhAihgbdWS71ZXOOvDalfcAeXkpPr
AnFAPVd/bBvy1xf4pFqmJCDfwE+OkRdr+tPIIOtyktBh6RRKKyjexP3JdWHyM1+dNi9gbrFVX1mL
K9irb+UJiW71KxjbBidCQp03GihCYZNq/5o00jOc9XwQVxFwreympswdtocoa5r/3HPCo407nLAp
ywwKvjDrc0lWKTZIdcq4Xugt/xUR8V1U0zCCRRjV3MusgjNt7itkv4qBoG+RTKg3yWiME4rzgUtf
WHJnxWDiefXTfswQW1exj0ENYk60SKckM4iq8NmtorsbigIyUlPocV2UamVMqqMF+1ANm6tGz7si
fRWZJS2DFL2IUiVXA/LQoeKOa8QPEDcIa8wEAgAKGM8EDNgjnNGwn4ApljkLeXnlU8dHc4Iubl0O
8XituN8V+evvqXSo8Y/ulRRZemR/acOvNjYPCAp7BS5vo2OQpTjnEFSwSm3lHMtfgh7KolbIpZio
bUc3fyVaEpNqQ3nL341VQWMYo+bo8x+VTMvaHYKbR1I9znUa64X90mjE4QdOpmU/d/0RykBLOCGQ
5GbVs79fWiUTcRrT/YYK++EDKBG1Qfu+yjjdl73bI6PDYinkPUzgtCZCXZDWtwenbkR7WyIIS0Lp
MnF50sDIjLNctW2W8jOs2tbLVMz1JJr/zykS0Tdmhz+r0B3Hqd7vZRajjnLz17WeKfdKlGsy2ZcE
hmjpWYpEd4/oXe86A/tgbm0qGBBWddkg8uIMs1p9JL82eKK+K0s3vjS+r4l/TWIWkZxPWENvc5lL
qPijgsSKQZN3ajyAdY71c4a1APr7qhdD6SpWhlPeoS/7stkU4ckgA6jc6hI5uqpkM5rLKNQTw0KB
Lp4sGqmj8/dzDLhT9gRDyuYB/q/mszdqvy43t+6lUephXRdoKPt93rRBG+nUOSofeM+iplVuDiD7
FRwjhnozIqFgaUWmQR34eGeLe5gNkG8U0LdaIY6WUWYV+p8ffScaAvQSBcELJ1zWfor9OTQcFizu
/3IaPXvAfQFmh4l2QDW9rcfH9jCp1lREqSrhkFXXY+ap2sfSdn2xfEgs/2GE8PhBaZya+EWiFklB
keu5xz/tOQMgI/oVrbnDQxFi4Eht8UsIrDbu+T39oEFtwekD6rhVmpUYOJmrOele6+2xZqrjdDPz
xlJAyLg25+k2olUj+/peRlOk9mS70zxw8FwQczW027s15sazI1G/d6CuKcimAD2j7WiuV7xt9qQP
LJyr+apXQ3iCSbXkpp5VNKNsEdLXyJrcbfm8nSOX/4uUZ6tmk4l+OXu5+h+3xIsWi84jWuigOvtb
QBBflBdlxJ6L15KgWoAlhci4ZueJ0h9HeIBVxxcCunoj4M1Pms41O1AQ5pmwhXbMesnNMC69dHM7
cs1sEoXwN9H99fcCUf6j5/0N6lAk+r2MKnhCho9crLUxyNNs26PcRSxkOWhYCnbdZ4fTx3ZuNs74
7WZrDEiZclVP1HzWo6gSv4dY991l2J7l+JrvvhfVss2Gz4vFjukQtBa2OFftCBNNL7ZsaLV6e5dA
wwKOP6jlC6TiidfLSRJ9x0L5Htl+EVsC8OQ2Ido7GqQslgV0Li1qDFaI+FpKIIjhCKKnwSDywzA0
nvKlZLp7lbNbdKX8sM19Vk8O5aJbOaJfkVuMyd6DdcQUUx632uuMf63JVTX1MQ5w5eENgZZpFNcw
m/stqe2ksRMcgrf+BAlaPcb+8jA7YGRybdHxnd5goagjmYopqq47sySOB9AgRFGVyxF64bPgZahM
XY313/+HdFuT7sk/Rg1Y1Agd1Tvg7x6W4xXRlAvfU3TK1sXirKbC6Z37xhkY0R7eFs8jv74bSSgR
TqQ9T+8e06C1SPVZoeU286MbVtpkoueuhvYrvZyxnSGbdQXk472KiHFTdq2kJWaLaWNP8KCNWJvb
Ibggbpf+lgtu8fEwqV25l0nxE1gXd16v7OkaA429v2eo0Q3S/jYJH5/7JwzVAYcbms/jhYMg3dVn
ew/M2MHYeP8sOWebp+uOIr5V+JQwIea8bA3cuzKLgXGMYTSFDV+/cVEZcAGBsiTObwDjjbWuP7/d
2wJfMTlcifJGH+Nn2Idp921YGjKHKhvri93xYH6a7eJZm+KeyjWI+oV2m/2Jbc3rNxMiXFke7YPh
ZOyiD+tXxEj8/e2f36PA6pB2MbEZxi5QmAME0LHkt8+gra9Jhch6zgWORRcSn6SE46ZP1qhx3Bge
xhhQs9RtaBD52hONTEowBi4NcXA8biFDgjdZVe10Z3i5MYDJ7jDD4+Lt5I9GoN8uL8zvkcIE3RZx
IzsS+rUvAFziIzpdGSVYcQECgErQpy6ybB/b1qMdm4kL2EaRKfWWWADLV9UmB+LraEOJUr8pZKHf
d+3hTYvStjUj2wusQZgNDeIHt4rj+fbwe6AV24GovQfIxTJQXh2ijY+N67Bh7/9PAKMAXP9FMlKA
rcLyccrdr7fbdGkU66rG+rJG/fhY85FbjTa/tFRwf4bhlmQkbUARdujrqH1C0RRvdQAyDhy0f/PX
gdsL6QajMS4s/FeEk6eOkR3zcdyM8iDrRDFH1o+oGa0IIj7iKvc/owUprl5yC6qPizBr2HJHHWER
7c4412X8HTnOTkfCwgvFHodDHLspDje88Egwsb6IbJHrRNo2Ft3f+MwwfeyZ7dIqkgplbmRzdHJl
YW0KZW5kb2JqCjQ3IDAgb2JqCjw8Ci9MZW5ndGgxIDE0MDEKL0xlbmd0aDIgNjcyNwovTGVuZ3Ro
MyAwCi9MZW5ndGggNzY4MyAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+PgpzdHJlYW0KeNqN
dgVUVG3bLgISQ5c0jITSM0MK0t2NhNQwzMAAM0MMOYCEIiApLUgKEooI0tIgIC0hoaSEkgZI84/6
fu/7v985a52z9lp7P3c+9/3c1/WszX/V2ExUxRnjBNfEoLGiEDGwHFDNwFQGCAZLiIHB4gB+fnMk
1gP+RwvgvwX39kFi0HL/y67mDYdi8Tp1KBbvZoBBA3V9PYAQCSBEWg4iIwcGA8XBYNn/OGK85YDq
UD+kM9BADKiLQcN9APxqGM9Ab6SLKxa/y3+WQAGYIBAiKysj8jscqIKCeyNhUDTQAIp1haPwO8Kg
HkAzDAwJxwb+K4WAvCsW6ykHAvn7+4tBUT5iGG8XRUERoD8S6wo0hfvAvf3gzsBf7QINoSj478bE
APxAc1ekzx+1GQaB9Yd6w4F4hQcSBkf74AN80c5wbyB+b6CZjj7QyBOO/uOs/8dBBPjX0QAhYpC/
0/0V/SsREv07GAqDYVCeUHQgEu0CRCA94EAjTX0xbABWBAhFO/9yhHr4YPDxUD8o0gPqhHf4XTgU
qKliAoTi+/urOx+YN9IT6yPmg/T41SHoVxr8IWugndUwKBQcjfUB/KpPHekNh+FPPRD0e6zuaIw/
GvdnjUCinRG/WnD29QRZoJFevnAd9b888CrAPzoXOBYoBQaDZWTBQLgXEB4AcwX9Sm4e6An/bYT8
UuPrD8F5YjyBCHwL8BAkAo7/AHA+UD84EOvtCw/B/W/DvyUABAJ0RsKwQCe4CxIN+Cc7Xg1H/JHx
k/dGBgBvg/HAgwDBv56/V3Z4bDlj0B6B/7j/Hi7I0tTISs1c+HfDf5tUVTEBQJyouAxQVFwKDIRA
xMWBMvhFyL+zGEORf1UB/idWB43AAGX/FIs/pf8U7PfX9AX+IoYg8N+5DDF4xMKBAv8A3BYsBYbh
X5D/b5j/Dvm/oftXlv8HwP+7Hk1fD4/fVoFf5v/DCkUhPQL/suPx6ovFY98Ag2cA+r9dLeF/6GoA
d0b6ov7bqoOF4jmggnbx+PsQkT6ayAC4szESC3P9A5U/eotfBPNAouHGGB/krwsFKAoBg//LhmcV
zB1/afjg8fjbBMeT5t9baqBhGOdf7BKXkgZCvb2hgQD8iPGSFBAHwdPQGR7wG8FAkBgag8WHAPHt
hQARGG/Ar3lKSwFBKr9Uv6UbQJCxK/JvURYv+vwjSuJl/BX2W/5XETBfb288BX+DBF/hf+TffIfD
A+AwwMwUBnbzrlv13deHVSrs/qKrwwrj/KuWmYKiuBnvFt9jatI0wRc5EQveBypp/Z20H1Y0BPaV
Z7nPcJuNr0jvN6WYNJ8Enzokm46tNgOmR6+8GXmyqVLTw0nOIWquvBZ85hV8K9ydqPFSmy5/vpfv
DWrjQoZD/26tgJqe8rnBqKlVk7UX0noUp+XvROMt4mzDn07wFzg9nmThIcGKcpIJ0e8F0EzsH4zT
541ccOsmCwNCtuIlinE2i+IJR5NBH5+Zi/u0s/Kx2rBwEu3TD45dw6lupOsyv8eVFs8XTdj6lsRI
fGgnsNMKnVoml5EPRCbfeKnUR3R1zWXp51YbRcMAWkQrunI2/cnamUjFnUpPQqm19VPwfl7fHdod
3BRnOX1dNU/b6RMZtcNXWUzL0jFhurxX2RQU9q+ncu95P5j141ac5db6wZpeeTUKRMVtQqVJbfAq
tAcBQnGxCxUgHwjk8lxFlnXkAfTCpBgUKXuKTsmdU0R07Stq77GzEovsjdhF2BcCgtaZmdneCbGT
f6sVjnZ3LRsndDPy32j54LVFSL7nfk0kZc1BKSxr8Lw/GsbFk4JWOigZnrSMThHMTUmffMDN0M42
zElUQh7v3pW+FpvmuB1v87w+tQv0I9GMnooiXWhIKa2W5A4smPRT6qpljwumNXkn+WyS7W1ltVMH
8oYr3OewtcqEBnl8t79JUlCzIPmIwa/h7cGjMGPKWzurpVemk9o9ke7JDY5uu5N7nxzbs2s7NCos
BDFkO19qLfco3FQNEQ865tobIo37zeOmSZpK3kEd+HY/0z6n6vdVd2aMmpZIMCE7yFBltTFDBPpK
Um7klgZ0LpY0LS2MGR7Jn+fFQabZ3y0XWC25p8kwj+tkNyrys59uhIzfAUxfn1s1z7oQLAtl4tPh
H77wWnxorMNbI2pAnzKycSvAfZi6M6BnS3n+9cRcDoPNgq60a9ju8+VZBVeV2aqF4UESOdo23iSM
05Rf0zwjGN5qe8b9g6Zg+1JnQQ8nOKV/4/I+zPiFahCuh60QQaCwcFjnDIn98lHr0XVcF+R9u7Lz
sHpooJV3a5p6pZFNUqlGv9hI0geFzRQBfvvSFpD4rfYGZsGGVrbHX9719H4SWNjbRu02sSKaWEkv
03OYJoiDWRznY+rN9VE/QJcOPpkwJOg/fMsRQRWkN23AiXrJPVT8sjhn73SaXNj+c8OUn0rNawBG
Y+BcK4C73I9ja9uqXidAhbD/u+WrvCekfceTigGzap3lbZtSY8SRqT92r/oXjNt/TqE8YpzuLp72
SxUg+jEmKSJaFAHv/Pp6vLmITAlkGrOylaGUoF7jBffqSO+kexxfwUFWI1qQX0oWoLG9A+Tb/5AZ
fyWpUEgC83qpMjPCekIYjBM2FDs+qw3rURyJjr6ukB9e36uje8LRBUDYDd5X4/HxREdU5YtHQMhx
EscKGqezbpWbhJL7EzaGb8UBBC/29UKF/MOblM4v/bjyZGOHN/1VfhSxbDnbzR+AV8QqlwUfGQdS
U8hEh3ywr0X5smvu5Ez3ih/HFqQ+qwoIRUl3ksjfstfzIOIeDrqVGPiz8gmPRvENGi3aw4K1nk/d
9d2tqtFuLdTrr2O7zDIdk2ztadguHp0IF9vl8kF7rK4bq7mlzmqRqsCFAbLWfKxOJ+V174dH0zJ3
qWny3m9yaK+5vEec0nQJK5TTBe5ehGNXBwZz7FIkPp9TZFmEjGJOCpTjyL/fptb6aBdQ1CclW/2o
LgTp+RT6g/Qk/zCU520bcJbBuYeczsEudwyehis0T3OInkMMc7A5DO8ll0hfa7cSZdv1Xol5OZx2
qPipgoZb8hqZVo+Sd7FtsHR2KXVWn74g3L+zhCX5Q1emqrD3hGoSbH0uN1/iXocfIDtj8eqrZ3Jg
nC+rPoCrq3BUhYt0zi0E5yVhaa9KUHb98UeBMwYW62KCPlc0eMqy23Qj0WxJicCX/ohgtpvyjHAr
w6aHu6ouLToRmYx+tTL5VmGmpWE2vzdTcDMFV+vzQmEDZRsRHpHW5kvnYa/latjHPU2ifLK5KMCR
keRDFUDcfCzNlDLD8ZLY6djgfvh1eqEvZHXXicpLeqRXlT6tbqLbVPIbcTm5VVncIs1ZkGhctsZB
9JbYlGkAylCStcl9YU2AkcCfIbvRQwJscERbTtSWN7e2ZKtBEMta4w242CB8tUCWte95tj2E3Q78
SM62gNmmUTwCXMI9PYc6ZLyoNzto7ygH3FbPqhBL38GO6dBlsmiMt+xcGqCIsQuPR/Qcr9/6UjmZ
UjHvJnML6gDtb/++zyOK490e32Zee8ouGn7MBDiQW+dwMsqYu/1VkG5H+/lr0gkVK8JZjc3m1O6L
pz8tXPLk3Wu9nhLos3bVqFasTb0Vcns23kTnSj2lE3edku9yq/KsHEpMLArklcFf7ukBVA0DsVPZ
Ij6v+urCuDJaqPXyVvceuabG+wXYoQhTpSi314V4vHcO0+vb4m7a3tiV8g3dWb0txy2spRYm96Na
U5jHkBYwOs52Z/O+TSaKNUMFq2w2Erx1MJKHmhNWqCq/1c2gTWKZbzy6KPEt+IQw3xOVBeZpLm61
cJZZr3vfytp3+5ZV7m6aWAm25YXm29YQ78m6wEbr0PyiVyyI2dqW0Ul+pr7IwyDu/XtaBosmoRMK
CcYDu+ojHgSffujTmXv2Wr/x1F05oGSNdoDNmzyW21kgcEv5vFK6IDd5DByuyM2Pod0YsJWSk7Wy
GAO6xRKaZi+48NrtElp61ebs2jSUJq80hz3qGECPj+erET3e2A3kyY0h26x24xXuXe7ts82awqUM
pd4JTFsvT7MbbaExOixhm/PXgD/0JLt18v0kGPgi+FTHzsb52XoOuLYW07rmfEuXT7kyePcBV0sU
cxyF0JdSttbsQP+9K2e0dJR6eTQjV78VTlKDKzc2JQ6JvPyIM8Q0Kx04rVTSCzRDDh5IWaoG2hPS
hsRZKk6MiwcZpXmtET99eserKrIojp0nF3jv3FunP7T/AzffU0WfNdL57f0iksvgKmvl0qOmvlKp
47IN2nqcTkvCNKEiw2Dg5fWIasyo2quPW5HcKuIK7apHSjtFrzt4TKPpqgAdLg79IqF1Jz+9xDSC
gWjM4EiGufRNpJJVrNOgZOTHHyHYn/Dc9nMiFsKJ2Yt6/RFI6Oa1FH1nm6GQH+JRlt+z6cQ2JZ8m
RIrtNNvzDwkVj3LWXBlQnwnetVGq2b4rczfBErJ36TmlEJW6vPEKZMDN7ihmkSJIt5XhMC3/I8mX
h4qcXxnV2fKUjB0udrGjmIKh73qxaUn6sddh5bH79ZwE+/PkHzgW7uc/QLEwmpEoMnaIPo6b5g1O
TqC8eWd4+bYphGh1tvBBmuMPQK2yMqZuGH3oyrH3Wmyi59bUR03hAX8Jho95GZ8ETa1oeDkbSo4K
ZYt9giS/WsXwVPM6LdP4E+njcmEEUZphhs8JCJbcyK5nv4nLN4mdSMY2HnAcibO/N59Fh+6IbVdE
Au+2DbCnBZc79HAx7LEsJDWcu48IPNe8QAHQKzeEck85rAkkjnjEXAhCP0uYqU4/uzqU8W3IZ/7G
a3Lh4ZWPUVTpacjMhpnP6jKN/VfUT5uPKr/zrr7Yn2vHaJwYGIPHwZ5l6PLBBxq24d0zlSfC05wy
6W8dKJpNfpIFRZp2x1CNsCDVMaoPcxSC8/PRfETiTky3urJbLbl/7NYymu757j2y32q0eyUjzhv1
vO3+3jNAgAzjar2ZxpVmqaqiNKPc6dFdi7dySpjnXpQ1tJa2NOdvmb6ucud5xRKWMDMbLxC8xcrv
M7leWqnt7B1aMhXxeyHzgEbDiSCiZ63JRopRgW1fsSv7KIM0a69nKofxsIiXqdnVjN5UpWZLUbx7
niSSzGhSyYOGx2tegGZM/YtR1P19X/d9IkmHEO653lzeMkqCYkfDtuhjsGEFaQRts4Pa6rMZVfll
hQqXTT0jagjoGNpydfvq/YkUAUfdgefvWWXF7veaFg2UBkJI3UhLvnqgM/RrfjoeI45GroSVR7A8
nwodKvdtjtV96eavPsICkd3r07O3lNG/uCRQ+67NXXvjhnfPHeYtNVDclV4SB7J7FZ/HVq4yULbc
jYK4dLk4AuvfOX29XOebTl53snzLGWPe6FChwRf1NAo4Rq9vo7YZ7vSFepF2ODGJRfApr+85vGjj
4yLphpB8IS2KpCeEneSCKyTmgfwdm1f1EOpnPw7T7GTqMlbQG/fO0tbaqBVopWMONmGhXLyOz4kx
Bo4NOoufHmqpxbLCehZ14k07BRB0l15RQmiUltM+KwqTWuuRsqvZMN7jL0/1YRT0fDfycz5g7+BC
24hZ3fS96139E8KYuPtzdMtlZUoATZEvB8pz9UmPers8RJf5A6gZai0Xfdff6BO2m2fkp0fLQPOH
pACrY6x95zFOCsuYw7GEKw2lsPicGOg5YM3b2Nqrrp6ToRPBzpQ3LWEBL8k1kXZ7SOpLuxNztZYq
uQR7Z9VaX4RX48u5X+TA1FnDDaUwGuVR+c90Fyilst2uu4+WOxvOxtusdzKY22Um7S3A93u/Gji2
zliJzPQfYAiDSh6RU84Z2kWVnn84IaFWM9sr9HSaGhhv67uw7RvBRR/1sIiLQBaKzK/pmu6q+V4j
PwOpx/NWwVuHU4IHTkK4dE/ufl4eF8U8ZskOMhq2Nk9Xs1tDTvSCjt98OQHqsdrXltw3IYH2qXEh
C3BxJDcvLT0poye96/j0/vZNgHKNpdrHgZ/uMeLW2ou0qUlafJu6M937EykZRrWKesLhVBzCmnPf
xSj49T5sF168t5yloZ79PG9pc5kyzRfGYUJbeDJpmsBYkrRu/gSSW/sE+FFx13sj8iA7fTs27qbm
KJfW1NOv189aOeWqe8qKnJm2rljdH0EH67zetxsqLQrwAq2zQMjunzb5IEsM+Zw808PeedbLWzjt
g3n7k8u0NTf3jmqu9364ZM2c+KJvVOTpQEFR95W3EZ3mJddvNPd7pj3xA/qkPQURhMt2K5ConBHL
kk1cn1JzsgGRypacx6Cv8bn3VEAY5n3G4tdTopYCBKe56DwZ66CTV22327lHXVsvNf4YyjDzZiT6
yIShIif3tZkzaCX2U6t2KDwHmUdhRq+IWkrg7l6kL5XVKfR0TPkfiI3G+fR0mi6JpnNGB0LaR6vm
PyLkBwQl/Z46l3Inzbd1aJLEzWRs7d3e3mt1nAEsSkz6tR/G3YzEpW+xs4TyZG0iJ37OwOY3h1i0
3V2WMr/OKYAGltSpME44Ar5rPvZCDglHGzWgB65zth+v7PIxo67ZuBqGk94kranjfaWiJa2qVMfd
0wuiv4DbX2W8VkJ0+kM4xqFsaySDekal5VKHdknHjvkdmm9A2m7NGsdvEU1plZ7AWU8Gaq542Xqs
