1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Python Interface *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include <pybind11/pybind11.h>
#include <pybind11/operators.h>
#include <pybind11/stl.h>
#include "algebra/markedabeliangroup.h"
#include "maths/matrix.h"
#include "../helpers.h"
#include "../docstrings/algebra/markedabeliangroup.h"
using pybind11::overload_cast;
using regina::HomMarkedAbelianGroup;
using regina::MarkedAbelianGroup;
using regina::MatrixInt;
using regina::Integer;
void addMarkedAbelianGroup(pybind11::module_& m) {
RDOC_SCOPE_BEGIN(MarkedAbelianGroup)
auto c1 = pybind11::class_<MarkedAbelianGroup>(m, "MarkedAbelianGroup",
rdoc_scope)
.def(pybind11::init<const MatrixInt&, const MatrixInt&>(), rdoc::__init)
.def(pybind11::init<const MatrixInt&, const MatrixInt&,
const Integer&>(), rdoc::__init_2)
.def(pybind11::init<size_t, const Integer&>(), rdoc::__init_3)
.def(pybind11::init<const MarkedAbelianGroup&>(), rdoc::__copy)
.def("swap", &MarkedAbelianGroup::swap, rdoc::swap)
.def("rank", &MarkedAbelianGroup::rank, rdoc::rank)
.def("torsionRank", overload_cast<const regina::Integer&>(
&MarkedAbelianGroup::torsionRank, pybind11::const_),
rdoc::torsionRank)
.def("torsionRank", overload_cast<unsigned long>(
&MarkedAbelianGroup::torsionRank, pybind11::const_),
rdoc::torsionRank)
.def("snfRank", &MarkedAbelianGroup::snfRank, rdoc::snfRank)
.def("countInvariantFactors",
&MarkedAbelianGroup::countInvariantFactors,
rdoc::countInvariantFactors)
.def("invariantFactor", &MarkedAbelianGroup::invariantFactor,
rdoc::invariantFactor)
.def("unmarked", &MarkedAbelianGroup::unmarked, rdoc::unmarked)
.def("isTrivial", &MarkedAbelianGroup::isTrivial, rdoc::isTrivial)
.def("isZ", &MarkedAbelianGroup::isZ, rdoc::isZ)
.def("isIsomorphicTo", &MarkedAbelianGroup::isIsomorphicTo,
rdoc::isIsomorphicTo)
.def("freeRep", &MarkedAbelianGroup::freeRep, rdoc::freeRep)
.def("torsionRep", &MarkedAbelianGroup::torsionRep, rdoc::torsionRep)
// Below, the overloads that take a std::vector must come *last*,
// since otherwise it treats func(x) as func([x]) never sees
// the non-vector version.
.def("ccRep", overload_cast<size_t>(
&MarkedAbelianGroup::ccRep, pybind11::const_), rdoc::ccRep_2)
.def("ccRep", overload_cast<const regina::Vector<Integer>&>(
&MarkedAbelianGroup::ccRep, pybind11::const_), rdoc::ccRep)
.def("cycleProjection", overload_cast<size_t>(
&MarkedAbelianGroup::cycleProjection, pybind11::const_),
rdoc::cycleProjection_2)
.def("cycleProjection", overload_cast<const regina::Vector<Integer>&>(
&MarkedAbelianGroup::cycleProjection, pybind11::const_),
rdoc::cycleProjection)
.def("isCycle", &MarkedAbelianGroup::isCycle, rdoc::isCycle)
.def("boundaryOf", &MarkedAbelianGroup::boundaryOf, rdoc::boundaryOf)
.def("isBoundary", &MarkedAbelianGroup::isBoundary, rdoc::isBoundary)
.def("asBoundary", &MarkedAbelianGroup::asBoundary, rdoc::asBoundary)
.def("snfRep", &MarkedAbelianGroup::snfRep, rdoc::snfRep)
.def("ccRank", &MarkedAbelianGroup::ccRank, rdoc::ccRank)
.def("cycleRank", &MarkedAbelianGroup::cycleRank, rdoc::cycleRank)
