File: triangulation.py

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (44 lines) | stat: -rw-r--r-- 1,226 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
################################
#
#  Sample Python Script
#
#  Illustrates different queries and actions on a 3-manifold triangulation
#  and its normal surfaces.
#
#  See the file "triangulation.session" for the results of running this
#  script.
#
################################

# Create a new (3,4,7) layered solid torus.  This is a 3-tetrahedron
# triangulation of a solid torus.
t = Example3.lst(3, 4)
print(t)

# Print the full skeleton of the triangulation.
print(t.detail())

# Calculate some algebraic properties of the triangulation.
print(t.homology())
print(t.homologyBdry())

# Test for 0-efficiency, which asks Regina to search for certain types
# of normal surfaces.
print(t.isZeroEfficient())

# Make our own list of vertex normal surfaces in standard coordinates.
surfaces = NormalSurfaces(t, NormalCoords.Standard)

# Print the full list of vertex normal surfaces.
print(surfaces.detail())

# Print the Euler characteristic and orientability of each surface.
for s in surfaces:
    print("Chi =", s.eulerChar(), "; Or =", s.isOrientable())


# List all surfaces with more than one quad in the first tetrahedron.
for s in surfaces:
    if s.quads(0,0) + s.quads(0,1) + s.quads(0,2) > 1:
        print(s)