CLQMNvc0kHT6Yfrks8JZN/8VwCmXGN3JzJDUGsUgdqkQNTS75TGw7mtRCsMyxnaJgnoGVKV8KDgk
RNKHX2rBptcm2DGvu7BXWKPOpFTGCDgSg1iEq4SXoBpMlH0pkD6ixYNdJTWVPadaJvIAq+sQ+KD0
cnHYuKyJ/nrBZQ+osaajeoJdNGlILtOyzc/kasFniTc8I0pu36f2/9wwJCRQwdN8+1qFb6FcvxDR
Y+9HvjuiQ+SxCpmltTzeaqpoH5dJ9oO7ezlDLuOHI+jqsnKNoFl5p+rhCijF98CgmfvL7ML01fh/
nIugkccTcyBNyZSkjZ0ohUbpZ5iXpc+Yvx09maSu5ERMDDmkJFlvdoCttMv4JauEDea0ibD+2yzA
0biOB5NkAiFHHmHfu2dfQ0NVi87sA2DJEmiccCku02nkexq4q/RRJTQqUYcB8smtZMX2Ci09kWsj
ucWYG3mx9qWB7rLEVB39CJOp0/gCV8GNO4bDw6VzV1bK9RQpwLXYEocVKiFHo6dkclKvKWIMtnIf
rYQkBx+u2hg2W/T+TNi8yrtAZfKuhUatKj1Xpw3QGLqGYf9JAQzOJY5d5tODMKB7gwNkc5qitydl
nyyRfsNBjZNqnS4z6zGDEHSoMRIWEXCi0ilC1rMUdSNJVDqI1mK4j8WF8Attpti6lnPhBvWDMG42
Fd11Jn5Jcvm50dBSj/EpBgfxge1Uy1q38mZnA6OuNu5PBLGrZnMoeBl7J09XywLFiEIh6lK5bEos
7Dui3yn43n2lBcrVtDqANacJiXJ7JKFd9v4rVmNx12LQe8vNCEGrr35zbSnWgP5Tom8zwu0pN9F6
OQuyDfrhHQxxlUKMFY5NovEQyjDhl0Qd3zKyd1kq3XpGB+e0v323xNrG/dx5M/pNq103EuHBurXa
uqmS9Q3xA6EIlVJXo+Urk25c9nBJaj1LqxOS3AUVCDFkcqzwGSyyV5Sco5ad+UhrUkr56MFxxPC1
KQ8ZKPTDaWU0lQD7jr9EtO3nLFur3BWVvrbsO5LZjoN2L7bTg1P8olYiZ8UhbYKJFLln9/KcW6SJ
xWQ0m9zV1kCLBJBpXSnn7DUWeI5W18uYY7ZIr4jK9MYw7iUCvwhz9oX2hVzD3pGNYGXbFn6iN6RR
cDWHLcUuBj6r/Rsw1W8N1xE4yuI8dJ4JV7WN4RtvctOaRHReSYhpSxJknlQ1iGrtcxazw2hO3PtH
653rojTjZBpF++5uayObH1Bod56H7O+lnrodgMTjQp+tOD1I3NeovCf7PZq3QzMdZT1Xth4abKju
+TzDnMNc2ob/68moNjmM9rQH61b+LUgiL2fWlgkolEpbAwI3cRTLmnLezn5TKNE1CVqEfZacmSrf
TibQmz99YV9zh2JJwmmXX5VNma/cwLlui++GwKZPygPjt5awEuuLPTnxtDHDa9+86IiHPkhm7ifx
FQBKb1n71XS+0a4jaWQ2A0awanlTCCslVpRJ939SXPbB7V2rryxTprIKoqP8dFLN+ymAXltbWJ0/
zs8m1NIoXukWmUSPBJEhhea98fAc2dFLpPmA2zyUPM213qhn8JzojM3MAdz0xLmEPjebTOK6S87j
3pqM15umxI4mejdectse7u3MpoUhwK77+S+BYfKVFzcYC+5RBUZOvwHIRg/YvjZeONpSj2q0f94L
0Z+HDN61vcdHQFul1qrptPvdw8DkUlC8GHfTwHLBns7cC4KqGw0IP8oK0ZnhRUL+2dxio/BxVfNb
D4mZtcvmrJmF2z11Q8wAC/3VKM9WXVaJqNJ+63tn0EIfyo95ncS1QmYm1vpNqsYOtyO0LYlV6btN
XBBrQMe9Vo5QdrrShK3bAYNzRIkgYsJAzxVAsl8+kqJBMTuINeAt/XTvqu/ogKd9d6tyFq+v/6i8
5IoTrchllFBIuefzznuGybhmxI98jbBoZYRh/qILdYEYp6MzT09tJD1L6TNviuVVumk2H+8mSSnW
ODPRLgvGflpmh4BHhIsXjoOavNQLq21JuGGCRHmL+VKLYh/4HSHuUcxLva6xuRIBd8eqsOOX9ahQ
oiq5w5VIcM9ljwVcQurSkIS06H0Gj4oJJebwvZlIu3hCyslLPa++X4uNhnxvHNIRMzPIsjVKhr/c
ZUZRYFJr2D5tb/B+ezdnmp9657jMU+z2px2Ll7xuobw0SiBrATkiu6nJBSm+4w8xvAM7HVA+6UMY
S3uRj2jm2NZJ18Fxp1JwYIlB7UvRiWG/5nLNhsp3lz+WtD/Tn2N66di1XH35GTswhAPxzVZMv5Bm
Xicn4yXc3qxCdfOT6470sBU1dUTujfrUvIXshLCAm7XyYfd3EKcG4NfthcZ5Jts3lTYvq6k/GG5/
1cetmPidNsD9wZQOl5M0UwINcSRn6h070lF08ebanosvNdVqH+Pb1fJQZ0NDuiAuXY25Z+aeWf7o
PJFOYHF3/EiwysZ0oP/QRhPaVqP5+Z0qb/kSRljwW7qA0dikBGqz2ukPNT/tzCaXTK9aGdIOERKZ
Q+Kx4VjnMwFjznelaBNVkGU+3blkUM91QvF1A3Z/4tZlEfm4HjiQ3bhRzouOpD7ZFnGepZL+s2ZD
nClA3CJT277LBIT1vEnO2XkMAvEsZwtuZR0z8CSkySaNB7v2ym4I1AUSPD3cZgbcTMsqOcMlikYN
LV2tobM0z9z/8Lnoy/igoTrs+sXqIkrkGXqGCYaMQtKCmMF2rmACPrtxwGsfg6unH0yXiB/uXNGN
7Hbh6n0TWmnb2d8TcpLm3ngWY8UoPytGhHKMlaOsbkUmBuwf6ZvnmN4P1QkVRz5Td2eKec40W/fI
+4RzKzxe3ZhK5CYkk22bOEBOtVjL1T2e31VwYIO0SZXAXOhn6hatfaKK6YtihhXzjQ6jAXovQHXx
Q95eYU80l4Gh4nMWR/psZGC18nmn2uTF0UOhDHYRMqWd+FR9mkntF35b4XyW11wnBxWLVjEZkfvF
sPkBuC0M/18jHVUl/JC00escBXCL8SAga7Hv3C1OL1idLUp3wcJ4IwJ2rHlQ7u2uzKmxF5rgwMxw
64lzgBB0XBfbwp6NmGrrl1fLSuktZX8440FIh46aENoulXDiuv31e+8IJmevNHy241J5d/djeALb
x2zGKOKJva2p0Cx5GdYD8NFN5ZkQGOcw6DDg9dvR7NKtsZ1a1frabw+vmN8ZoyR2+7CQO1B4t7GC
yz3qYrLQdrVAI7JwosmBqSm9/EWF4Zos/edrvCGzGMS09K29U7kaKaf1dxJsS8ALy/XFx1LyobFR
ryygP30oqi5tYZcNuZPXqQYt67wSgD3lKaK6tmWGdU/kxwlxnEWj4Aa3V0+axr32h0YkEHzNJYO5
fpkFWbe2o/RFgTsfuM5558Toaudifo715g1mdw+xry3LPJ76drxHtPDWhHXRzFoCtdEjwNzahTzm
fGKwNuWroGoZPPbcT1tDWCcibGb5Z2Iz8/PZGzxpRgcl8kfnmY/jdbw0E5ht/HqrL3BmwuDjmIDe
pN2H5yvyeu+ZO4yexDwP5Ty0Wd+Ak2XcJm3/oTcaGKkaquHOOnRqf8Lc4ExT+yWp3jp7xEdBeBc9
X5zEYawqse84M3p1SV+7UStUvc2ms3fbuqPh/bWrZF+1Ds2//w95L9P3CmVuZHN0cmVhbQplbmRv
YmoKNDkgMCBvYmoKPDwKL0xlbmd0aDEgMTQ0OQovTGVuZ3RoMiA2NDM2Ci9MZW5ndGgzIDAKL0xl
bmd0aCA3NDI3ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42o14B1ST29I2
AtKkV+kB6b333nuvIiWEAIGQAAkdpFeRKh1BkI4ISO9Kld6bKEiTJlIFlPZFj+fee+7/r/V9K2sl
7555ZvbMnufZyQork4Exr6ID3B6sBocheQX5BKQAyrrGloICAAEBYT4BASE8VlYTCBIK/tuOx2oG
9kRA4DCp/0Aoe4KBSJRNBYhEAXXhMICWFxQgKAwQFJMSFJcSEAAICQhI/g2Ee0oBVIDeEAeALh9A
Cw4DI/BYleHufp4QJ2ckap+/HwEcIE6AoKSkOM/vcICiG9gTAgLCALpApDPYDbUjCAgFGMNBEDDS
7x8pOGSckUh3KX5+Hx8fPqAbgg/u6STHyQPwgSCdAUZgBNjTG+wA+NUyQA/oBv7TGh8eK8DEGYL4
y2EMd0T6AD3BAJQBCgGBYQhUiBfMAewJQO0OMNbUAei7g2F/gXX+AvAA/hwOQJBP8F/p/kT/SgSB
/Q4GgkBwN3cgzA8CcwI4QqBggL6aDh/SF8kDAMIcfgGBUAQcFQ/0BkKgQHsU4HfpQICaoiEAiOrw
T38IkCfEHYngQ0Cgv3rk/5UGdcyqMAdluJsbGIZE4P2qTwXiCQahzt2P/89wXWFwH1jA3ytHCMzB
8VcbDl7u/KYwiIcXWFPlDwZlwvu3zQmMBIgKSIqJiQoCwB4AsC/Imf/XBiZ+7uDfzt9mVA9BAe5w
d4Ajqg1wEMQRjPrAC0AAvcEApKcXOCjgPx3/XOEJCgIcICAkwB7sBIHh/Ts7ygx2/GuNmr8nxBdg
JYCinyBA4NfrX0/WKIY5wGFQv3/Df4+YX/vhQ1NLZe4/Lf/LqaQE9wUE8ApJAnglxQQAgoKCYgBx
cVFA0D/zGAAhf+r4j1hNmCMcIPlXuahz+rtk7z8c4PgjEE7AP3PpwVHMBQM4/k30RwKiAiDUm+D/
me6/Q/5/LP+V5X8l+n9XpOYFhf72c/wF+H/8QDcI1O8PAsVcLyRKBbpwlBZg/w01B/8lXV2wA8TL
7b+9mkggSg2KMCcUo3kFRfgERP6yQxBqEF+wgwEECXL+izV/2U1/6Q0KgYEN4AjIrxsGFSUg8F8+
lMhArqhbBIGi5m8XGKWhf+6rCgPBHX6JTUhUDAD09AT64aFmjVqJAgIEUap0APv+JjOAnw8GR6JC
AKgegwCOcE+8X4MVFgbwo6LgPn+NC+X7bZYA8IMgniAo2B3qhfiXVVIIwI8iC4oEKM39KvlvhwCA
3w0C+4P8R30gL09PlFh/EwlV/N/r3zcDGOwLBuEtzsFB0hEubyLaL2oUaX14N0exVlY7Y5Ms+2JE
kWzzLwKcdbCz1ac8lOwcqu4PZxgslEdNzgXScn27GPN99C43dDldIx+Jptq3rnTIWzD44+SdE5jB
AU7jNC6eEbtOcpBsSE9kZ4VpxZ5qPncVKd4tvPX6S9F1J2LroeQewA1QckbMlE6LfKqY17mH/sSS
iWUVOWT5iDiB1NMq08tE03T8Gv0JJOFcqT2e+offulVC1tCnT+9z+/syhI8LtXuqxaqiyKjJ/bWY
8oZTBqgpknO1mhBobEqiZ8rlaUnM1MVuUWzLGHbiy5fThf1tyQPCXg1Oesqh9/QfjzR61cFF52Tz
upeP6Ww3ckx+8BPcb06JdeapyWBRYq12QDsbyjyoFobm92BSMgCw6jqXbnWn4aVl55Y66B8a47Ef
hwvbfJm4f2H3NDtZUMg6TRYqMfD5pZKYAZTBfdjR/MOVTBqAjIaVzEATQ4/JZdVr+AEP3/eXfZBK
C8ZU2Ol28/v2oe7oQzjLN3qKqdAki47svd7d5CZN0bMZEjMuVTFkrfY8vMuWMzEvcTrYKD8P06Ct
U136oYLkwgRzopkwUYEJybyJzhZaph6upVSkYsg0MSGZ67dy+tcfXomNvJANa5ZNkwgReLw0cXhH
xfBrInHt+j3D7h93bZLsPQ/5hXBstPM7HzrbleqxayFFkiCNe0lX20qWU6GH4nPL+Uo3psG2ZGWP
H+U7Pr1M+L512nCQb6FYF/MQGvusayp43fblCH3Hw/4Eusy3E197OtjTtnw1Gn6eYR6S2Q+pSw0w
RxRDKxsTRVuVP/VTxJpa9QN12k+bcTy7RxwbT3/gC1qdS4tshLrbbDfoHbhfVngoqQBIidgXIiWF
16t0Q9gkAzDxY8yCVQi+S5ASACcawoTmYHxozo6NeBtQee0PlIV7VixPmuNI6n6qux+e9dB9Imut
pePXGvAHnWMUh6lJXHobCH/8zG+hL/beTxHeVfvt8d6WtbkHrUqYbgtWjKXISulJVDNJoWXi7Eih
hYHqoc610LqtUMu9qpZyuEZaAJ4gle8UNfngLntXuxd1YBuc4OLsp7keI71Rtuqz45L9rJbEafTT
S7Zn65lQRrVbykfBOiToRs6CrxnU8uyPSqrGg7ijoQTKF9aAkuKlbg6cCDpvx1l4OLfj+P1c3b19
xrqgc6g8HYhrOYb5W5VNsNGrL9YVblEbxDOQ0gjtCv3BqQQmzXvxb6bfXG7d/25EcmOLnDaXzuoa
Ococ8FLgeFCB5BopJZu+Z/oiNyBw/ft3wyCg8KZaGRQjrfNEwhfzFS120RQyRcNcsay7ak26jumD
2fLEDYFy6xB5uBm8LmPJuzXva4p8d90zRulnubWywx/leCL610srOx8xV/5oTMummjTav+ttpJy2
UIyZa6jijEdNOK1gy5M3QDmcS9ThSkr51N4RuqWoeWFgg15Rl+WzmE1W4qA5qOHvygE6Fw73vUxi
iBsM/Wo8ZGqgWecYoD1WPoqgicT/NmpZ3V6wz//V+13iuFVBy+UCQ7MOq36Bwl6WRnhUKqnMsgF7
gtbL4aVg7+RZnn6WemZn01Jd+dO6PfnVVHeuuQhxb8J5KtklA0FE0Lo6UapCkV6KqM2hcFqsyWad
hGNrFIDGz7AkOrxFnzOinuCVgPj0lylWwkjcCHX8op8pRv4vyU5OHHcCoidsSFScP57KbBQGZGWt
KaUN784F/Xzbv5iHEHJkVz7xW16rsR14Pf1awRrEIJFaC6MR92APp/5yRzvmSsRVX5Zq/6ZSYc4U
kFL2EcrzyQCu+mSZ6osr+kwWF6E4jgeG1QcmrK/nP5vGFranH8HbwmzmWZrY4jdPjq1JJKBpiRtN
iBa2iIh3/Elrazac2Uwmm70hQIIT9NVX3xYn6lYpQzuMmQukE7fTrrxs0Ixj8RRFj7PElGRJlgq9
YUtZJus4VVmJtePtzJGT5+Vk1vxYo7zBQQExk/2DCvnT6dxP6LIhhHeuy0HAMXfY4NJ6/fTn2YAK
Ar3yMLQDZ1bEj4qdwzwAWsv8ql4RZdjG5iuzDxtjA+FdwPJs69Nt+VkefPT9Y3tkATQ105lYLPlW
P8a727YUy2hnpE4yyRhgg2Gwz2Tofo77Lon2vMVT7Lz9nXRx3cP07a7+De8FBklXfD+SBMoGjRQ/
d2kalcH5dUCqC/W+YO6E1KFRhPWrTzn2/urK8sysYYHgT8U+TNu16aNiT4eLjQy2Wb40tUjddsxw
DnYkqD5Y2C52YH/Vs9lFy9vSiP9eCI2ftg/AepQQFL3YRRu/8JEK3204svrhFU1voQ6hxPjb08Wn
oOGThnE4+SL6q7gcHY3imVbtj6cnjXmcmd+xPfK455dAln5pfaNtxfk5d/DIbHVH4q/teBXqsAVI
zbCuadlPc8drJ87KkcZlg0VEDvKfai0oMMk4wi3DI3vPXfXMGyzf7qstyGwrBdWl77jWLfVgrxjt
c3yYHbcRWmAlFkBXvLr+6hbRhhY/RrQDDXQLh0+//1ouQm242UpRFVHg95wsMDXxgzcj6QH346Si
fIbeZ6oNoISZN4sYKbr9e/P8VWf0lHvIhUiMKw1wdtSigXL9jrfety1mdbEg/JKvBN+w8/OsGwQL
FKmS3sY/4w7cquHYaDGbPVqJUy97BRUP03akNSf3X/bMt92XvVRnDmCvEBmOstAFlHB03e9Jq406
oPbn/1jXuOg/pdPzMCKwJVblDkO/CC/Rj1UB1X33xjiah8Y/m08UB1ajX+HE1L1fpV5oVtx41vKu
AwntrB3TuC6wQjMJ9UWM6RbSRxrEctW/AIPLE0scSzrRfFw/RN9nuNAQ5BTHKUuEMD+d6DkIYxGg
X7gJra/sMZOHdJGSxvqfbEn09wV2Fcs53Lr4mWQ/De1pMHMb+JKxSu1ROuKkPESdfJJ8sPC2NfuO
pP/dtk2TGOXlYP5e5OPW5L7MqLulcHqu/QzJ+H7P8VnNJwVwl2rTfe0zMl+XglY+XB6s0Qtue8Ga
uTdH+D2aOVAVnQPDhxjCoeeNBrww+Gn7cQe7zIRlxwoWmPerIP8FYXy+eGg8l6rogwyH6KMieEJ6
gLVyhRzLDYYarr8T00QM10t4K9r0XZe4GV69y9D90eLRKvixRGKfto+h06en7rlcgjZkhGF8c3Ex
z8e692rxdcxiH5++v726cCMghwLHCKxZyb/yMZfYJbWV2742bILQBdNsuL8960tgGMLGRqSgi/rx
WYQnYtBNjb7mPPpCV2hSsI9WcuYgqJ1f6FpZORLn8im4shCHFibgT1Wh/pp+ldEjtilxD1hubrjD
6h8xfV/rTcuCRRFNYbcwUtNPoLfzJR/m9IPYPqvUB0X04SoPVGfCUtzdq9W4Ksu+1y5neh946k87
jMHEYfeKSKYwHCXDuappv1pIfe/ckhtoz5biGl3WoXdEH31K0SOZwgZMcZHmpg+gaBOIxuWc+KCY
4tRTo821G2qh3Y2+ZNbI7r/48GREkf4DJy7s29n4vbpZk/ZnJD1ZSUs6YyuEWnsHxzs2KpCya6uS
QymEzPOPzULdTEfky6bRPwNz0NIfYP0QNYvYc5w0jdv1MAgNOr+aCpS9jc9G/Z7pFtUPNOjB2kZk
Sx6VMiQEbWymcuHRczu5K4bw1PC8kw10qRQSJVEeDBPP+T6Ln3KQXt2QsUBHHMy3w69WRks72DIs
UJiONMpdbY1D52Om8wHjO9NQdxEahLwAb8y5uR9/04qG1yvU1K6lh97aHu4qTgULl64ZUux0KTGY
nT5mOZRULWylTHKRxXtiLQ+o3H4e4HO32pZIVPi8WO2b03RXnchzpaztjZyvimWVpKsdHm/GD4eJ
GFfeLk+KNGDHMUQXJU18E3xt4Hh/BvfVCc+ccV++2Ol6+126F55FpVbJn955233Gb2+ovXxKddoV
7HuuznKbTxtRvDvOF1TQMnZv5FlTGdXH8U610axnoJra7OQw2ftV7xyZqO4wcg13VPBh8W/5YPXG
Gkm0cigsLj7J9icANXco9Oixabpl5H16KWfB9N4tDXw0pDAGpSQ0v2WeMlPW2L54LjHjSjWbfFfG
7yJXz4sA+Ax7t7iso4+vpP8AHalXX9wbAxV6Q9zsqqhpHc1JpXtBFNxoXPjl1jJ9EdZAE/YUCysr
cZatjMsmgX4gmf0KpIBGtHb/iq1pMFBmZayvKOO8k2GSZr+G9HZ3sYL7GYiwKqRRpuCxH7vbV4RM
lulOqKQ7k20neqlh+4fvG+wlejnq9QerdzPlCNH7ykbfuljXk8JOhC3ktAr85RdV9kNk9S4i73TY
wwjonwZ4UNlbcsgxL0pwbT/pHBx1LfMTvoCvxV2gfQSEnMRqrHcTJKr4rLVcWBeF4HfQJlHsObwI