.def("cycleGen", &MarkedAbelianGroup::cycleGen, rdoc::cycleGen)
.def("m", &MarkedAbelianGroup::m,
pybind11::return_value_policy::reference_internal, rdoc::m)
.def("n", &MarkedAbelianGroup::n,
pybind11::return_value_policy::reference_internal, rdoc::n)
.def("coefficients", &MarkedAbelianGroup::coefficients,
rdoc::coefficients)
.def("torsionSubgroup", &MarkedAbelianGroup::torsionSubgroup,
rdoc::torsionSubgroup)
.def("torsionInclusion", &MarkedAbelianGroup::torsionInclusion,
rdoc::torsionInclusion)
;
regina::python::add_output(c1);
regina::python::add_eq_operators(c1, rdoc::__eq);
regina::python::add_global_swap<MarkedAbelianGroup>(m, rdoc::global_swap);
RDOC_SCOPE_SWITCH(HomMarkedAbelianGroup)
auto c2 = pybind11::class_<HomMarkedAbelianGroup>(m,
"HomMarkedAbelianGroup", rdoc_scope)
.def(pybind11::init<const MarkedAbelianGroup&,
const MarkedAbelianGroup&, const MatrixInt&>(), rdoc::__init)
.def(pybind11::init<const HomMarkedAbelianGroup&>(), rdoc::__copy)
.def("swap", &HomMarkedAbelianGroup::swap, rdoc::swap)
.def("isChainMap", &HomMarkedAbelianGroup::isChainMap, rdoc::isChainMap)
.def("isCycleMap", &HomMarkedAbelianGroup::isCycleMap, rdoc::isCycleMap)
.def("isEpic", &HomMarkedAbelianGroup::isEpic, rdoc::isEpic)
.def("isMonic", &HomMarkedAbelianGroup::isMonic, rdoc::isMonic)
.def("isIsomorphism", &HomMarkedAbelianGroup::isIsomorphism,
rdoc::isIsomorphism)
.def("isIdentity", &HomMarkedAbelianGroup::isIdentity, rdoc::isIdentity)
.def("isZero", &HomMarkedAbelianGroup::isZero, rdoc::isZero)
.def("kernel", &HomMarkedAbelianGroup::kernel,
pybind11::return_value_policy::reference_internal, rdoc::kernel)
.def("cokernel", &HomMarkedAbelianGroup::cokernel,
pybind11::return_value_policy::reference_internal, rdoc::cokernel)
.def("image", &HomMarkedAbelianGroup::image,
pybind11::return_value_policy::reference_internal, rdoc::image)
.def("domain", &HomMarkedAbelianGroup::domain,
pybind11::return_value_policy::reference_internal, rdoc::domain)
.def("codomain", &HomMarkedAbelianGroup::codomain,
pybind11::return_value_policy::reference_internal, rdoc::codomain)
.def("definingMatrix", &HomMarkedAbelianGroup::definingMatrix,
pybind11::return_value_policy::reference_internal,
rdoc::definingMatrix)
.def("reducedMatrix", &HomMarkedAbelianGroup::reducedMatrix,
pybind11::return_value_policy::reference_internal,
rdoc::reducedMatrix)
.def("summary", pybind11::overload_cast<>(
&HomMarkedAbelianGroup::summary, pybind11::const_), rdoc::summary)
.def("torsionSubgroup", &HomMarkedAbelianGroup::torsionSubgroup,
rdoc::torsionSubgroup)
.def("evalCC", &HomMarkedAbelianGroup::evalCC, rdoc::evalCC)
.def("evalSNF", &HomMarkedAbelianGroup::evalSNF, rdoc::evalSNF)
.def("inverseHom", &HomMarkedAbelianGroup::inverseHom, rdoc::inverseHom)
.def(pybind11::self * pybind11::self, rdoc::__mul)
;
regina::python::add_output(c2);
// Deciding what we want comparisons to *mean* requires some thought.
// Let's not make a decision now that we might regret later.
regina::python::disable_eq_operators(c2);
regina::python::add_global_swap<HomMarkedAbelianGroup>(m,
rdoc::global_swap);
RDOC_SCOPE_END
}
|