UE2hGCrueeITuki9mkXCx0JhtrrlTIPMPfN3ZXF1ZbEW2aumwDwEOTYX/KwmblPGNE9XOB4+uRR+
fpbhzgg1rH6RavglKxbTfrWMgt/95E7DyQs6k1SPTrVJCUzbm1lFkpQu2B6Z4Qz2baGbdkIAm7+0
zGxXHlao2/G6FUR8ZJyyfi/35RE7F+W1h0WIyR3YMVKGdjbe9ZgfR75cyI2aM2943PG0pXo/bXWt
8MLvAcd6tR3rh4AKWuJSpnZDhlx+ATbEim/LqeOWUiX3q1nPJweqKwdWyMkPTvradE8NX7L8ZHkj
S07zOWw+V37XQUEYxElsLVxBk064O0s3i8bKpRukQddDk7VTnCet7PByNfPuoKd7B3WNILnLdb4a
CQ1xVwwoEkGPTNtXZz9fU36U3urOiVnFeYZ1k2vLmE1SyFk7y9HyM6e44Z6ubiteQ10EgUe/N1tj
9dC58sqmsB5ao85DRJ2PiYFXQDIlor11vObCIO8JN+/zqvIC0ycZtWrfTS8MmNu0x6KiuCvbpyw7
weJk8gKVHGlnOBAHWtpsnXppJ1dsyXekHJaavEnxULvX379J281SbH1RnMDRkKp//WLVUoPeXjC1
Ya1NYyCg2Sd8wMjGcjKbmpAH7wWLWtlMuobK4rEZjbz7MbbfZEYLucEyq5psW1j3QL9SNNbZ4lmB
uvaCgXPdY716q2ZMzSHb3ZgQZZxDE0r/5SlH3C1cmen0Z/FXoXfsRFDfyqqCc1rs7dern1jsgoxw
sYjCsD8EPyoLIVnTE3J1LASewL20xIWfBxPv1h97r+52nQZrL5kH5OpOLwvLzyc+Ldc9tv4hZU4t
TU7izZgUSZx512JN+m6EEmMKbmypBVkin8GqprR8PpNJUQyA714TgvIrxpmp9cbr8BTZSYu4m3vX
KaL1b+NCPEN0kXJ+stVRXOuh9soYnY9tCDqQfbSKnrUFUPbGi76StKuTO49OzxfyB+l0QtH3wgsM
UtnEkUgi9DMvdX9pbSeRDyeTTxmkm7w4mXfqpH9+NE5L7/buGD68+q78uE6+Syu8jT9FjVnMlK9G
QG4LC/2U+6O24XSEADXz0HTlpOxe6BFiZ3k/3BeuZb06X8E04nMlpv+JL+hJXghybzhYlOSw0Gxt
uLyO+xVJcdOrqrdX9OJxdaaIsOzXc+X9flubQ72p2Cb58cqiV+qeTmumWL3EoiMsidEZ8WyBNYkN
XXE4j9M+qVdsLEjkZewSFFRj6XpvrnC4UCFLw9dXAARH44Wwo/0c6zHrPkP0EfP7kfoLyTQxboR8
8S8Tqg5xjaw6qSYy4XoyLg++4Nywh231tgtWkS0QvpUOYiQ6jHykG/wcNMchtQBOrJU/i4xaJ3uY
JcKgHeMUjVnet13UXb5FRKYQn2vy6hlglh14xszarx1oZ6gd9Lnw/fqxl0pUbmosYdAJW8h1r4Qk
3/VcaduWPY23Eog7WLWLWx5/ULQkhg0qeWrRYiA3AXM6xdVU25KS70Y+W0jCMjbVHwP1E7oIKbtZ
FX+u1BeXC3U1/+laXFjegT5sUc0e/uYbfQllLhFFt4xp6Zt5vSUJHbiDyxJinlCYOFoOP+sBLc1R
+iSS3SLNgUKSW1W89lBvAwsnyyFeIqDP+jjereU5fzT1vf4j4ry2+QSKYgcab+onluhRWJbpZzeM
PnB3stOdLKYs1V6D5+Jq8vD7470uBkSSa8dVzDnvnFKV4p7Hj/UtGnxLOJVWsjFM1C9PFf7RxaV0
T7gu3AvWhsHStKLZT7h7m2+rjwW+sZvBY8xkebtiFxbEK0lhyN9bvKlbBw7Jk194NzC4O1XTcIeB
+KvzBoZ1XIn9YRfu9U7bbqXtrpDM5MVoej83JvFXJF13RY3VeG5tDLVWwU25vkIRq26yZtjyDgGy
pGHBGys8avYRTQu//fpkz7GumRrFkIDo7Ri3q+amkLmknGN6UHkTgHjiorfxVBgZ3Vh521rgUhFV
0hPIXFr/5fRb0hxe/sCgFcW0TpxzPnqCJSlFHecCXFTclWLlJvUBazC2RsojNJ5XvmOBp4hqhO9+
sUaejJo2yfpG9MLd0X3n0nstD8Um7keiufEsTzob85o/JE0kxBjTus/eVHM+JFu28dFHb/N5HRBa
IRXLcqEvumKwEeHTYzsRqyoQx6S9LBw7Mcxsszn5w8njRlKg1lG1n0PanVn2ZsgRNM+X46qO2J9V
Ht4LXY/D1f9xtGdHOoRT6p6SGdC8UqYpRqWcrn2tjMHvU/PcjRy78uOQ8QzLa8NLhkllndPCk+Rm
St9MH9zPnSX0kWrNyzl32QgeM0dsqKbKjUYFNkrbYRL14Xtfsl4wfqg2sdoHzWFZH4SB0eOY1TNM
aVyerlRiRfjFHSK9fWelvBwMkym9HvrZkr8xcWBOrXhpz731Tj/KegFa7fuZXczneF3M4o0ycZeK
NoM+NvW7aMccDicFH2vHErOs4W6r3eDHe/GCaj92GGyIFIW9X+EOrOnneE9V0zUK3fHGx/P/uWnS
vPxzWGDxE7n9g7OcO1Y5/n7jKbMsmGDBV0uus6IZDkaKX+04+iIVApJk7/qZy3UdxmzI/Uyu3vJT
+NJ322K6+hPn918KPRrSA6CA9EMZPyV78XIoE5tvYuvhXYXy6JmDNBxehwLMpQ6vjd1HaN2j6F+Y
M4PP2b2+DQVSMMktCV8K1D+l6ml/aTP7+tl9ztks3oAm/cSWGv25n0LERmXd9US+77f3cBhjDPtw
Tn2UnCaS19qvja/b8nKY5yugOfaHZ/7SLbWZmn6zj1Tn774b3o119yxz1cVvUsBS6AazvX0hnJYJ
7RmKRRqff+llpQ/d59zmdzcauFhefFvBfF+owQsvUxWcInrB3btYgyh9eMxOg0Ne21L6PfPzln2M
4Rua08MaYyhpvkvfGSCJmsYf25sajXg5ZO0xKx+Ztv8jPfKCuIitq/VzStVdbJ51sJnQFImsLhWc
jJOcN1QLNGD2uUhqisZ0UWiyWW5QMGb+fSozUZeheeuLcP3r75PJIlz6/petfKDmExfQs0pLtquV
jwsL42SJX3dl98RJn1nez6o/u3h/uMujKAob0lxRi0vjz5W/GonLWiWwBiL46vXYAxKBgffej0pg
Xh1VPrbwMdYlVIMzNhysjTA6yT3+yHL52GjKaedIqnvl4OcNkONqm2hGW7M5UheCZ9AQO5GHdoPl
k81Kc+tgeHW9T/Op81KvdLPEynB9uxzXMNtfHm2NzvMj1PTEre4RxWxRSMFgEwerLcn4pRXptUKd
9Ke0vIoCuhpp3H5LWtLyZp5ORnmM+R3EljZBe8WBeuyRKO7dGJo5xcdMpmQXZcy6BDMcKftAj5o1
24FdS707n7fGVqev6/Gsk+ifZFFwjDDwd7Lq9k4vNGaqEvuT5JbyMp1hJN2BL0WBO+GrqyDxuuz4
23Kpzitfp5xNUT7OJ/irx54/0WXj/M2X0ERwyXpu8S+XyAXj1BtEsitiSDzuxlMvf70pJtnWkv4W
tdZU/R3oTM9n6pQ5kbM7Nm/Bsh7C4ShZZVjJpdktHLBnWlVL3FbyeTGMzE7OuEqZt4Ac+sZs5mn0
pdKdQd2u3J9pOBmRrzMhyx4mP24PyK2+qDo0TFibOizP3Lyu0n2D/h0hdPJGp/07o84nm+V457T3
cAAmraPbAye1gIr9ALKpgCddd20mNuJMVqiUVOtMsQyfY+KCKEJJHyUEKpRCu9oOTcqeRGX2MvQA
EelJHhFS4kgxftfnY+/fyh2PyKXtVNOIG4vcWlMZBIRRvzSGZMV/JxhJo51pyuLyTU3SfhTUWBSI
zrbwQ/fyZVhll+XWZ4ZGmO7WG5kFlh9pdfRrniK4zeYSpViteKrJN/7COPrwiRUa00HewADPeyNX
s3ZnIBu+jURkL918Ia9faRaV8MJqvdqNHR5Za6LWqJkw5hHGXDhzl9GIgoQELFBZIP3eOs3Ac1qL
90b0jNqLLziJSol2YW+D5VhK3bYL2gPx/DTLeEfVJKT7KGSwHoYOomV4fTAVzVLyOaqQgmfZdxJg
OlXKZspkp+XtlvvtqezM2AiuuPWwkm+CHR/4+BU+eleFXSvnW6pOVzAgoAHDe1n0RCgj9mTnepX0
o+WABjabiU+/4Iv3SLbZTCxDSVJ3vRRbmyEhhEM7Jd51T7Us/6kKx26jkVZJ2GgDJr9jaQu5avAl
51Ceain+lo0va5yQ61ORQShQppgmi5utdVj/qiPuTurBHQQVRP4V6Vu0Q5UH8om9mPfXzIawDo/G
sv8Hf7pd2wplbmRzdHJlYW0KZW5kb2JqCjUxIDAgb2JqCjw8Ci9MZW5ndGgxIDEzNzEKL0xlbmd0
aDIgNTkyNgovTGVuZ3RoMyAwCi9MZW5ndGggNjg3MyAgICAgIAovRmlsdGVyIC9GbGF0ZURlY29k
ZQo+PgpzdHJlYW0KeNqNdgdQ09/WLQLSqzQRkACC1JAAoaPSe+9FISQBIiQBEjoISq/Si3QQUKlS
pFelF+kKSlPpoEgXKV8s997vf9+beW8yk/zO2mvvs9c5a/8mvFwGxiKKcIw9Qg2DxomAgSBZgLKu
saUkAAQSB4JAYhS8vCZInAviL0zBa4ZwxyIxaNn/RVB2R0BxeEwFisPzdDFogJaHCwAsDgBLyoKl
ZEEggBgIJPMvIsZdFqAC9UTCAbpAgBYGjcBS8CpjXH3ckY5OOPw2/3oE8MMEAGAZGSnh3+kARRTC
HQmDogG6UJwTAoXfEQZ1ARhjYEgEzucfJfjlnXA4V1lRUS8vLyAUhQVi3B1vCQgDvJA4J4ARAotw
90TAAb8EA/SgKMQfZUAKXoCJExL7BzfGOOC8oO4IAB5wQcIQaCw+wwMNR7gD8JsDjDV1APquCPQf
ss4fgjDg79kAwEDwv8v9zf5VCIn+nQyFwTAoVyjaB4l2BDggXRAAfTUdIM4bJwyAouG/iFAXLAaf
D/WEIl2g9njC786hADVFQwAUL/CvPCzMHemKwwKxSJdfEkV/lcGfsioaroxBoRBoHJbiV38qSHcE
DH/sPqJ/btYZjfFC+/1dOCDRcIdfIuAerqKmaKSbB0JT5S8FD1H8B3NE4AAQkIykpIQUAOEGQHjD
nER/lTfxcUX8DoJ/wXgFAX6uGFeAA14EIgDpgMD/UPhhoZ4IAM7dAxHg978D/1xRgMEAOBKGA9gj
HJFoiv9Ux8MIhz9r/OW7I70B1iC898AA0K/Pv5/u4u0Fx6BdfP5D/32/olraxqamqkJ/FP87pqSE
8Qb4iUgARGQkpPF2FZMBSElLAgL+WcUAivzbBeg/qZpoBwxA5k+z+FP6V8Oef++f/+9sCAD+WUsP
gzctAsD/H4/bgCAgGP4L/P/t9N8p/zeD/6ry//L4fzek5uHi8jvM/zv+f4ShKKSLz18C3rMeOLz/
dTH4KUD/N9Uc8WdmdRFwpAfqv6OaOCh+DhTRjngvi4AlgCCJPzgSq4b0RsANkDiY0x/H/MFNf02a
CxKNMMBgkb9eLfgsEOi/YvjxgjnjXx9YvC1/hxD46fnnvqpoGAb+a8zEIJIAqLs71IcChHeTGAQC
8APj5xGO8P5tZIAoEI3B4VMAeI0BAAeMO8Wva8XbQtTVHYmXj4cp/lEa5uHujp+w3w7A7/uv9e9x
RiC8ETCKmWkMTC7kfnVIy3GVIpuXyPIwycJSW2S8ZXcEBMf3Ls/PSYf0ifq4m5IdvPzqYJrB++dh
Y9P+bIJfj0e8bTqzHs6nauTiCFS7PyvtiOT3/9jrdERch2OuOb6VSov8TP8twZCD1s6a2Ppmkvn0
aahUl/hqxcrTszbsqpXMJgAFKD6k40plw8Uq5rRtEkZbct1Ywg1Y2tDFXXG3Tvcw0TR9e0YYjYw7
UmqJYf3h89k6LmNgbq4vq6c7TXy3QPt1pWR5GAMro68WV85gYi8rU0KWVj2WgE8Jcqj8PCWem7UI
FcY3T4SqngSzs9+Ie8MKQgFK2O8PKiIjLiW6a+QpXN+6X6HQIp8whJp+tu+bsr4+mu2ywBj5ejYj
1Ap2VuTld5dB33qfcBnArNxx25osfYzFEsmsVsnz/di3PND1IJUgc6yb7mKTrhH6gi8eN3MWT4/G
Ah/JPxiuG9Qn8fVo0wuv7iQh185adbJdGjs0u9i/2TTrRuKwzJfp9UzQG12zgbN6UzF9JbNh59VT
QkmeBwypLUaleSuoY/Wl5A52YD5Ulzolur7Jv9dmnoiffN0MPDflBHxwuWRPJWZE41D3PHRKijTr
thVE4XmKjbZuup51WXUxVvLZwpqFLG3EaOszSGjesOaSvNKrZvu0m9SqzOH67U3pbS2CnC1iylty
ZGu3ef3d24N9rpdsZ2gKcnwiBo8Zx8WWpzh302Tiqh9vRht7UB08FyKUyR+lXEyR1EQ9sqbJF3Em
AT4yJ42mS9qVHfk0WPmctZrmaxaXwz7BlZQtGd0+FmFsOHz/ansp1JT9xrwGn87Wkm3HtPzViH6o
2M+gbgY5lm2BA2nhSV5ZyMuvRXpfqDbR1mbT9PVKkXFfiFpvB0swiXPWOqsIl7G1r3B0uWzsuqOG
ujaGd3dXWmR+pvOWnyUY5eUOWhEVyC/a6/sGSlRUmQlG9rSNXC9T5/BtV+e2y1oCHWS2cE94bCW7
PqATeHjzCgWF4gKC/Xvvjq7qpYxwcQZCIlj8bLy26oIinbsaY9tkNQlN+SvV0/RF8OZe8wI/lXT5
CV0f47nM4uBYS1XJ9E0wBXvRx+tgUR+l5Y9BfrZO8NDTuy/LTVwvRfmk9yXap5waLQnyANWTNOi+
0EeAFJ9sEhCSM1jbOjHwX2IZeG10Gunqx8C1Q2WqxayyZkm2fDHKr+Hey8bWMqF9EmDHCLEol83o
Ebof0copLln+/DJD43eFXuexkE5zZo+abQkLQqdvq25jLjgNd7Klxpo1Dm23+xrU/j/tUcU/csNO
UahbAfk7vdmUcknpYV0Ns/JYw0/Nr6rhKtm5IVyN52M8VORVmVGKrWV8+TLBh3pVMxthXJCstEQb
JQ1BjbBV4Jz4CX1UFy8VwcWLaMdXxfpbwVPZ8tr2hjOPzTKbv3NuGB5464IePflS9y2PbiZHh7bS
pY9u/6B/ayRojouySdSybbVKft1dIE4jH65YXEspJz5duFkaZUZ9/jpVkwMV9jROiSvg2xFRiELi
yUpntKetxJNqFHZpRaq0bGn98igh64RuiL24LaCiCMs8xvIhkoruei3SBnxhAGdzN+1tvufRBZ51
3/nWKLweESW/8f71o0xKJN11H4uf5rh7qZ8MVOOhj7gLsRyZGkQxMOpV2EvnFtzgT85VA5mt74Op
PXBgbFn9jCbuRu9dSu3jW+tLUavH0vYuHy6zr+9XfIyS1K3cYuXTzjfFAmMpBeKeG0jOqD4mmUpz
K3jcD8EgiFk1WkvCDrux78CDvmzvICchD6HaoPoZ3Kn0my2O6yq1MKJHYyr8WWTprkHCIVuPp4NY
3ox0fKxlCc8XlzyyeSX/YMEv5qyfQhhSBSHZKbwV6D8YzN7dn6zO+FHnInGpQlJlw/vU+UFgQuVU
LO2XMIFEnneC3cbJhGCVb/dfP/jZPDlLbZ3pfYeWraqTQqww5arQUC6/vXllLHf0DM8T8o0Cxs8u
t3KpwRJE/e+e+qGU+cZfKa5A4pDu5LIJkQJ+X0++rRX+dGxE2jIL6YYdGJLdVexX5xpRZN+naLnW
NZQ9/k2lejD3o7REwFXuWzsvlB6i5NfgxzvnAUDLsO0Sl0IgOHpSWxkceqy4Mb97KbiBPWtZokgQ
oWYRlHxr2iEuSELAWZoyZeI05Ype3A07qZ+v0tLv0SYXMeg4XOS/O5FNjk6ze+FScoXyzSNDuMJV
rt6WHFtXt4/pUd7nhIeN9VnkMzZs0Ws0tewy9H7PuPXHIX4yvQvSZccMwgVew6p8rCaXijEr3Zqa
95JIlviZ2Y7WNZmoPm/Gk+/qOdkJvF+8c27vH0gddEk90daDrGn3wD9X0ZD700OvdBJMgw4pWKS9
/mqWFl/sp/YbI9/YkYxGl14H5q+uauhMek42HIYf9nab3WKzaTtYDwcT24CIy6lF5cd9NLb8JRdK
7vhlZJ+9iZFrZNm+9MlPjZpPgJ4JBBoQUYHcuNdd3ZExJTghqLV7o8FWOnu3iOfoujgHeSOyJJSu
u5GZYynRJEUVNkVZLlwfZn+pqtXMJ7XA1XlUMFMIKlVm0Fq9dUmhicdslOAq2UG4IhMv0/C8TW4n
A3u8GNv84M8Z9j15UNFdX4xQy+bR6XR9awPocHzNo/9C1vq8vOAye0Ndguai7pcTPSWiisqXSQyv
X6XOqRt2Dax/zQ+pbo6wnIaa10W4+WtPv5I6XFcjK+M6A907D/3CIdcxzMcTUHYxNEKmWWLV/5Rx
l64zliWXerD9alhiF0z7vaFqa+leNxl7eXMQscxC4UB4/QIDLQ9f7JEXlc3eoG8ARkZ/V/rngBUH
Vu1WjtrrWPmv/h9zOiIvGc9afJTYPJ9MOzXvZ7/lfzz43mM0/bPZ7uIGqbQ5pqhtSto81blmMAbe
EiMH4Sux836XuI9hheZLWaFoKnOy9oUMMimS15NIFWhmnEhoKBSeaUODI6ytmtz6k91I1cJh1xV5
Nd7nEb2Cw6okmx8KbwxcI+qtCv3AEhq1430031O/URhrcp/HpSBvtNbELrwkNuEpZ91uKT/jsPnd
XSx8n5HSVlvvJ9uc57Cq1JU6cvsqPq7CoIikL1CyVQWwh84l3xX6RO52oYP0QjEfos4iuxwFXqD3
48axY5cTXcee4DpW9dmAiRmxOzdy9m+HPJJ2WN/dzlwkY6zZcw9ybGacil3oSg2OtKzlirJ7EXhE
Io9KafIgIAhnzv9RdO8Jscx8NTGIp73wPuWbWf0bHYPoHNd89XqZ3Rd1VNyBz8r8k8V/lgaQ8Bdp
EFlnh90nmquwLwC6z/xYqbtGwDlr3kNkpaUO4YCl7Dh4yNW78ojmNnYxTi8/c5SjvWYfFuYksJkB
cNimarRjTDHM8C0oifk5hNbAvJF/vkaM+VIxZ1FkHno0Q/T9wrCjRn7OkZPJavGdXtteuG49cQMX
5xSXiuSj0jXesx6fa3P3C9bd7nbH4Cq1cxmg3wlnDRi4m+mZ1yyDl5QjTPifhxzI0T0uiGoL8HrS
dTKQ4vVu2CJiyEYoGVFF8uJGXY2KsnlZYOVlbuUqk/3PfTs4eYmDm+3vSJMHXOAEtwe/U7wviWJZ
UxHjahDCrNJSyd+KbZr8nn8avz0ZcsWXHvdARSdt1miCmp5WKozSjZuoW2KVQMw1zuy+KYgS6k91
tHSjYI6HQHixElqS1+OhRq93ulVOtA7x7S5oov9gVBSklivGwSM2NKNC0Xb5/j1vFZXxU83jtyg9
v5N1eZKocp5ee+sRUtA55SBv1OG65lRs9YU++0Jyr1zB46t9VlOcs2lfjoRR8/UupBO7wCkuptJI
vggaAuqEZZZpq/2EjFoRY7EytQrv8qGXLQ5V9diwxIsEdCMA8IyQuCW/96TQuKo2Kad8UXS/9BxI
ECg526qfCySYyDMljBmlcQtUeOrfDV+fU+dxji8DnrXb2djUjIUFZQ4ReG4sNPbWTVq6nR4FgNw2
QbY+114WNx+hjnCvL4wjRb7VxS0Y3nvegfleVJVf1J9NZozopTLzI2UC0I55CvkivaSAtVYVsolC
MYzOzdlZfZDmwMSFuz4yidksD5Zvm4Pl1Gf8M5OPRGOITpwtzG0YxqFm6LoaCVmpxRFDym2MOoPf
qBC6uTzvCTwFJTVnPHOuwXkZSv3zxnDso1e6gkXmmdiVzpyyt8RPdZQw7gRxhwqkBE0O+zrJTxaj
bGxFOu6XLy+2947w51l335W72RVMeSUVuP6s78de7drrxdgLbRF+WB4qFFdUrD7dYbeg8NVTAabz
s0nnbQT2bUbG+EfU1fgW7A8aoFGbnN+VqOlUJqbFZlbW1/KmUxQyqUFnZ18ForXUGgIYjNJTnCez
IluBTrMuGoUPmyWG9/TcODAMjI2+Wh8GELb2st+7/NRm0NnPqCstVcC+QdXWPmVyI7XEl+yThxMn
csvPkluijNhIprkkKcMjo4hF6kpP6/aXywLuh51aQyK5PiVRtTwt/Jon/noj2ztmjT7a8qzsON9J
0xUS04vB1QlxzJWJ9HXEgPbHB7woc/xTprkNqLKNgp6Um5sE1AS/0Eob8nLjY33SI5zrqpEG5wXz
6VZuTEmP62TvzHWs+QWWDHwS6WJtuzGeeu5/yp8+ZxAurZWBKE01KO6g/WAvFP4TPj8QYXGB/ah8
VZsl4vknNR9r0nJNyZvMxxvJq96tTCSjAW+/9Q553hM/cw0laze0OLc0UEfnzm0SF+i0Dw59qctD
URynvEgxoaDf1ZwcdBKgKeAtv/fJZciW4spCakGA9roRI6JP8ltXSumLs8zx8y++uykR5JJHZq4v
XTfqbi5E7fG8WR6FjM2H1djcFJx7dyIl1nJPi1Qi98buZaDFfOzca5cZ8lHNS/kPOGkvUNPOJRkK
pPM43ttXCSHPpunuzVIr179zEcXaCN14Z8zsnTPXMU0qyJxEB1xZ+ugQl5qCJei1OjJxEZk5yOvL
W+EI/iEIgpt+3fQJf5FJW71RGf3NP+bzNV8+VHx3e65d6ilNe5B2yzJlf37c6CijZsWnlNZxZU/+
Eb9UgeW7j4S3+RO7ctfikafobNkBXmMqjvzyB9PR9iCViixvw8dFyJu+RbSvs9e46M4PikCb6bpW
Bcu1lrCuqq96kHd7ZZRybGFl7IOdq6cmS7M+LN7RitwiNN7EKsIlfhWeE2+VX3RamKQyCfn2r/D+
mP0+Xah3RdIumTSDN/EHTYsu0HnSRZpbwbJzok3jsCyq+3YdNS9pKHmU7x1y20Pj3i8OeqDvh3aF
H8lk5iqmv0g2OsoEGKtmyVxttApEFXh+8SmlPRo++J5t9Q5SCX3IlB+INp37YXQ9sqxIjt9w+emu
BjYMYhrLLN07SC240WmXLxuyx1comezcbRVkVf5huKmyoCtlK7j4xX1qMCkC1dc9Tzbw/J5PSW2U
dJ2G82P0vRSNzyxNUxb6hVqXH74UeX85bV7p2o43+4kab42uPaA80iaNqIPANHnvGltLsf1t/n4Y
UqedGlr2XeJg9w5AldeV3N1JvxO0YkL7Nic+ghTj6yPx0PjEqO9Jj97xGXDB5MzZvAvHagRLnuCd
E5Sgf1rH1842HS0RcwJk/9qSoVZpopaP4G/9pu1hOh3ZyHxHmgBy8ENKJnhddiN6Vb5czzS10icw
RC8zeXXa1EeJYoDp9Jhng1wm7d4HF87rJG61zczhXDOFMoPufsNSrb1rcbaaTx6dA1hFE37AS6XI
3huPDnYFgs2qwEa8qEnCJBFos1srmRt/kHF6RQIhhwfwcwQh/WOTKxkPq12LC7cuUMzmh0SJPflC
nbpyhphHTQlmScF31z3m+Mzb5d8vvhGxOk+0nQqdHFpF+CFHJRa1JhYEr0+8yZL80iJiA+Y8/Bzy
0HHtqQkjoey7JhWyNLmCPhu63JMOhjfMtI5vIzEN+YXvZyegVmGPiLZGVbHBdyRxDrs02X52sp8I
cOMtYqWdPCJ7xXBKtoC4pxHhHTG9ehqlTCOAhvuHb0K71huqWkkJpR0zPNMx59sCnFQNSapugp0P
X/aojE8QiZPOM/BmN/JQbd8COvkOrry+PnSL2CUziwbbmQq2uuDeA/F9MNINpDqdmgFqMyTtZc7v
REjdtHyvl56fQDMU6MMAYvmYnEMoSF8BSAoS2hBNnA0vprGYQ77R05h+1gDN/0EuloA6yFEDtFQV
mtQzZr95TPXZgSaaXrihUfOZjdWwyn0dMhpZ5HS8/60E3+/hh2sUK1scQWrVuPjk1QpOx5NEpm2j
fvvl+/AXPrTzo4eoWNufj7ma125GZgUxTgoCTE6usAYDHvgIBBz2tYBXlTnT3jXzpK7L7jDeFPOs
ixJhyXQg+UZS/fyFq/Pt5DfxI0zT7+lHfE+vMr5dCd1a7KktEMz0UYbartBH3Pqwkdy1ZcZ9MKp/
KEQyqY9h9LwGeOIp7u31+I0X5UA0wkVFK1XbCXKu3mYewE5TF6csHGBz/HRjma/A4H3cW1patX1H
XwOt8KrDx2XfYxfoP5xLeZgNvMihKw6Km9Vh8RvlUYRk4kYymx5YavDGvVTSGdd9eQVLRkxTqcc1
hB3QLruGfUoE+KyTZAwgp7CSzAm1vfleu/UO6V5ZouzCpmJGO+XHZt2GqxCH9IQQghG6HOFl7qDq
qhZxWfxfEgoZrXwIRmqYJ5g9yMR86l3QSJbikmJLbnUxQiHgK6OTmpkWcw11Ykl2N0ikZYBsjSS6
4EeTycFNKZCXT6tqr3SbRf9QpIx/ISN9SpyC5xUyWXuUldN1NM1LC8N0UWuR22KAT0ncOyVf9V86
Hy63IexqKFliieGNG4svS0veC665A29dYw1C1+G0wmse3sqNOdUuZEtXfnw0R/K+KFKhL3dkGsfl
9Xw4NEf8pt7P3WrHtUyEML9Kpmv+7on+10Lce+sxA4FBmsGu/qMTOV9z+ue120zHtYd34I0lJr5K
23ub/Sbu81rbRmYYRzn68qoXkwIrh17oC+fzxPUkHV4FiWxUL2vJ1ARBxBMaa7GhBq7NKYsgVt/s
ovjPYwPum8aLOnnCuNhA5g+fdz3KqM+2SVHh54felJQul1NhotcIqsbpbDbgq4UfOuRvGIl2bpmS
1422flrNXKO08936fNvNo+PZ22LygBrWwbka1zL2drWBgeonnLdPG6iW3FgzBRSimOdkP9ouGXuB
9PlrREPb3Ay6soymznvOstqOYrLrJLpDanCFsQGH0cZPXY07NuPVWHde1O71tS0ztYzNleyYVm9f
SJW1qNuxtMBzjV6wi6kuruQambyy7rzrT5AiOMaweC/pwbAAM8PSZP1dsZlm3q+yI7Xh1meR/T8e
p/hdXtCRdE3bimm2frBoXyCm7JEzlsWTC3Oq/HKWPPowYpyreEczCAKr7fJNMlTlFghziF9Tj6OA
k3S5OKKnzVlhb83nlkMWcaU+3HQ9RGu6usHaK6nfCIp2nlvd+MHWj12gkWXjFL+77pPlHyoqyL1w
cD2SKsEnzNcv3uguO24oe6xdo/SoLqiH7+t3/r1DN87ap9g0R9l95E54Y0RT31kQWEc9ycCJ4I65
+ZOoW84U5p2mG1X13+3YBLZcvT8Zl9o3S7OGN0y+l/CBlMUThxfclE65DX6yxiLcsT3hJyisKHJK
6CAzQrCdO6lX7eN8j/ideVn+/IPCuiQ5xwcG+lh9J/TuzdgV5mxF8RFwYOhUj/jlo4rc52MTtaFO
+fmIBP7edN6eVQ1Pwo2X253bYnd1Z2TmqsLickJsUpoY9RXu9PRpMDGyOT54FtKZ71bCP8zfJjvS
BYBQCT27nqfiVsxxPGt+B1Vaa/FZIsMCPcvI9vzCewDVCDX37LahzDVUnBYOO7qqyfHM77neg8kM
7RuWVy8HZ2p49UyJd7lDxF5tqJ1cT69Jy7cmxXkK3f7pWJkgJDJRZX/8RQWxZnC3kUopkNHVRiLY
nkOzoNmphRsm9YSL9B4l8+5AMA1stZj24JwPTgJL7KUKH8/jmKxW+x9EOUO+CmVuZHN0cmVhbQpl
bmRvYmoKNTIgMCBvYmoKPDwKL0xlbmd0aDEgMTM3MQovTGVuZ3RoMiA1OTA0Ci9MZW5ndGgzIDAK
L0xlbmd0aCA2ODQ4ICAgICAgCi9GaWx0ZXIgL0ZsYXRlRGVjb2RlCj4+CnN0cmVhbQp42o10BVSU
7/Yu3SiNpIMCEsIwtEhIdyMdDsMAQ8zAMHQ3UhLSJVIGDRLS3SAhSHc3gggK/Mc45/x/59617l2z
1jff++xn73fv932ej41FS5dH2gphCVVAwFE8IF4+MYCsuq6RCICPT4CXj4+fiI1ND4ZygP6Fidj0
oUgXGAIu9r8IskgoGIXG5MAoNE8dAQeouDoAQAIAkLAYSESMjw/Az8f36F9EBFIMIAd2g1kB1HkB
Kgg41IWITRbh5ImE2dii0Nv86xXAAeEEgB49Enn4Ox0g7QhFwiBgOEAdjLKFOqJ3hIAdALoICAyK
8vxHCQ5xWxTKSQwIdHd35wU7uvAikDaSnA8B7jCULUAH6gJFukGtAL8GBmiAHaF/JuMlYgPo2cJc
/uC6CGuUOxgJBaABBxgECndBZ7jCraBIAHpzgK6yGkDTCQr/Q1b7Q3gI+Hs2ABAv6N/l/mb/KgSD
/04GQyAIRycw3BMGtwFYwxygAE0FNV6UB+ohAAy3+kUEO7gg0PlgNzDMAWyJJvzuHAxQkNYGgNED
/h3PBYKEOaFceF1gDr9GBP4qgz5lebiVLMLREQpHuRD96k8OhoRC0MfuCfxzs/ZwhDvc++/CGga3
sv41hJWrE/ApHObsClWW+0tBQ0T/wWygKIAQ3yNhYUFRANQZAPWA2AJ/ldfzdIL+DoJ+wegJfL2d
EE4Aa/QQUF+YNRT9R+TtAnaDAlBIV6iv9/8O/HNFBAIBrGAQFMASagODE/2nOhqGWv9Zoy8fCfMA
mPChtQcC8P36/fvNDC0vKwTcwfM/9N/3C9QylFFUUuP+M/G/YzIyCA+ANw9ICMDzSAgEAPGjHyKi
/ADff5bRAsP+tsH3n1xluDUC8OhPt+hj+lfHbn8FwPHXHJyAf9bSQKBVCwVw/EfkpnxCfBD0A/T/
LfXfKf83hf+q8v8S+X83pODq4PA7zPE7/n+EwY4wB8+/BLRoXVFoA6gj0DaA/zfVAPrHtOpQK5ir
439HlVFgtBGk4TZoMfOABHn5BP/gMBcFmAfUSguGgtj+kcwf/OkvqznA4FAthAvs17cFncXH918x
tL8g9ujvhwtal79DULR9/rmvPByCsPrlM34hYQAYiQR7EvGh5cQvJATwBqENaQX1+K1kAJAXjkCh
UwDoGX0B1ggk0a9r5QMAHWFwV5dfKNE/KkNckUi0w34LAL3tv9a/7QyFekAhRNOTCMjjELvKkMbv
5dIM7jzrQ3iLy83P44y6IoRQ7FOvvG3V8NMVx5xlnlmV3BlI0fryNmx00oeB6+D7sIdpW2bgQrJS
DgpDvmtV5ognt+/ia5sNlNkKQW8zIpLyfJX8MF6b6fYzExyTB4kGkz9DRdoFNks38q+aXTaNH+0C
HAGF38hYkhlQMdLZzbtYUUYsrMuofiNTslgKpEmqq57y05ErrChY7LlMYzTdheeqSWxa//x8b2Z3
V4rAyWvVjjLhkjBKOiovFZbsgYQeOur4TJVaFwx2GaFvsm+T4u7RFTiGsS9gO1ZOgBgZWWM76fgc
AUWMdgPSsAjMBKTmbZWR6obG0UF+9l5xlp9enniv2CSGbjUi9ZI0wVjgXhFYCQdk27OoP755o/n4
uWL1+uJUkttwwC7YiDUrUrfn6M7AfjuHbM6CYZTzkdItDc3LyKXNtrQ4pwYJ2LDZXe1SIblR4xnd
WbVKEh9t4XlodP5n268bprJ0Lygo7sjeczg23JhKVzze3cQMnJTxAJC/xGfcNcjALXuAIb9psqxu
camkfhIx0CH8lhtCuWw545S9aGxZI/+JvMU/C/dwwBwxJ7hWvT3c/4okWrFcd4lvzvTaHDj39dOJ
AgP9a7VMPwQQP+wxPwPko2SECO/Gvoxls040VoX3wvq7AHnMSmJdqk7e6ke0OP4U/fPAGHz3uhOG
CMVRcfr7NdvZQJPxNMEvDUV2Xk1ezkujzA9plPGSCmoGgmbyaLx2yjyWrwkxLVN5fmgovaCgTaTp
P6QAF0mRy3IVRJHN+2P8nHwDw6qeTHp4/WCn3DX1JONGqohjN8+TgjK+rmpx/ALI6rQXmuXSNYcc
ibirK3uBYK+jHu8eKpcxHmDujsWLXFJpXGXQLzi7zanUV/X9zBmcxJAq1Yrd/niK8G5sXKFdHVbl
6xIW0edp5O21Dzi8kJJ8KD/68CdYMiJjV9nVJY2S5f0o3PdHpQOGbhKTDVmDKK5UCEFtJzP5cc/K
Ml518/Vr24eLJaFpI57x3Wy3LV9f1Lsvf/9kCQng9yeSRh0L5a2vOTve1xRTscObT8gK74ScGX8a
9q+ZOWUVVGrUcssj4DnSN+Gg2wKL9CwIWUOT1SZiZisa+C08bDYhYeZv1D77LFgQishA9poCQbmL
nQ8cL2LvTAR1fSYsZTIgyq1CAAIsVbVa3s5a9zNLa87FP5P2YMDh9xofcCBpmxN+NRfi4asxV9GT
vTszmAxxM9k0DzsO5T25h3VxDcFxg9SxLtxPu8mYPHycDiZnFbhsOivyiaEQTPFYOltsIrkZwHhH
VBRC/pajMCb1JfgJZF9ncBYu7GT7Jd2YztrL60QqUrWfgZhqmu6SNcLookYFAYx0PukfJGt5eRiG
E70xRHBywPsVZH3ccv4xhDQrQYVKhnzc/YFg3YdAqSsyX7kTYBq7P0lIr7GEfkpyUuHK0LtVkVp5
f3Got4/JRxC04xLQuxKgOaq9slD4wfRdRBheYl5qlZKQYOeM4BY3JSDGu3xyOsUJpgYo8ONlSjvN
/e5QnK5DrAopLD9K0xTkyCHt2X760RE3rv4z1y0RAmdVYOe7mMfERzjZ5BzxPFRhogJimMLi4sCQ
zrR2o7vZF1dNYpW0OFW7cvAzBZTYfdz+sK5H9VnsrTn0MqNife4kRHp59ZEGsfv03bhvL/DlhUTU
luxW0i3HXpn7rMKkrEe32V6ylIDG174vGj04ksunuRtPJzWxcqtG6INcP6L7Uxj+jxsXDgcB7Uj/
NXyPWkNrEfjMkmLQyN0hJ6ohZAgINKtPVik6HemYtdjKu2DiK36+KnJFOtMQI4fHpbYg4qef75KT
0yAJqHhV3hcTXeYbsNCfSfvti9zt5337Od82cVHnDDdrgT3vdmcJQrc7Wwb3WCYNHwnLPxDfZk7a
aXckYOc8iFVpJhvSdacRZBEYrt7bL14e+sj4fim7ahhncKQqNCxFv35HJXnd+WFw7NMS446QeZMM
lc9N2qp0hNHZXGopomUroVXjeXRP+GLKk3upf1zPzNrg+/SWK1Q801tetz9MonyRzJ+aNZbRMBXT
HX5Ucj/y7iBzVt+2h2XXs2CjwCeE7/uy4Qjv7Ilxmu418LnbD0NYXEWoPWtWL0U5DB9XAv+B7Mvl
Hzha8vsut7PYCSTvb6SrDxoKl8gPspDHK50KEWyzy0C4v/MyuoAOOT4m0FdE6Dwi0TJ+o7uoHD0q
HUGM06BEfcgZ7u35cHStMv3O3K3tmkeppQ0JjBnjb96Obb0KSt06whiPDdCbp6EsccnBeWSLcGbM
StQH31/5AaaCkU31sMZdJ9FisxFBnVvvczFNsvBfzwu+x9BNW79XTOmhq35SqDhgxZB3GtTGHTHV
eOtlnRU9bwwfMkNd/47MjK2216dmrMciZxv7GIbDdHvYHywVn/cEQAURlx5nR66sZgs40Q9KoJNP
Q4RI3N7nwEiewkP50yNMO6jLWySEjwyDB2mX4xT22fxnrO5uZVQVK7CMPFk8pMf39X0T6SxPc3uI
IanY0zI/DGywxAK79HJpVv3WLQMs49SivW5g7A2gyeSA9qi+HikbvEodYko2RPH46rNuCdSqeebP
2BR+HjfMu8BuGqcWnJ8cQSpumETNHK5+9TM47p8goccUsBLvICsNl8uD0aJMLcLKC278gluAb3Mi
4wcLYw9u5RSm+/ODOXLwD/X5Zxo1CIQk5U7VvlvRDrima4iE4oj5sfW88BG8liDQAX5eNFzgZMXc
Uv6cssJDjKA1TrD3y2KTJ40X+zEkTUbxBKtwbYSNhX0vZ7QsOTRJwFo0Z9Lhctsq+Ke6TgbP9kO+
twoXcCwm6kyMB0bfFN1Hd10POvAsuGJuLNeYqwxxS91LJKSNnCWvTB/L5E13DZJVx5FyjWi5bIqd
7xC2Jdc2v/e0j9t8ZfisCKc7JdKQqbEyn9M7xdnS1eoCkXGDbyNMHTBGs9wVymk0LCn8iWXXkHTN
zEe/3/EbPq5lsSfIlF/idtxW8ft2p+D4T/Tvn5xO3tmQQYRJyDfeddK/KzTHJlthkN7S8enWMZne
W3hE9VcuZxJ+wQY19gTf/DQh/UHAFSsWqJsvY10RF5OZ+tR813gi+eFadZFnnOt5Y8LO028FE7IK
cgXr4bcaIA6YPhEaXoTZapN7zFF2zDxVHZPuLZKbms/uPeiKuOd0IZFDHEO5ulbv6cXyajwXk0Sy
g3ELYf/NXg8qPWTKc3D4lCKWFs+/j/qOK7mscKplUmX98t1Dh8HWO+BzTNxwp490ZaQtSynETCyV
ZpFnqRXAn7B6+x3n9qcpN/xrBSO5+3Utnc51vRQRZVGKb4LSFJuFyHDFpevPdqeU32s4LvgZVK4G
vTYNvoPUuccknVt6vWFGSlNs+hM+38APJWdhP+ndoojYrXnO9skUJtdwFfA16njgW4b3OJJ1I+bk
dslsVKZQYITUwOQWvYpRClw6H1uK4AW3kCc7fnX0Mo6SMOgjKx6j1+uoS6CXmH09z7c7FaQ0wpLW
BgDlNX5doexQ4SbGm2xS+8aA+DW5uyfCX16nS9Ag5UFSqL72nSm+Mws1vOe3BbMwuci4r5m0w6W1
D3b4GPixfWaTYxsY3tWYKdMYLgfNvt/8HEWykMlF+LLLAkdn8XmeERtWtYZQ30q48N64xV5zoXUS
dnE40oTOSVcJNLfLPTw4SqjvUvY+oDO/9bxki0Yb2OUJdQqeiOAeBxjPxQnF8BnXLgWdiiy52OMV
UmN6gyqFJiNmEkgs4p0wuqtzvE4I62htd44Z33RqkJRkJ1Iuj5J22E/Ips4zF6vcMFZsE5Nsqdkw
LmkMaV6p75jyVzVm0RGu2DAPcIsn+HZKrdr5FBI8XsnU9LrL2Fpt/tK2q3ulNSqtIH5I4EsDq3Cq
aKSCn42UBbXot0vv0zNX2y8ebGOC8Ss+AS34zDLzG+GneMvSsDa7unE2bVGTrsvIm5ohEZKaSJtd
Pe8xoWgnvxf2KEWqWfeJCMoTfs33AoQndAVb1ncSDOk+fFA/W1z8gRcvr5mPWRxAHvumijh8IVpr
FjfxfVCUEqbl4wdCTJ+Pzso+jlPuT5AItUurX9/vWPyEVfZJF1PXtn05Na8yoRjgFtXgzCMHH2E0
znu8XjVTE7D6feSd+mcc5oDGV4YWV2SVyqOVBZpO6QVCrbngN6RhMrts3V8evfmRZ7ZjzLJA/WXm
McDtyv9VNjlOeaBqlCCdliO+5RjWJxq22cIubzxOJkKX6pQV53qllyVn2FG5j4PtXrqN3unzPjjf
W/Se3eIJt+dW0iQ7xC1fvDIYKryJPNEcFFPkpzn0jJYsdS7mwJ1fOHpEL4iHO8bEYd+MK/P1MtK8
FqEz9m1/YdAE6FfBKOvPP09SebKFvc9mT6heE7zkHVvjFPwF4w5jSPFn/02hJ1D32mhGqQumxvOM
aU2fusrHa4HNya09YUueCrN7O6Cjd6RHGsAphhPbQkO7oF0HW/dEej31mpXadnNqpqy0fvOeryeO
UCylV62pWFuY4NAvTxye3hthMf7Sa98RIslDI8GA/0q5j1Jlg0dHmkvrSS2La8vzo5p9zv7Zjkk3
HDNoYt6HqytWrx8WoaktcaWPDX4WIIszr8OrxL9TD8iTEHaJqUm40hzIEW4oL57xNSdVBP7clr3b
nbnmNdPTsvV+UmTkxD96poPPbVWH3uRZfTVz9M/zmS7OGO4GMZ/LF2/hjIHJKIJKBpdYzxFsUJGf
K5GPbnbuc6NeAtiz7WkvpEKHt52ivLmBUtQ7kUCOfBvfOPWx6QkafZ7KMq7vF1bOVMMVJjuRHeYj
pBFTEWRrjRjAaU9a2s540tkHegkVsHJxozdwoPkMw7OhGka5kLe73L3th8oe4ZdfVhMTnjdHc2ge
LrJix0qHGaoI6m0aZby7x87LGMxk5P3NGRlm11Q2KjtzH8neQr9yqyj0oxpiV7mYoVFOPfMUSKfu
bspTR4S5cAZT8IpTbVsyB4Mhp9/BJmbOKDXN4OiYx1QgRoKdtFIJMV4ypnN29UM4FmqiJeT5FDz4
jUhkTHPUT97z24XMnBg0XhYZoXd+tEm+aaoS++mZoEYO24Eqf6CfV7jxcNI+S3pYA1PXeHO8eQ15
lU51MsBgY1C1SqmaIM58TXbc9Ppm52lniSaSaWudJ5Ln++FrFFE2pJvtRaABto6UiJY2RXDjuuBV
2gcd3ChC9QvhoPymaeYJL4zQO8FVE+Y4HFJtKx806FRglO5hhz/LYseAH3Q3zhbXrHGzCE6myN6U
Eu2R+23Enz3IofJZqk3SELpHeehH0gvgp6NO+HCiFBhGzTV9kbsau04AJPED3lh2S7QDC+ntQJJ+
VHhyNqMcA8/vDAyaFzyDHrm5kDDTsKKOJeTHsl6fzZ8/hobMTvB2m/7k6ceoUBw6JrFvZeHCFnIj
2/qaTUD1cbqFUiM/X6vLuFLV/qe5O/Y3CC5wflnmoJbl8mKaegGSicgkmkq3l30krN5e8qk6tO0I
FFDqRcfb3n4Z9exM9jLnul3d3lr7ER1ZvaWvGrtkfhCub/RhoEewOWZjVaBlOTi27wv2aBrfnr6m
klhUrXm0nUpuWyRJi4j9qHt8cph+0C6VnMTkRdFdUszzduWBdz5dwyGdZLV9UyEynT4Xx+Eff3Rh
FrwkSyTtOC0sS4HuqMxt1nPTZu3SicQEOcQZ56qPfS2YqRKRFmzTS9TKdCrPzFYffvtUp7U8uRM/
wHovAn+WuyEpvjkatJ7U0sPV4D78PmjA89aQ+5T1fZyiyuEwzmUSXz14amk2q5rhao+WP2azUSJ2
tujdYD5Hs088kTBsTlpouC5/NKIoo97I4XWGq4nPLT4cO9PmOfGShB9ZEeImlbgYaXtPSN1PODtF
OwKPEJktc+QBhDMtHJz7Spw2Eltt3ovfRz/k1JtJyfvp+dcUc5xdH08bRlA8qI58pnfZsrLcn/Im
714HYa/0EzqwaIAuq+7mMs/q0/zGDjai3ecwlrXWyzytYH3PFGMqKvJtXJdJygRXcp3l1kjfq8OL
aQ5KJlTcR7qdQqnkCJjF1hyYrqrMJzKkhPizbQ1t6Kz3TH3pmcqtr5U8X6r2niV6VOjL/Sxmx0p7
5nRIzMj9FfD1VmfFCr2dJo+GUPEFLqZ+hYJi82pWU1LL3nVRUiSXv+rsj868cNMe+zXe8v0z0mUm
h3zDKl3Iqg/y+oWJGdlQ6sEPbfbw4iiWGfDrXsNSVEnmWdOxCTJdlVEnsN5CsGa6S2eM2DsvkeXu
JzYBinkaXtpg30WiKR6Zfu6QwY6FtJvVlz+6YTNXgcz+HX6fg+vF1UU+BEyH9Tq8bN+fGJEVcFnD
cBEb9M32beoUGOT0hOO90HsnKthAiV285ifQpSdM9qao6LbDt8zxW/yImnqWHO4yom4L52h28o5a
TTKbjKGuttFtrfBqwmtGBgKSHGYZ/eLMtkdLdgk0ty4TA2Ai9G/3hZhFA6gykDJrnUnGs+Ke1dUN
2+FJFJJJ17ZDAP8D1ZNNroffgLZVVVp2G83ea8/og4lb5GRP3S0obWlP64DlTgJQJaBypvS7Pk7Y
Ubv9/R91T4nNsJ+VsCPuHHEM2gs0SeKBJxwao3FTmfe+j0o8D1LFaSJaBB4IPKmR/uRThaXIvaAn
E7WdpbNxNBVMKqA5eSy9KlPn0D7qveHicI9y+Bh0LgJYHbbvH6O3iIeujfJQ3MRph2kUK2hnBHym
w8wgenmQfBTDBWvulNiuxQqeUxDd46rMpVpik1AvYXDECms1KRrKNcMSqVUKCgZuj/fivWeEviwB
JtVC4hPlV5FYpoIoeckpamX+BtH5Kj1S6y+TX8PViM9lE++P2qYTuct8Jbjd9d4qDTnyxed7tXcW
Rq/eulCuNmKev3m/eTdLSqto0xEa8Skke5aXZ2CkeN3MobK7pe+kRDT3RjAdg5rqWnxYBWuXR7Fo
tPOJF0HLcePwQPHRmXkAApL9ZCUIEURufFJdXT0Hv+eJ3G7bshmGTi/ntRdbjrP2cRZR8GcXF2g3
ic5mMevQR60ffu2Vs5I1HMsgqlbo2lHyGnpLlX+wRDCUt4of7n9mHVHBpqWiTV48G8yY+IKlx3gW
8/kFKT0ffZfXnLQF/QkgmdD9K8btPnoiA3Lp+7lWE5sVpmvmkvkQsY7GeN3TCYJiHSyO7etjnP3t
6AMK1liU77E4M5ES7iUgonAYz7PWSNKaN/mohyzh+K1Oz0poMdXHu3ZvCX3fUXOTxWmVHtvJ8+YF
FFYVTXw3rKN7VTxgI6qqSGVxwFfFEjiJOPUqNAj+ySVo5tHOtNf5bhOzrYpwd1rA8bhJ+PU5ALll
l1s/lLrp6vZO0kHNwL2AUUvDOWtdcSHGlf+U8PrlwY3T4/k4r04S5SrbgnyJPeVWlSpiJqL5rzo/
M1szNwxxablrGGgwskrZYsgVOid1QKdexUR4BGNyvWJYtCs2lVEn3uVGJ74CQTcUkpcHwofzmyTE
3aopR9q2Zw4kRV+6bhILmbNMiho6w+ieb+XwmptDfKkZeV2K3hcwLZlPZipK3kidV1wfDBioDK6e
GUJPiUeTx3CivblOduHdHtRjXgdv3FqTaSuGN14L9nrOvkdpA5dObjyeHbTYC77YxJrO7nNzVrVY
yWq9EOdZKpm1r/MO2gjIexzAs9uJXfjWeiZtOr9bZDn0O5We3Dn15/VFUiSl6Kupj15ITOmkQNJX
b3A7phzyCqjZfBbdIfErFXiu9FI21w9u89T6BGGJN7RqKG5UKfUo203lvfN5hpRneOVF0CZdTr2m
9Dk+ZZB9gVt1m3/iRZ2acG6fMkrD+E6RUax35LqqSpOsJRnQJZUTQk0FNDNruvohqZgH7CXNX3uq
IH6TIWtGPWpZV7iWPcHNdV5NMNITQDI0MBVk37xX2tz9M1+4XCC2HuCgw2ZcFzM0aZLNa/M/ijJJ
5AplbmRzdHJlYW0KZW5kb2JqCjU0IDAgb2JqCjw8Ci9MZW5ndGgxIDE1NjYKL0xlbmd0aDIgOTQ4
MQovTGVuZ3RoMyAwCi9MZW5ndGggMTA1MTIgICAgIAovRmlsdGVyIC9GbGF0ZURlY29kZQo+Pgpz
dHJlYW0KeNqNtAVUm90SLoy7OxRJcQ/uluJaXFo8BAgSJMGhUFxKKV5KcYcWbZHi7lakuFO0uBW9
fHLO+c75/7XuXVnrzX5m5pk9s/czm+Wpth4PyMbFGqLkAkPw8PPySQDkNfVV+fkAfHyCvHx8Ajgs
LPpQhBPkX3YcFkOIOxzqApP4R4S8O8QK8WhTsEI8Bmq6wABqHk4AfkEAv4gEv6gEHx9AgI9P/F+B
Lu4SAAUrT6gNQJMXoOYCg8BxWORdXH3coXb2iMd9/rUEsIM5APzi4qLcf9IBIGeIOxRsBQNoWiHs
Ic6PO4KtnAB6LmAoBOHzXynYpewRCFcJINDLy4vXyhnO6+JuJ8PBDfCCIuwBuhA4xN0TYgP4o2WA
lpUz5O/WeHFYAPr2UPhfDj0XW4SXlTsE8GhwgoIhMPgjxQNmA3EHPO4O0FPVADx3hcD+Ctb4K4Ab
8PfhAPh5+f+d7m/2H4mgsD/JVmCwi7OrFcwHCrMD2EKdIIDnShq8CG8EN8AKZvNHoJUT3OWRb+Vp
BXWysn4M+LN0K4ASSAdg9djh3/3Bwe5QVwScFw51+qNH4B9pHo9ZEWYj7+LsDIEh4Dh/1KcAdYeA
H8/dB/j35TrCXLxgfv9CtlCYje0fbdh4uAINYFA3D4iqwt8xjyac/9jsIAiAMB8fn5iAGADiBoB4
g+2Bf2yg7+MK+dPJ/4f5sYcAP1cXV4DtYxuQAKgt5PEPxw9u5QkBINw9IAF+/3T8N8Lh5wfYQMEI
gDXEDgrD+U/2RzPE9i/8eP/uUG/AS75H+fED+P74/Xtl9qgwGxeYk89/wv+8YqAaSE9LEcT1d8v/
dj575uIN8OMRFAbwCAjzAfj5BYQAoo+LgP/Oo20F/buOf3BVYbYuAPG/yn08p3+V7Pm3Btj/HhAO
wH/n0nJ5VC4EwP4foZvyCfOBHz/8/89y/5Py/6fyP7L8X4X+vxUpeTg5/eln/yvg/+O3coY6+fwd
8ahcD8TjFGi6PM4C7H9DjSB/ja4mxAbq4fy/XlWE1eM0gGB2j4rm4Rfi5RP6yw6FK0G9ITbaUATY
/i/V/GU3+GPenKAwiLYLHPrHC/PI4uP7H9/jkIEdH18R+KM0/3RBHmfov/dVhIFdbP4YNgFhEYCV
u7uVD87jXT8iYYAf/+NU2kC8/xQzAMgLc0E8UgCPPQYAbF3ccf64WBFhABD0h+lPJCoGAGr9G4nx
AYDa/0FCAKD+v5G4KABo9R8kDgCC/434HwULhPwDPjLt/wEfqY7/gI9c5//ARwUDYf+Aj1z3f0AR
ABDxD/jI9foT/tehgD3c3R9fiD/V+3hi/8J/PkcQiDcEjDM77QKWDHWoDm26qgQ98eLZHBEQwu85
iT7DMtpQpPbc0gmWl/p9KpgXMwNqm/wZ83uFZE+g+KHO0ZiCz9F82T8tRoJi9ksTuq31Orf/GIn0
9R5cw0Pgp3pr6wtLQZiNHcVhvW6f15ncBAclt9vx5tTHHWUp1vryy8/2h5hstfu8eCgjsTGYVGJi
gngooc2gj83lz6pAE5MtqszwE7mRX4l0Sju/07oHBYTXeuZKuZGhq2lPdnfxXdXPPu7KvN/uEKFR
txwDTLBsdChS3bxjDz5rCn3Nbg0f0pNlksxQ3Rg7UTnZiFXVtatX6V1B7U5FlV95x3i0gg3K8rZm
WzOX5GxVKP4WPZusX+ArKMxW2lFWpkwqrYSN2zWDrTS+H1rNm0Ws7q9R1T+eYK4PT86YSCvgHkwn
rdXWO/X7wT8Oxh6MCXF/C+V+1ky3HqgbgpQZi+nww8liMXgUUWWQ39RJqILL8pQw+viGfo8p2DCf
1l9k9GBIWRyaQ546dANsYgM29JEkAPeQqg6oezttrrNdpvlPe7qMBmMslCO7pnE6ojKrrPA8NRhd
rVD1rlN4iouocu22aiMCECeNq3J+1KzJJWMmE+cZllGqOCH+87lw4nGo7cRdwzrtYITZQ2iNFEok
le9t1T70IT3FKePIKPUhjM6gasg2Phq3LGA0xy3WHMwdJvcp2S+yZlCk49Xhsmy0ml5rdWlXjec5
c1LNGbSGkfm4+vkbnNwPDFmGszrxsntIi9tYAkgnZZ8ERUo98pGLB0csA0iqPV7lVTchrdF/Xs9L
ET9v3eysYhrWlC7GtOW1JjmZ6CtbpwlsxFemn8Cr2yvZ33idM8mozpD3hGTuOqs0DWClmmaqVcPZ
sn2kkz3/ixOVTLJLWYgGg4iMhJrvBTvzyM6UsScNp9EbeOyeNtr9LKwc29743kCSpoC324pB1Lj3
uzCK3ytMzTTfLZUe3Fb9VcLkc4fCZNkgyq4butUPGOY4Uxr2n8sLb1QRFAFEdJBxzHUy1pYtbpB2
7RWh7vnRvpaPFCBIXHN1fWxrW96WKFrHmxEs9SZxbvmVlv3naBa+Q8u5CIXPmytcEW/dDo7nYHiS
8cDjC+Ov2cUfNZG+IeF5vbCphAoedhjGpP1k5GJmF54i8OdN0r08eGs5o/yyjNx7dIZWUxzOWtsr
SuXGgsUp/aP2jCXxLosQyzchT01QCcSyJ/fOMfvtd4aV0+82wCCUMrNMu9Ou18ECgxe9hVKmN1Es
y4mwUSP2EDJhD1WKZdbvSzZ5qtj5tkaVTYgys9TfZugtu4ICDOco1ic7JZnohgQoX8f1XgU9Py8p
/4q/zZpkebdjv2IMVwYx1qyzbBHG9wynMo7bHzRKPXx9aygqSlJuz5SdzPQkDVN/dDQ6B4GHpiGP
TG+XMflNV/dOMHc+QBMcYNlxkhKff/c6TbmkwhRoPw5zN5v2rhFnQs6AUjoExI91M//O2ujCxe9t
vbApGTNcNSuvLckzKZY54ix6kyA0ko4yaG8pYfdEx+5D/pYVJkJrJaVPnLGBqQBZgfOYube06SPJ
mo+PaQ6gWPw5Ur4ikZ8P47sMHZDXGfB4vBCaTcM9nfrtQx5SrYiIsMRbWb0gIncmgbpzJOQwbOK3
XKdmv1q6BzwpPoVXv1nem+lqvzeUNsMzIKAUezU0srEaSwaYP7kSimBEDxLekqQ7pWhtkHSYWVcL
uee6mmlwyXgas1VaxOGTwGsuRYo1vpv1MGlup+VkKHG8G6qCu3DNnk92zTDuwMz77nc8qfw8Zb/M
9ysb9w3iNpMc3w7BpGEFGnNGBvabxVKfhBLZ0or5a3gZUjhcIZQKUS5EL0yLqU57dTV56wYuyC0y
LHhftxew1NulPT+oynavq2i/8K0X9YaetjEIGfbU9SAvANrY+sbJTYUtP0EmGkXg+pwgpRWreg70
fNQpMVSgDFCRz5R4jYH3svHJ4Ad4G4NLLh420rcbBcTJzY7Vhjpd0EhgqkTALFGzOFBz1sz2VyOG
8ayT7Ukez7XSiP8MoNMEgAviP6EK1+lJJqwECtyLAfTIdz5sNpbsAs1TJ2wMn+FhvbTqJ85X862p
V0nii/PI2CAPqhrTq5t3eQM0scRks+MQJhso3ZEwrQy2J8wySXJXbn6a3OADEK+acu+0RwZnbH+x
+mrnW1q+7EI9+p5ZLtJMDDf3U5buVq3imfbZl2Mj+y9dSDPDzb5mSkTkqjM5rb7zNds/NUb8GeUV
K70Cnv382N1csFPOVy7I6nrqGSakI+HRq/7eq/mMCyY/+cqz9WIa4YKUWRMskWpVw43vE8xgiklt
QiV20KwBgG9Wtx+NjlZQvKK0GWwjDWmK73AtlIYNyGIosB/jxW9Iy7QF7ow7RwUhz/rmaAnfRmKT
0OTjEXw/5R5kFgAy/kIiJDu1DSzKEslhYOHQZRmwXhSbdSjJDhHBTGBwPiRP/+qGNaiowyPPgD8M
T1Gvm3xQeP355Kvpp2BpXUHKfvJrG5mnJvMjb/fEGzUjdaoxRpKBhlM2NavlyFiLHVz3z7YWUMgr
fhtRs4aoHh8GL9CqnrtmgM6LSO05G0oAndxG6JWd28RPTi4sCPMriQ0ci40EppVZN2MRjoVc9oZS
zCUW+nZFGnsztR53aGdgX3HZQ/MvEz63VeySn3IEqhZ+7Z4N8cxcvRL9TNltRnT+enjX/XMRq07y
D76XLenjIE2zTNsp45+ytd5m9DHQhqu0n0cwA5nrw9e5CywD9Xfs4236svHUIWnDvGT4VvwaaLxf
vGqHoFbhYUsqn8vudy6Z5GN5LO2kaSgxy20XOXD0E6sVlcMDbyIoIemqHopkIS6ySk/scCeE09rh
4qXxcV8IngadjSmbuHcGM0/n/AQcZp1qbLR1X5E1iyXaS+w50EGxPypsgmkjxBxpea8OnH5VdBD6
O/kTE8fjldQAy64WPkiypbELaJtJYa/CLieqJq9wnEy75G9nglYk8pJX33xk8+eZgAf7hJFPCyND
1gcVipIYIMQ3ilGjw9WCc6kEBYW5tMlXXXy5wskwhm8lQZ6fZeI4n9oA8DGQb11ruQRQhl6tHI62
uvdzSKpJNnwYj1xRE/i6+93HjJf/N9Y6Ehsk9w0b39YWkmnxLolmM0KCNu61XdtyT8+2Epdz8K57
kuA0RXUJJxkCYaz+xEMXVYMhG32aaC94sLig+9mkEPIm2tshbWeijC77KIjTxn3ry8/W4gP1S7+1
dEvcQxuxWPjUaVYOe3nXm97uW4t16eemyftFc2uTe/wSx0VjYcRp6UnnJxnumvlGfGYerG5ArDrv
21CcNbth+3u1Gr5FgdTKVpKmBPVSZhUYsC6gVpAyjiM8H1MZuWxF9ZycCD7BlTFOFQo/oXrSPcm6
yogw82wxEDzpd8tp6HgHcVx5kWBNL/A78KjBWcUhij/A7a6xzEJbgMJ/0Upsv6D/VeTgkGO19uqF
kMvvQou9rQiifdo1aelNYvJY7NO0As/0yfiI01ii07L+5flhsSsD4ZcNFhMEu7jt4xw7ZxAMaeeB
1euBYImHu3r+yVgi6zoUfIVC8TvKgEElywjU6dbPfJfgrboNWK7uQkib6kWk6xcfqJ7skK+wGySx
Rs/G7eQBcgaNfsDXyVAzFHm7mp8m44K4FWYVOD7ey6VoqnthNMp836qpI6E92jTUZnrQNuJVeNEI
PPWUc6iXHnlYsdBIlgsvuCz16tT6Xo8RGqC0YGMsidUQPxB94BXT+/NwhOWblWYxuDM7cA+Ye0B7
bG1NH6jORZ6eLuC2VGZrS6wT/DaUqN0SHY0RB7ZNpkH4wwUYHc7mFbuFi/XJnNOINDfJqrq44GNk
lEvt8U30Kh1BchKh04EANccXVgjpNXkI18yXsMsWu/u89Ejcu4fQ3Zan1XZf8IPYbDtl3Wq8GqMQ
Pz6q576YukFcnrOij6Nkc0sxId1xrJm85/Z9/7vbN2asNRYd82dhBQv/0+R8pN7s2sqacCNGV4/R
W0CS85mVrjt/8fK6++1tJamcfAQ7rnlGHT6idvVB15yvMDxmWB1Bcug31Upo96zmhnFquejyUMH2
6unKsrR/TEKJzg8c1HWJ2+NE9lbsl9Gdr4qViWPhnvQOgWkDiY5l2rh2tOvAI6oaaYxpwtOLdxZm
Bkj02bXtyb67DIl4+ofczIYl4+LEDsMH8y+Wv57FPRDRPQSSCq+1LNcVIUKnBnXchsp/zaZ9V3YE
j1ysHvjlZ2D7F+l++41yp4FMhLtN2WNG5ikPst9m7iFkF87xEZcR2wOJibnsEvIPXuUTVJb2RUXl
6A0878MDecrKxqQmZS83TqGsN8QbOsKlnTytl0bzkFHE+v2r+zpNmy1Y/I6+F9fIsLL60qpikn88
ryQwujZs1ruGGoBiDw3zuBaRJhKY+xQCEvCazpXPb7czINK2Gv6EPQCuXxwrLkQxGeaKlhd1pXU7
C6qeCSQbTw5ED4NsidWbarjgjTkKvtkC8ONu9OL72l0hrvadwJaWqE0JGRAs0PVaHzg9W89q/PB2
sr9gMWde/y23nH5ImKRXGe79ZckkddZBZalvX9NE0QrF6K4vZOoSC3XRMQEs7dt7dG618VvFcsqS
mTLlQqiL+JoQZzRmhURlVtn8I5ANgWX0YHQ3PnC7NeJBK8xp3Y2KSSV+q7XWjxr7hXWyImCujimD
E2sBZ1r0Olx6KwLof/1VvsBY4GPQ5KARRdtTL1Dq/hPHvn42fU0pOb3x4NDY8mZHbTFb6rIGGdmy
7dPPYUOATX0kgSB14NfVrVb1VlN8mWW6WObUydn+6B8zv6o09LTwhTuUpJc4onqeMv0QQ4b4988M
J07aVSVjWGiVT+ug1JOeL0jQ5BRnFKF/TJw3NQDdtr5Ft5GSs6Ac+LJYfoSzahgqqZm9NCLsi7hH
0XQ+TPkK7blvVov8MVNltucFdW7f7tQYLMq5WAUXataNZzvKJKiofgagFsFpLSqqLG52TY6QgPlk
CypHLCqjWLZRiWaBFiR4jGGryNPC77jEFce+kwjod2EO1ff9lP9y9PZ5w8vwminS8okr/JPvSHa/
pSOkjuRWagQ0hHrMW1FbpopgKOaxYitkgmFtR2Xv1y4KpXzqvPdsNm/16yJy2L3v4O4ALYf6HZvV
t1dsi2CMH/4RU4TGmT+a0oZ3Ic/bfwSntEjLKq2vPE2fEcXRvS9AMn+1cn2PedB0A9HR0RDdOySd
bTx5BnCdR8oxGysgjE+YbrlS6dy/CQSx7OzXCyHeCIGJ22WNFYNXKz1d9tM6nTgnskd6Yvd0Xbaj
6MV+x1bcqhJBfwt86Zg7Xq4Om4gSeaVklaC/9TQXA9TuptaPVjG3wQ27fPK2KS/nF3Wp/9ZGzxr5
uVGnKoUx0YToqMGr5s/nFu3ouodsfZYnKAuKnzxUenJVDjV6Rm0e0OcA+s0JLpBOl28HJ+6ngd8s
uXZcXrh0UGEgKQcI+jJ3js7Fx1R9UNS/XtLyfaBKMx/uk0U3ibRjlllwxyQKBu1dPQvz1atDhu4u
pIb5nIegGzzHftGVrSyb4Yw6/kmj9+Bh68cxhpO2c8Vr4lqMw/lSVzkYt09gB63QNMUwvAh5QKLb
Wyv9awblToi6sZUA0zUO1ltUD4QXe+3tDCBNNKKbtPrL+lDB9o81ApnGnrlw0itupSXYqY+ZrYrF
nbmkFoGPikECOnCRiZGDfuoBUY9xyFsyGFTS9nQ0HeoV5Z2ZRE3nF7iL5yN/tognb+0fM9ZC9RmX
qK4xTbJqPVmU1LE9MSl/I+NBfU+P/6T5/YaalfhX30WjNnjeYNKojUIlOpaxyjXJR1Ob+YwEh5ZA
DkHvBRbYHZsTAKmFPFD9edF1hbMumemiqrArlPz5K2GZMTs5k3nhjWQumvEO8bu1+h91iXz9X2rQ
HMXkCG6jKvrxwi4quQncUkD9HYkLKAp7UQ07QlrPSj2wTtrWfRCEY75mrp8a+oqSGAvepvDKdgwl
jFdMAhecFl46LbJ+3CKjIYnSfRVn5PXsad5ZwuUNzKxHjEtV2MvETMWTdKG6WdKAsfc9w1nIyhst
aqr2BXSShiOhk/Tw0UXORYyuc2m/Fxn7BiJxLlwaLMOL0neVV4BM1sYaz/4QYo+AMjd4ZXBbMbfO
WqVShaxui7Kz1Uf01qsF6ArNZqasD57P7Z51iPeYrQGlxrs4I2Kdy3w5wnCDBR6Rcsj8zmzDNy5V
ipqeZMTRUyNbaq+egzpnkNZQU5DG6tl6A+rdiymTcY3558eF+Zc+ap90Ejlo27SRUQWQmKWMe5vs
2eSxn9NXoo1RE3w8YHiooQDBXmKMh0u0xceJAg7zHZPtSGE/YW70e6nokWU49s9EDmvMHRp25mi9
30zIWMsGV6t+SngeJuSCt3S29lyt+Ogy/6LmfivWPXVyQgE1SiK8V4zeseFeQDaCSj8N7YD7WqfQ
ZAtbteFmJ7TmmeIOuloLq3vTC2tsioHK53o9kpOv3JTEwX1MV4VlYHAq9bfptBYbjd58a76elMFW
4pgPS/bdL34cVeuGkKkV9QJkOCeVS3GV4map1/0k5dkgTqpgY2cAMffHmQiR3Ok01rVcRefUUxg1
WiyvrvL6wzAoHFJdGorU252/I5BmROePoy6ZWoVZMg4ox5dB9X735ebpb/Lct714+Liaw6DztEnJ
isuZ3ugAAuuHdUH8llygwHxcJJyDw5y0eAHtAnpRkrIU85GfXLd75hzAPkrVndJT3ksbF1+/zWAn
xDBeLeQEbO821kXlGvNXtbUO9cuxH8FTzIkMNhMOeQnjTvcXM6OvkM/mpmx6NoVs2M/IqRVc8GKy
rrc/1S6pYonT8ovs7fw7zIwC7fBoeVz50MbMk1MOjSlFhTmijoXvhzR6eiNILjSI59ZR2KWmHzD1
pYGzN2c3QfC+8e7z7jaGmItaRJmsfGGNtq0SZdHFh0HsBV6rXyns8k9nlpEVrNvPsWiH0jEUS7xp
Zh1YftWPm/zq7jhUN7pL4D9Jj11K2coBmjgi5FqyecUDhU9+e0l16gCQcHnAeqiB/vdpwQECeEgV
HgYWcUPg4q7Oz9RMLByYKu2nkp8kdg/lnVXSqGu/Cio0fsp90uGc+EAwyn6DPqng1zVXRf2aynwc
aSMzkFiGQGViV6kF3DWnpUAuf7Q0jQJl2IEnjh+th9YmU1VHooxWvCARA4kkJam/0LR/kuKseKns
apw5mX2xnm0h2Uiz4UFHCURYsLbiNlWXm64Hp2ZnyHx8aKFKT7y3LfV6Ym0m42/5cEv7YahfCb6l
fFmrMDeZ4bfhO5ZN0STlGjf1ROIoUJhy3AVsTuP6pplhIeZi7Su5gxbeuaX1mivdA1qPQ3TIsaDR
zzZdSrQbmbN7xWwC6zBbgn5TDj/Lxq/6tuTI3YuBF6/ZndAyMcMyR6MQIc/ItzGWcNkSRtAWjXOD
sjJNxvSx9xZC4PVPbHvIxGE3Eg+3ooZmX/bekFXnHzi5vszx8OrbUx+K/CT1cGKons8iu9uHNtb2
a27CpqfcpelmdgdTstYM0SSq8dD/aykuUaZDJH92Q21984s65w4aLbneTbOBJXig3vhUU81kHTxX
F6RiiCKcX/A2KZyc7QdVRlqyMh7nXECPvVH54BKd5IQbDn2LFScgtTGBKpRNDE1Ogro2r0SpRwjo
WrEcRoi/Vsixd2mSEvvUvbPwGX2zHvRlUc7miJI14vwsaj1xjrMtvTTdR4/Rwk3BEL/xS8zw3OZq
dX+NkXvd5vp7dgMOjyi2qc+2wt9BAN6HzqI2m5Cie9Ud4jdJlx/m2QlMOyNSzw3izb5r67sw/j7j
Hi8oL5MZI/AFLViV+a+JyF7UmjZ4cK+qdPYNdkEieXr0XnK12Bk1VH8wHz+0lt9K0b/6TlS8jGZ1
uFMdH2Ibhknj7yn/W99OHk+bTmn7qQdhxTfaUwwi2gBDKfl9c0th6c/24l9TxWBhvPst9PzGQvVE
FlXPFVk/6jJ/Jm+JowmayHoSAtO+DpaHnsW5yzEdcRTZq2jLtonf13vMH2CdPqTkJ5ASDI5enm7G
rjeNeLek3iayZvjoNkhwhuQ9R3ESX6I2wWSUY23lRG8Lt79tRLkLr+QIbm2axXkJWVnJrPyQKocs
KnQhMapfhr5EAcawJvgIEsxkUqdfqsZG/y6S5L0RBrDSNUqPmrOJic+ssaZ0DOF4uzbzBX3BkqyA
fppspfemV9DwNQBhU3bV9etlXNhpTcwESvhKcc0G0L+l0/YnHhXI2V8N98bW3GCdGrHwMSYs5Oag
hvySKpsHpzcTpH6LgW6OcVe5zGM6bjBgRJVbLd+3vkyysqugynzTa1mwzp3oq71Cj/eNqkTeP/6Q
yHcNSySvScMnLI7zjk+7On+Bgzu3jM6bJeTVkalkXz8IWazOSfeiK0eRQ2FBXZj7Zxcj31Vfr+6H
5UuWUtnNZIPkJ+pICEqBtiYt1FMdZmc4BnkL2DpiXsLNQ+xri35yP2DSSHjYvYlC6fvPuPXqrUAd
06PZ2kATldAlT1yGBwqVV44wc/VCrsTqJ/pWRLXB18sGt8S2dB/189I9DOqTlhHZr+vr6NjQcUCG
VWTt2QwQ3WC1zfMETNcaWvOa3H3xgotOmwIt5L2yC7CIJiuy48DLWmctsXJnjJKE7hOT36354Ymp
2MHBO3LQy1+bHkybQ7s2S4f19PEswynipntfKnOu3+lu7afaqLBJWkXpc/Kwj6nr4sa2oJnKp4D3
tdmzCaGv/N83vXn6MHcvraEJDyWuiZoZzUEyJLZhpxcSwTdSD8oTxeH+xIFRt6XqfYTJIsJgJuvJ
kBdJ4DFb5zaz9ILP6DetUarADIzEUVH9vHjeUBfYHxb9Ekn+IM4OiL2GLTiOwpO8qJ15/AaHI9eU
PNfjuSiWIKwb42jU0K1LIj1uX90PW/Jy+83gJMXLINx82Th02LwwltF+Eyj0t5TJN0IkMSpiTYda
DnKo/eGChTyz5docDLDwOWcujWtA/1k5u9pMWRzCb7OYcZ+Ck0nwBb8FIPEGZ+zId4WoIIIDm2C4
CGGocYTmDKduyNaeE5/cZSYzuJ7fBSfoEpSlKnxQ6ug91DhOvv4oT0JVMRA+jOcroDfh1BeAT/Wy
gi51RrJdFEe2yERZEfSUuVH+0KxFo2EVfq/gnOY/OoVIew22SIreNlGvOwx68K6loAiPv5UtObgO
iERG+Th7uFaNY0b7afT76Z3JgPM8GsD/zc27gv3oVm2CqQbVulTmeN54qvfp+b772ZqvRtv569rp
m1A6M/MDUSupx2zZI0qYpHPRed9niWkF8HOr76e3XmUuG1PHKvu0kqKAY1z9S5SM9yTo7t8firS+
e+185ryV/bqMSScb7Q3pZXl5ZzfszdcMphe9nPyY/PWb4k5y+kgjt3f+Cn1vek++PnBSIYh9F1C8
tD/J8DkkB9SpjQCcefHPCmIvYjrCogmfi7IyawuAWhfc0rmCj1ZvEboJJiLftaMOjtq//Zrp1pII
sji8DXig0zVzN2in2VLEy7bE6gSNs8xJED9UvPrEid1XWH2iJoDCGns23UoLn2j/PjORXx5zThsh
+NQxrPbpMMQ1H+XTlcj03uyPZNZN9W7xNoO4dIPrNyl34b80fpwNMwyQeI0VJhKB3jFO26FuJPsv
jWmlFHqWG2FOMj/5pGIRGv3MhUw6Ti1WY1cU1aJ1o6pBIpplYwPOrMVRtiSG4jubE83oUDdPTom5
yAxpM+bIoRNkkG5Mfj5NSY9p3PTBCExf4b37GtM+1S+3k44qfskW3+dHsxCakeqxFfNVQAn1RGVZ
jt8JzLBSkX6qxCICgeQf6ShhxuKIAqeKr49/Vpq2M3JIwwf97cBRmLi1sWp6ErF13btHYUSZZNZ+
4f6VsjhTNTRyUBRJVLjAqQdWqMMA+2TJjcE8s3uZr386eZwg03RRfJR/bC9xoIvLyvCLQwoNa+VG
WWisI47ZvcPHwtW0IP52FpOnPLYQqscUEXialwRKUNuar8s//eWQ6b3F3VR0hPMkfjzAfJ90TRi1
oT6SbdqYpd1MCf1ntnvuzmTl6ssNqY9z/tCsRpG3sfT5raRhkrZ3FPe/+EZidEABdp7hgadCV4TQ
PN8lamUuQ1NWDVBuRnVI/CxXe/s7TgkpauGRD140rZeWnNDV2COrSUgsbnSsjwN6tA+z30zqHNa6
TrWaeYgUF9u1E/1mw961kPhKQlJbt780aDwt6HdxdOZ1NWuk8siPhTjJ6JzmhORJUzVjsVM2eaLX
BqRTnlpae548+pOSQco2Oey77s/T5/C/5FHko9wPpCW/kP9NrDRm1+a2qDw4zyaR57/UonUD2Zj6
zpDWkERJKt10gmfUSjF31sb98LppnErA3QGubnETeQzGpH5BnM7z43Tjstax5vUDHCXUwRBtj3Al
Qbgkc0C0PK94qwKyQIzHf70CbG0e2cXMOttHJCyJOV6RbV/nGN1hRvzmdmB8r1B9Rc+A88mYVap/
CQf+YXNRYT1beM/vsxqjCGSEzr9Q8DgiqllrRwzbVAV4UbYSqyMQQzu7eY6ZZsJNkKwhOB9YiWw5
eaH8Rkiz6XoPAQioOVrKsQub/92A71P6DdxeB+qJZB1ibZfDomcfNrG7l6AbZZpN8ItjNEHLu6Er
bBtbMROf9rEseJYbIA7B5cH1p3vHAB7Acmyb19NmNHTntKfxghHdil0O6gmi+4nfl+uDXu7mYzjO
bRrOlPINPCsLLRpWiO1qixvqXY7uYrt6siZ9G+dod0i0bRQimCmcdcDKdZzUrL6CQFpkpZHkPHgr
4QpPnuuefcYhyhvOUi+qWqiWq554pBpx4+py7r7L9Rw4dxWyGtuQzrMiceBoNL61niHIxpEqTPHK
gN8MxmhVf19sz+P2ruDUKcyZimQgX47U6/hzIntLVokYkOv0lN4Lm20aNf3crkGSrP60T6WoN1Lf
Fg9xZ+UjZWqIF+joZFJnMmwcspjbO8c6cRH7dlDwHCji9W1rf1DTZ+phtNaj90xVa3d6Er1AyCLs
U9j1pjS8Yswjsi4nzmz3XUhsQT0BtpsodU79dfCOObWWE/YGgxgFyVf+UydePPOCYpw4nrkCKaCB
YXBh6BQVLX2dV/VoGyURgKYN4z3ICfVJUN3NrnapzaXQGzhUz8gxTcnGTE21gndhe3fKmnjDWUNs
xmBIr0wND6yVKZ+PwtiYMdSsXpX2He0uOFl22dXca8g5jE0ya8YEz0SB8PON1A/B/sxXFqc4gPXV
M2J1DjyTXlI6sbCI+kMF1QtsauqSYVz1+9DN7r6pW9mzRsWvymPysGrmDD699AEi8AFcuP60ksY5
XPkVyiehy26oYdZL5zeVSVmZ6s2rzPPuIjwuLW9xNgRLyn+x3TattTsnMrWnaGCUDdiWBMjZRCgi
sPvLQRKMjaggew4/9R2Dz3OBJehtMfj19pJlG9/pTRodBkJFqg3WWx6SN603FiUMkcKTC2579H0l
yIkMRLKUeBuIbD7VbYk5RhSzmo/+omf5AUXmVXhnF08IY8+2FvpiPPety3ECo1mnLqsMHEhFLaPi
aW0QwjNOlDHyDvBpydS5cz4IHI6hnAU0NolY1kSmcQVqd1NYORRKnS9K3qlvx7nVooHa/bHWee6R
hajxT/irOAUz2xoxH3wkE0MN5NGNvWK/iRsO3T8stcSfF5hXVRXfPGfqkEz5KJUBnl+JW8JgGG8l
ndafLQK4rToJpHrTvelSg2j1k4aw4Yj6Wb9L36+rLUkt3t3RZBC8xlDWj/gqjx7FtHKn/LPyPTkm
++DVFc6dgExWPTxMUX/CUfx9iqSLvdHPCukEiZpSGdTzCkgTaaKlupTYyyXPVGrutjoiOW5mQ0UC
HdzSKdas/f24IRXLwlShw5SfwcNPN4xFuRhgXAZR4ibv6LbzNnXmbrPvY4fwyPudHHxWkl6fF/Hj
Cxevret1Y1SOb5nF/MyH05ql+E1m9/Mz9y/0+6nh0h896/uxewApKlx259c9EvpQuWz9c6lX25Nc
kv4tcdb6sAyJUb+miK5c76uZNJqTPvGciK8i07vQRiM5axOcpu+I7HNYTWdnQNWPMrerM9SntupV
/WJjgb3dKc8CNPaiYWwNhNmJp+e+4VsvDKDAJMIvJqr4vcFuDPfnXSS/pIWkCp4mpuvtpq69Gdvm
WQ8hqSPpLD6TXkpKKipe1vEjNeWXPX/gdTgZUJvMVgOluTiA3tkIPrPz/pHPPXb3OatJjXQ4NbnD
9OZdraPbl2geCqX7JLUpQKrudvJopB9Y9EOc88vDjI3dTUwvAo/o+zKOnaLBFSijZT40c1ywMiLQ
jn6uo0PRlqKbWNNyfWmY7jRJFiUR2ou+vWYwnJjAvn7iuLYCjPJXyKiZ5fbtMox3l40qCprAmHbQ
El3qyWubE9KXbghJpwecTwonNEdwSmzZ+gHwr3uorEUwLZ8g+b4iw7em3Rb4PqMl6Np0Kbp3ya39
68UA6cSsgO2s5xOyHS8DGoX5IVX75eap88UqPPf5Vt7sFNHwvaqVutQk37MxI1qWAm268RRxyKo7
cP0bjvFZkPHKeV0QcqHNEwpP8y9u7JvhOuarej+cfEUxU8wyUu2uq8Ih5/ZAm83WXAI332Zosl4b
kwD5DXRPVYefkq5oLtrM5DltjqqoaFeLQJ+rTNYTymStZqr1bJcEufxuJ9VXSbuNLx1FyJESnCqK
xQgV3jKatD6zEw5Y++bu2/SGlH1AZ4bz/wApTH0JCmVuZHN0cmVhbQplbmRvYmoKNTcgMCBvYmoK
PDwKL1Byb2R1Y2VyIChwZGZUZVgtMS40MC4yMikKL0NyZWF0b3IgKFRlWCkKL0NyZWF0aW9uRGF0
ZSAoRDoyMDIxMTIxODAwMDU0NisxMCcwMCcpCi9Nb2REYXRlIChEOjIwMjExMjE4MDAwNTQ2KzEw
JzAwJykKL1RyYXBwZWQgL0ZhbHNlCi9QVEVYLkZ1bGxiYW5uZXIgKFRoaXMgaXMgcGRmVGVYLCBW
ZXJzaW9uIDMuMTQxNTkyNjUzLTIuNi0xLjQwLjIyIChUZVggTGl2ZSAyMDIxL01hY1BvcnRzIDIw
MjEuNTg2OTNfMCkga3BhdGhzZWEgdmVyc2lvbiA2LjMuMykKPj4KZW5kb2JqCjE0IDAgb2JqCjw8
Ci9UeXBlIC9PYmpTdG0KL04gNDEKL0ZpcnN0IDMxNAovTGVuZ3RoIDMyMTMgICAgICAKL0ZpbHRl
ciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnja7Vpbc9s2Fn7Xr8Bbk+lEuN92Mp21HTtxbnZ9aZyk
eaAlWGJDiQ5JJXF//Z4DUBSlWK29zcPuTCYxCALn9p0LQEJUhBFuiLeEWyK5I/BfKrh4opUnghHt
OBGSGA4XQ6wRRGjihSUCe0IPJFFcKCIZUcJrEEKUYZ5IAVcUCvNew7giWihGpCbaGk6kIdoruFpi
NAxKTyxjfgBDVkCjJLFKOyJg3FjQpeDqDAgl1llHwEjHQZ9mxCkG5sC9gRvB4WpAmSTOaTsA1Z7B
PYAUXhFHQKknnBGvUQXxxgB4Di7w0BDvuSD4nzEwikvocG0Ihz4Tjg+wz6SQg8ePB/Ts5joQepxN
woDulfMmzJuaaHDpyYCehLpcVKNQE5kGXoVxnu2WX8l7BgPa66GwBmznQ+c/DEBKBeyoCKl/+SUq
OK7K8WIUKvLg6fFL8nRa1k09qvLrhvgh0w9BaxWyJi/nT7ImkAdP/iUYF2AfY5pryX/m7CfGfgK6
V+X470jO8qYAgsX847xsHo3zejS8yidLHSXYALdiHD6T30JVg04ih4IcZ81oWoTPoSBoz86imSLp
ZXb576qswyyrbsjvD3bDnOwuqqac//7w4RJc8t7+1+bpaQO2DejR8SvC7wKds9uhK6aY40YaIbZB
v5WkQzj+nF/Xvz/4+PtDooeQCmSvvL6p8sm0gVKAJDnJxvkoK8j+TSCn5VXzBYK2ch2IWNTRcSBn
O8zTHdJUi3A3N5yV5/N8VI4DgZKLeZToDyDdBvQgr+pmb5pVUA4D+jLr3bzJx820Ju+h0DSk1+ni
somMyM4Hkf9JSB4F5FA1UfhuVgecwnKKA/tzUJ7PJ1juvcS83QjTN8LJnhFOofXb/xlh72Ck2jTS
bxqpvzVyOTmgT/KrqwBVhkX5XgpaX2ejQMPXUZHN6KdF2YTxZUHni9klJvhkTsdlUWQVvQ5Qx/OG
ZjPo1dl8nIhrEFoEeo2FW4SrJvVitlBwQqjy+iO9LhY1HZWzWUanN9fTMEdpeTmmdZHVU/pnqEpa
zgNtvpS0mVYh0CtYNuhV/jnQOv9KayitOQ1R6DwHwlFZlHMYnuWpV4S6puHTIivoBNM4VGBdqLEy
aNbQHbpL9+gTuk8P6FP6jB7S5/QFfUlf0df0iB7TX+kJPaVn9Jz+Rt/QC/qWvqOXVTb6GJqI6RK6
ydR2dIlvlOejvBotZnQxH4NbRmUVwIIM7M7oJR3RMQUsdEKnNKd/0I+0oDM6pyW9pp9oRWva0AX9
TL/Qr/SG/hmlh1Zjle56mpq8GAd6uSiK0ND9Bfis7a8CcQlJQa+KssrnXSzjWCgKKOq8puNsMgHv
pAtGOtl/VYSvGBRYuBYxuKejrALnTRZ5ESVHq472lyrfpen2rm9HJIy9ZPrSjNU43KSpli3Mx+ja
MIuXhLKpsjGumx9pvWFIYi07R/yZ5t+Oc8hqRNhP6HH5ZU5j2mIqFsBPR4sKs/+G3kBKXVblxzBH
Z9dhFLOlEzNaLnq0rMZXkGkx8dCMIszKlBdFOcGVELaKZV5XYZKjqjCms2yEho3DBBMaSwBkQB1A
kteLmP9VSvbuLhstmkBnC6yhDLLoetrWCSKIMkewfUI1YrF0XGDeDPJjUazZ15o+x6KosB6gO82K
q6SyHay7KomO2kmZu5Ps2Ollxk6Kyk7nnZ0KfbmzT/eWJu0n5v3EvN9j3u+4DhPNYaI57NEcdjT7
zZS+TuqOEvlRIj/qkR+1BB3XbFE0+XVxQ49SnZ4n1vPEet5jPe943qbJM9irIb9CNYO8vyxqmrUF
nKazHm+W1GadiCy6IYMFaemGkJhDYg495tBx5YkmTzR5jybvaAK4YZ7UlYm8TORlj7xsCTqucf45
x4HkhEViXCTGRY9x0XHcpMkmOuFmOfzh/2j3uK7yWfixffzYPn5sHz+2jx/bx//U9hFfUB4/hpck
eEsx+FoCXe6JbbvwPuWWXU38ssvxaKIldngu0Y4rPJRIfcnwXAL7oIpeHF3+ARUYVR3OgD1RHc4E
ER0RvEyPTkMDL2L0+MkBvF+Frw2Jpr63Sg4lsUwOwTauh4ZYrYmxDkaNFkNHrJU4GumkQwoNFlvj
gAPe24YAxJuhbSmswX7iT30r/FARbQRQthoSZWy9Rzn9EcOjJoa8mquh6vp8yNt+f0QZFv9Wd2l2
NdbnwVGh0QrHLaBLdiW6njzBkZahbVJGCrnkNgZs+jB477wYerwCJk2ctST1jLUg3SgD0lPrLQMJ
qZVCIiKtUKbxQL+tddEbmlmwoR3pNKV7zjiGjXOwzcfxVnpsE42XrpOY+is6BdYt21bDSoZTiL0n
6Z+0fbtSG1GAPcs2+g8Rg0cNZxAHpz22Bo+ZHMcc8lLhSKS3QqG9Lo3HrIT4QvZI8DRwQk45CXSc
JRKGcFxMWgtJKyFpPao1DBOS8Rg4FdPdgULs41GfVVE++tdYJMJp8BlkjVxrIQguxQIvKgnhqEIz
gT4ETBqPPHFEQey1xYzTaIoBsxxkG+aEsgLrh+G4NHwoU5QBMMAT4BxrMW1FbFNfM/ZN7y4tZ0Cu
27+7s91BaGxuH13qW430iFf3JpZiam8lFVa3lGnBia1z6PzUxlPWWOipTRQRqohLUWp7RiZt1mOR
GI2Fq4WJIecYQBEpeUxZH7NJYQrq2Jokx0DQHQadC8aQRGDULayPAManVScaqiwysWiewlQzQkcT
cMX1LqmSbW7ImO22DxUSQfxNImiJFlgNYxohWY4ynMD1xMqYn1BvANhh3TiJuaakjw6LtaU86ndY
ILh2QeXBLoErv4grGzjPx+LRvl21Iasd1otxSKFdXN8VjjgBFoDN/YA4KaNebBMKmfzRy5IuOwGF
ipJ6AeyQeiZi8sTVsF8foiNJala9PpWM+ZJa3UuwONcz7zbDtv2Jb6xIUrG8Rdu2uYcBYinIcdQg
iuT2dgN2GDikwwUBt6kVToMPDzGlopw0Fnlb6dLEZSZuu0m+Tu7kTHTq9bLgVkA3ez0XRGFtNHr9
XvTi6FpMxUpGGwq9Tp0opMd9V/ooLwWkN5sApH5sIaOkEjjvOKzSNu43Iu50Nu5m+HsU3qt4r3oU
qznZ9dLMP2lbiamNlqEeDbUl2hbvsbJwVfDojUjr4h6CVakgGeIzFQQdqsNiPeIvVojQQWAhvFbj
RsMMbiCJAFciHx/JdNt3EjdPzA7rcPtxRkW6+NjAYZlK3dQaZzurUU/fG31EWsV9UOgYt3hNz2oK
N6hEj6NL/HHUY5tGUlQiX0eb5pVGO1TkiFH6sPEzw+pngPRo/TqbwczJxe6zg7Of917tXnABE0U2
qYlKFLvxt7ZHWpJHQnPcmONi+GFAd2p8LYT1GCj3sutn8XgEnGAGFNXg3COOk4dNVuSjHTyoIWxA
T5sw+w0c7+Gpu2WCzAcZ06zCp+sH9IS+oRkd0e5caELz7uSieZgMO8hBnHS3/5xyO86zo4M3vz4D
nK8OObsdJzz2AE4sa+X+Bqf8K5yPuFoitaIHVPI+UDwXekYv2rfsPjDF7gPs14OnLy8uIjB7Oy7e
wuKWfydYjm+FNccDhCbPinF+dbWGqvv1i+4dHrx48Tqa7O+EcY3hVozwhtjGDhaHNZBw0wcZbzuQ
Au+2xW4tL5/Q0zU06j4xenXx/OzlKdh/si33IOat/cz/kyB1NWb81hCls8iX9Lg9ebxozwvTcWY6
K01nh1d5e3zYPzy89by1PVT9tDr63DhhXHOevo/z3pwcXezhCnWyJb+FXSa4EN/Fd9b/RdUeT3N6
XOd4prWGyd4H04t3787f7gGm07fbMgIz2htExfFJRG/N6LuXrWJbcWVVVX5JocSjmiLEc/Mcj/6W
p5PxBHENsu8q+vmL0/Pz/YjH3MkBawy3VwTAx89oJH6+4kwPPu4yvYJe23Q8/nC/Bb4WfcTx5L8P
R/P7RPD4Yvfps5cRwLZlV4M5uG3i3gmPEN8jgNsT85voaHEfOM93Tl/v7wCcs+3bo+7KTH2nfQS/
dthaaK9hgTprnwWmsALh+lPBkvJlDaXa9k3F5pcQ3ScP3zzyrH8iIdsvIlbfZEjZ+yYDqrH7KEPa
+yvffA5ZV674pnK99kHI6qsUqe+ve+NRYUO13FRt1BputtIt7697Ywvc0G02dWNgVroFX+k299e9
voNsqHabqvsON3qlWNxf8eYyv65as03VrKfai5Xq/yLJN9anDc3yrzT3As3vr3hzJdnQrL/JMr2W
ZX6l/JbHYPxQsMYvBRf4od+AvsjHNXkf3bPxq/NeBktOORkklt5Hgf8BZG7p2AplbmRzdHJlYW0K
ZW5kb2JqCjU4IDAgb2JqCjw8Ci9UeXBlIC9YUmVmCi9JbmRleCBbMCA1OV0KL1NpemUgNTkKL1cg
WzEgMyAxXQovUm9vdCA1NiAwIFIKL0luZm8gNTcgMCBSCi9JRCBbPDdEOUQ5NjE0M0Q0MUZGMUU2
QjU2NEQwQzc0MEYzMDNDPiA8N0Q5RDk2MTQzRDQxRkYxRTZCNTY0RDBDNzQwRjMwM0M+XQovTGVu
Z3RoIDE3NCAgICAgICAKL0ZpbHRlciAvRmxhdGVEZWNvZGUKPj4Kc3RyZWFtCnjaHc85EgFhFATg
bvvOWGbs+yBzASeQiFU5gRhF6gICVDmFAziJO0hIpEy/5Kvueu/9VT8A/IhIB4TjIwTkUiKoyFvt
iL7oiqHoiYHwxYjcnm15LChCIiwiIiqaIiliwhMJESfcuz3QEK5Ii4zIipzIi4JwRJHwbnZWImZL
S2VidbFUIQ6L4B/Xl9Uq8dxZqhHft6U6WV6DnD6stsj5x1JbTMjNPpgeT/gD6PYVXgplbmRzdHJl
YW0KZW5kb2JqCnN0YXJ0eHJlZgo5ODk1OQolJUVPRgo=
</attachment>
<container label="3-Manifolds and Knots" id="APLkAABgAAA=">
<tri dim="3" size="4" perm="index" label="Layered Solid Torus" id="eA6IKgEAAAA=">
  <simplex> 1 14 1 4 -1 -1 -1 -1 </simplex>
  <simplex> 2 14 2 4 0 20 0 2 </simplex>
  <simplex> 3 21 3 3 1 20 1 2 </simplex>
  <simplex> 3 9 3 19 2 3 2 21 </simplex>
  <H1><abeliangroup rank="1"> </abeliangroup></H1>
<tri dim="2" size="16" perm="index" label="Vertex Link">
  <simplex> 1 4 -1 -1 -1 -1 </simplex>
  <simplex> 2 4 3 3 0 2 </simplex>
  <simplex> 4 5 5 3 1 2 </simplex>
  <simplex> 1 3 6 5 -1 -1 </simplex>
  <simplex> 8 0 7 2 2 5 </simplex>
  <simplex> 2 3 9 5 10 5 </simplex>
  <simplex> 11 5 3 5 8 3 </simplex>
  <simplex> 12 0 8 5 4 4 </simplex>
  <simplex> 4 0 7 5 6 3 </simplex>
  <simplex> 13 2 5 5 12 3 </simplex>
  <simplex> 5 5 14 1 -1 -1 </simplex>
  <simplex> 13 5 14 4 6 5 </simplex>
  <simplex> 7 0 13 4 9 3 </simplex>
  <simplex> 12 2 9 4 11 5 </simplex>
  <simplex> 11 2 15 4 10 1 </simplex>
  <simplex> 14 2 -1 -1 -1 -1 </simplex>
</tri>
<surfaces tri="eA6IKgEAAAA=" type="5" algorithm="17" coords="102" label="Almost Normal Surfaces">
  <surface enc="314" len="40"> 0 1 1 1 2 1 3 1 10 1 11 1 12 1 13 1 20 1 21 1 24 1 35 2
	<euler value="-1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 2 3 2 12 2 13 2 15 2 22 2 23 2 29 2 30 2 31 2 32 3 33 3 34 1
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 2 1 2 16 2 25 2 32 1 33 1 34 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 1 3 1 4 1 10 1 11 1 12 1 13 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 5 2 12 1 13 1 14 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 2 1 2 5 4 12 2 13 2 18 2 20 2 21 2 22 2 23 2 25 2 30 2 31 2 32 3 33 3 34 1
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 1 1 1 5 1 18 1 20 1 21 1 35 1
	<euler value="-2"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 2 3 2 5 2 12 2 13 2 19 2 20 2 21 2 22 3 23 3 24 1 30 3 31 3 32 3 33 3
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 6 2 15 2 22 1 23 1 24 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 2 1 2 6 5 10 2 11 2 15 3 22 1 23 1 28 2 30 2 31 2 32 1 33 1 36 1
	<euler value="-2"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 6 1 15 1 22 1 23 1 38 1
	<euler value="-1"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 4 1 4 6 2 10 2 11 2 16 2 20 1 21 1 27 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 2 1 2 6 1 10 1 11 1 16 1 20 1 21 1 35 1
	<euler value="0"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 4 1 4 6 3 10 3 11 3 16 1 20 1 21 1 26 2 30 1 31 1 36 1
	<euler value="1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 6 1 6 6 4 10 4 11 4 16 2 20 2 21 2 26 2 30 1 31 1 37 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 4 1 4 6 1 10 1 11 1 16 3 20 1 21 1 25 2 32 1 33 1 39 1
	<euler value="-1"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 2 1 2 6 2 10 1 11 1 17 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 3 1 3 2 1 3 1 6 1 10 2 11 2 18 1 20 1 21 1 26 2 30 1 31 1 36 1
	<euler value="-1"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 1 1 1 7 1 10 1 11 1 12 1 13 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 2 3 2 8 2 10 2 11 2 12 2 13 2 15 2 20 2 21 2 22 3 23 3 24 1 30 3 31 3 32 3 33 3
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 1 1 1 8 1 10 1 11 1 16 1 20 1 21 1 35 1
	<euler value="-2"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 1 1 1 8 3 10 3 11 3 16 1 20 1 21 1 26 2 30 1 31 1 36 1
	<euler value="-5"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 2 3 2 9 2 10 2 11 2 12 3 13 3 14 1 20 3 21 3 22 3 23 3 30 3 31 3 32 3 33 3
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 4 2 16 2 25 2 32 1 33 1 34 1
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 1 3 1 4 1 10 1 11 1 12 1 13 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 5 2 12 1 13 1 14 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 1 3 1 5 1 12 1 13 1 19 1 20 1 21 1 24 2 35 3
	<euler value="-4"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 6 1 15 1 24 1 35 1
	<euler value="-1"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 2 1 2 6 2 10 1 11 1 17 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 1 1 1 7 1 10 1 11 1 12 1 13 1 20 1 21 1 24 1 35 2
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 1 3 1 8 1 10 1 11 1 12 1 13 1 15 1 20 1 21 1 24 2 35 3
	<euler value="-4"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 2 2 3 2 9 2 10 2 11 2 12 3 13 3 14 1 20 3 21 3 24 3 35 6
	<euler value="-8"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="314" len="40"> 0 1 1 1 2 1 3 1 10 1 11 1 12 1 13 1 20 1 21 1 22 1 23 1 30 1 31 1 32 1 33 1
	<euler value="1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
</surfaces>
<surfaces tri="eA6IKgEAAAA=" type="9" algorithm="273" coords="0" label="Fundamental Normal Surfaces">
  <surface enc="279" len="28"> 6 1 12 1 18 1 26 1
	<euler value="-1"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 6 2 12 2 16 1 17 1 18 1 21 1 22 1 23 1 24 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 5 2 9 1 10 1 11 1 14 1 15 1 18 1 26 2
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 5 2 9 1 10 1 11 1 14 1 15 1 16 1 17 1 21 1 22 1 23 1 24 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 4 2 13 2 19 2 23 1 24 1 25 1
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 2 1 3 1 4 1 7 1 8 1 9 1 10 1 14 1 15 1 18 1 26 2
	<euler value="-2"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 2 1 3 1 4 1 7 1 8 1 9 1 10 1 14 1 15 1 16 1 17 1 21 1 22 1 23 1 24 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 0 1 1 1 4 1 13 2 19 2 23 1 24 1 25 1
	<euler value="-1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 0 1 1 1 2 1 3 1 7 1 8 1 9 1 10 1 14 1 15 1 18 1 26 2
	<euler value="-1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 0 1 1 1 2 1 3 1 7 1 8 1 9 1 10 1 14 1 15 1 16 1 17 1 21 1 22 1 23 1 24 1
	<euler value="1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 0 2 1 2 13 2 19 2 23 1 24 1 25 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 0 2 1 2 6 1 7 1 8 1 13 1 14 1 15 1 26 1
	<euler value="0"/>
	<orbl value="F"/>
	<twosided value="F"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
  <surface enc="279" len="28"> 0 4 1 4 6 3 7 3 8 3 13 1 14 1 15 1 20 2 21 1 22 1 27 1
	<euler value="1"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="T"/>
	<compact value="T"/> </surface>
</surfaces>
</tri>
<tri dim="3" size="5" perm="index" label="Poincaré Homology Sphere">
  <simplex> 1 2 2 19 3 16 4 21 </simplex>
  <simplex> 0 4 2 14 3 19 4 16 </simplex>
  <simplex> 0 9 1 20 3 10 4 19 </simplex>
  <simplex> 0 16 1 9 2 18 4 8 </simplex>
  <simplex> 0 21 1 16 2 9 3 12 </simplex>
  <H1><abeliangroup rank="0"> </abeliangroup></H1>
  <H1Rel><abeliangroup rank="0"> </abeliangroup></H1Rel>
  <H1Bdry><abeliangroup rank="0"> </abeliangroup></H1Bdry>
  <H2><abeliangroup rank="0"> </abeliangroup></H2>
  <zeroeff value="T"/>
  <splitsfce value="F"/>
</tri>
<tri dim="3" size="3" perm="index" label="RP² x S¹">
  <simplex> 1 0 1 0 2 11 2 2 </simplex>
  <simplex> 0 0 0 0 2 21 2 12 </simplex>
  <simplex> 0 13 0 4 1 21 1 8 </simplex>
  <H1><abeliangroup rank="1"> 2 </abeliangroup></H1>
  <H1Rel><abeliangroup rank="1"> 2 </abeliangroup></H1Rel>
  <H1Bdry><abeliangroup rank="0"> </abeliangroup></H1Bdry>
  <H2><abeliangroup rank="0"> 2 </abeliangroup></H2>
<textdata label="Note">There are in fact two triangulations of this 3-manifold with three tetrahedra.</textdata>
</tri>
<link label="Right-Hand Trefoil">
  <crossings size="3">
  + + +
  </crossings>
  <connections>
  _1 ^1
  _2 ^2
  _0 ^0
  </connections>
  <components size="1">
  ^0
  </components>
</link>
<link label="Borromean Rings">
  <crossings size="6">
  + - + - + -
  </crossings>
  <connections>
  _1 ^2
  _2 ^3
  _3 ^4
  _4 ^5
  _5 ^0
  _0 ^1
  </connections>
  <components size="3">
  ^0 ^2 ^4
  </components>
</link>
<snappeadata label="Whitehead Link Complement">% Triangulation
m129
geometric_solution  3.66386238
oriented_manifold
CS_unknown

2 0
    torus   0.000000000000   0.000000000000
    torus   0.000000000000   0.000000000000

4
   1    2    3    1 
 0132 0132 0132 3201
   0    1    0    1 
  0  1 -1  0 -1  0  1  0  0  0  0  0  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0 -1  0  1  0  0 -1  1 -1  0  0  1  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  1.000000000000   1.000000000000

   0    0    3    2 
 0132 2310 3120 3120
   0    1    1    0 
  0  0  0  0  1  0 -1  0  0  0  0  0  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0 -1  1  0  0  0  0  0  0 -1  0  1  1 -1  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0.500000000000   0.500000000000

   1    0    3    3 
 3120 0132 0213 3120
   0    1    1    0 
  0 -1  1  0  0  0  0  0  0  0  0  0  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0  1  0 -1  0  0 -1  1 -1  0  0  1  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0.500000000000   0.500000000000

   2    2    1    0 
 3120 0213 3120 0132
   0    1    1    0 
  0 -1  0  1  0  0  1 -1  0  0  0  0  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0  0  0  0 -1  0  0  1 -1  1  0  0  1  0 -1  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0.500000000000   0.500000000000

</snappeadata>
<snappeadata label="Figure 8 Knot Complement" id="WCWKKgEAAAA=">% Triangulation
m004
geometric_solution  2.02988321
oriented_manifold
CS_unknown

1 0
    torus   0.000000000000   0.000000000000

2
   1    1    1    1 
 0132 1230 2310 2103
   0    0    0    0 
  0  0  0  0  0  0  0  0 -1  1  0  0  0  0  0  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0 -1  0  1  1  0 -1  0  0  1  0 -1 -1  0  1  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0.500000000000   0.866025403784

   0    0    0    0 
 0132 3201 3012 2103
   0    0    0    0 
  0  0  0  0  0  0  0  0  0  0  0  0  1  0 -1  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0 -1  0  1 -1  0  1  0  1  0  0 -1  0  1 -1  0
  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
  0.500000000000   0.866025403784

<tri dim="2" size="8" perm="index" label="Vertex Link">
  <simplex> 1 0 2 3 2 1 </simplex>
  <simplex> 0 0 3 1 3 5 </simplex>
  <simplex> 0 3 0 1 4 2 </simplex>
  <simplex> 1 5 5 0 1 1 </simplex>
  <simplex> 2 4 6 1 6 5 </simplex>
  <simplex> 7 3 3 0 7 5 </simplex>
  <simplex> 4 5 7 2 4 1 </simplex>
  <simplex> 5 5 5 3 6 4 </simplex>
</tri>
<surfaces tri="WCWKKgEAAAA=" type="5" algorithm="34" coords="0" label="Tri-Quad Normal Surfaces">
  <surface enc="279" len="14"> 0 1 1 1 2 1 3 1 7 1 8 1 9 1 10 1
	<euler value="0"/>
	<orbl value="T"/>
	<twosided value="T"/>
	<connected value="T"/>
	<realbdry value="F"/>
	<compact value="T"/> </surface>
</surfaces>
<surfaces tri="WCWKKgEAAAA=" type="5" algorithm="16" coords="1" label="Quad Normal Surfaces">
  <surface enc="535" len="14"> 0 inf 1 inf 2 inf 3 inf 4 2 7 inf 8 inf 9 inf 10 inf 11 1
	<compact value="F"/> </surface>
  <surface enc="535" len="14"> 0 inf 1 inf 2 inf 3 inf 6 2 7 inf 8 inf 9 inf 10 inf 11 1
	<compact value="F"/> </surface>
  <surface enc="535" len="14"> 0 inf 1 inf 2 inf 3 inf 5 1 7 inf 8 inf 9 inf 10 inf 12 2
	<compact value="F"/> </surface>
  <surface enc="535" len="14"> 0 inf 1 inf 2 inf 3 inf 5 1 7 inf 8 inf 9 inf 10 inf 13 2
	<compact value="F"/> </surface>
</surfaces>
<angles tri="WCWKKgEAAAA=" tautonly="F" algorithm="32" label="Angle Structures">
  <struct len="7"> 1 1 3 1 6 1 </struct>
  <struct len="7"> 2 1 5 1 6 1 </struct>
  <struct len="7"> 0 1 4 1 6 1 </struct>
  <struct len="7"> 0 1 2 1 3 2 6 2 </struct>
  <struct len="7"> 1 2 4 1 5 1 6 2 </struct>
  <spanstrict value="T"/>
  <spantaut value="T"/>
</angles>
</snappeadata>
</container>
<container label="4-Manifolds">
<tri dim="4" size="2" perm="index" label="Cappell-Shaneson Knot Complement">
  <simplex> 0 73 1 12 1 30 0 33 1 2 </simplex>
  <simplex> 0 48 1 19 0 4 0 8 1 9 </simplex>
  <fundgroup>
<group generators="2">
  <reln> 0^1 1^2 0^-2 1^-3 </reln>
  <reln> 1^2 0^3 1^-1 0^-2 </reln>
</group>
  </fundgroup>
</tri>
<tri dim="4" size="2" perm="index" label="Twisted S³ x~ S¹" id="+DiKKgEAAAA=">
  <simplex> 0 96 1 0 1 0 1 0 0 32 </simplex>
  <simplex> 1 96 0 0 0 0 0 0 1 32 </simplex>
<hypersurfaces tri="+DiKKgEAAAA=" type="5" algorithm="32" coords="0" label="Normal Hypersurfaces">
  <hypersurface enc="287" len="30"> 10 1 25 1 </hypersurface>
  <hypersurface enc="287" len="30"> 2 1 7 1 11 1 17 1 22 1 26 1 </hypersurface>
  <hypersurface enc="287" len="30"> 1 1 2 1 3 1 8 1 16 1 17 1 18 1 23 1 </hypersurface>
  <hypersurface enc="287" len="30"> 0 1 4 1 5 1 14 1 15 1 19 1 20 1 29 1 </hypersurface>
  <hypersurface enc="287" len="30"> 0 1 1 1 2 1 3 1 4 1 15 1 16 1 17 1 18 1 19 1 </hypersurface>
</hypersurfaces>
</tri>
</container>
<container label="2-Manifolds">
<tri dim="2" size="8" perm="index" label="Octahedron Boundary">
  <simplex> 4 0 1 1 3 1 </simplex>
  <simplex> 5 0 2 1 0 1 </simplex>
  <simplex> 6 0 3 1 1 1 </simplex>
  <simplex> 7 0 0 1 2 1 </simplex>
  <simplex> 0 0 5 1 7 1 </simplex>
  <simplex> 1 0 6 1 4 1 </simplex>
  <simplex> 2 0 7 1 5 1 </simplex>
  <simplex> 3 0 4 1 6 1 </simplex>
</tri>
<tri dim="2" size="2" perm="index" label="Klein Bottle, version 1">
  <simplex> 1 1 1 5 1 0 </simplex>
  <simplex> 0 1 0 5 0 0 </simplex>
</tri>
<tri dim="2" size="2" perm="index" label="Klein Bottle, version 2">
  <simplex> 0 4 1 0 0 2 </simplex>
  <simplex> 1 4 0 0 1 2 </simplex>
</tri>
</container>
<container label="Normal Surface Filters">
<filtercomb op="or" label="Tori, Annuli and Discs">
<filterprop orbl="T-" compact="T-" realbdry="TF" euler="0" label="Tori and Annuli">
</filterprop>
<filterprop orbl="T-" compact="T-" realbdry="T-" euler="1" label="Discs">
</filterprop>
</filtercomb>
</container>
<script label="Python Script">
  <var name="tri" valueid="APLkAABgAAA=" value="3-Manifolds and Knots"/>
  <code># This Python script runs through all 3-manifold triangulations and links
# in this file.  It prints the first homology of each Regina triangulation,
# the volume of each SnapPea triangulation, and the HOMFLY-PT polynomial of each link.
#
# See the Regina handbook for more elaborate sample Python sessions.

for t in tri.children():
	print(t.label() + &quot;: &quot;, end='')

	if t.type() == PacketType.Triangulation3:
		print(t.homology())
	elif t.type() == PacketType.SnapPea:
		print(t.volume())
	elif t.type() == PacketType.Link:
		print(t.homfly())
	else:
		print('Unknown packet type')
</code>
</script>
</container>
</regina>