1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
|
/**************************************************************************
* *
* Regina - A Normal Surface Theory Calculator *
* Python Interface *
* *
* Copyright (c) 1999-2025, Ben Burton *
* For further details contact Ben Burton (bab@debian.org). *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation; either version 2 of the *
* License, or (at your option) any later version. *
* *
* As an exception, when this program is distributed through (i) the *
* App Store by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or *
* (iii) Google Play by Google Inc., then that store may impose any *
* digital rights management, device limits and/or redistribution *
* restrictions that are required by its terms of service. *
* *
* This program is distributed in the hope that it will be useful, but *
* WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
* General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <https://www.gnu.org/licenses/>. *
* *
**************************************************************************/
#include "regina-config.h" // for REGINA_PYBIND11_VERSION
#include "pybind11/pybind11.h"
#if REGINA_PYBIND11_VERSION == 3
#include <pybind11/native_enum.h>
#endif
#include "core/engine.h"
#include "triangulation/generic.h" // for TriangleType
#include "helpers.h"
#include "docstrings/core/engine.h"
#include "docstrings/core/regina-core.h"
#include "docstrings/python/equality.h"
#include "docstrings/triangulation/detail/face.h" // for TriangleType
// Additional headers for timeExceptions():
#include "maths/perm.h"
#include <chrono>
// Docstrings that are generated once but need to be reused across many
// source files:
namespace regina::python::doc::common {
// Note: docstrings should be wrapped at 70 characters per line;
// the hard maximum is 72.
const char* neq_value =
R"doc(Determines whether this and the given object have different values.
This operator ``x != y`` is generated automatically, as the negation
of ``x == y``.
This test compares the _contents_ of the two objects (i.e., it
compares by value, not by reference). See the documentation for the
corresponding equality test (i.e., the member function ``__eq__``)
for full details on how objects of this type will be compared.)doc";
const char* eq_reference =
R"doc(Determines whether this and the given Python wrapper refer to the same
underlying object in Regina's calculation engine.
Note that most of Regina's classes do **not** test equality in this
way; instead they use value semantics (i.e., the == and != operators
compare the *contents* of the two objects). This class is one of the
few exceptions that uses reference semantics, as explained below.
Regina's calculation engine is written in C++, not Python. It is
therefore possible to have several different Python objects that are
all thin wrappers around the same underlying C++ object (so changes to
any one of these objects will be reflected in all of them). The
operators == and != for this class will test for exactly this scenario.
Essentially, these tests are similar in spirit to the Python test
``x is y``, but instead of looking at the Python wrappers they look at
the underlying C++ objects in the calculation engine. In particular,
as noted above, it is possible to have two different Python wrappers
(so ``x is y`` is false) that refer to the same underlying C++ object
(so ``x == y`` is true).)doc";
const char* neq_reference =
R"doc(Determines whether this and the given Python wrapper refer to different
underlying objects in Regina's calculation engine.
Note that most of Regina's classes do **not** test equality in this
way; instead they use value semantics (i.e., the == and != operators
compare the *contents* of the two objects). This class is one of the
few exceptions that uses reference semantics, as explained below.
Regina's calculation engine is written in C++, not Python. It is
therefore possible to have several different Python objects that are
all thin wrappers around the same underlying C++ object (so changes to
any one of these objects will be reflected in all of them). The
operators == and != for this class will test for exactly this scenario.
Essentially, these tests are similar in spirit to the Python test
``x is y``, but instead of looking at the Python wrappers they look at
the underlying C++ objects in the calculation engine. In particular,
as noted above, it is possible to have two different Python wrappers
(so ``x is y`` is false) that refer to the same underlying C++ object
(so ``x == y`` is true).)doc";
const char* eq_None =
R"doc(Always returns ``False``, since an object of this type is never equal
to ``None``.)doc";
const char* neq_None =
R"doc(Always returns ``True``, since an object of this type is never equal
to ``None``.)doc";
const char* eq_disabled =
R"doc(Disabled for objects of this type.
Objects of this type use value semantics, which means that the
operators == and != should compare by value (i.e., they test whether
two objects have the same contents). However, Regina does not
currently implement such a test for objects of this type.)doc";
const char* eq_packet_disabled =
R"doc(Disabled for packets of this type.
The operators == and != compare packet contents by value (i.e., they
test whether two packets have the same contents). However, Regina does
not currently implement such a test for packets of this type.
To test whether two Python objects refer to the same underlying packet,
use Packet.samePacket() instead.)doc";
const char* eq_packet_invalid =
R"doc(Disabled for packets of different types.
The operators == and != compare packet contents by value, and therefore
can only be used to compare two packets of the same type.
To test whether two Python objects refer to the same underlying packet,
use Packet.samePacket() instead.)doc";
const char* eq_none_static =
R"doc(Disabled in Regina.
Objects of this type cannot be created, and so cannot be compared.)doc";
const char* eq_none_abstract =
R"doc(Disabled in Regina.
This is an abstract base class, and so objects of this base class
cannot be created directly. Instead its various subclasses are
responsible for providing their own comparison operators == and !=.)doc";
const char* bool_enum_for_flags =
R"doc(Determines whether this flag has a non-zero numerical value.
A zero flag will have no effect when it is combined with other flags
using bitwise OR or XOR.
Returns:
``True`` if this is a non-zero flag, or ``False`` if this is a
zero flag.)doc";
const char* todo =
R"doc(The Python documentation for this class or function has not yet been
extracted from the C++ source code. Please inform the Regina developers
about this omission.)doc";
}
void addAlgebraClasses(pybind11::module_& m);
void addAngleClasses(pybind11::module_& m);
void addCensusClasses(pybind11::module_& m);
void addDim2Classes(pybind11::module_& m, pybind11::module_& internal);
void addDim4Classes(pybind11::module_& m, pybind11::module_& internal);
void addEnumerateClasses(pybind11::module_& m);
void addFileClasses(pybind11::module_& m);
void addForeignClasses(pybind11::module_& m);
void addGenericClasses(pybind11::module_& m, pybind11::module_& internal);
void addHypersurfaceClasses(pybind11::module_& m);
void addLinkClasses(pybind11::module_& m, pybind11::module_& internal);
void addManifoldClasses(pybind11::module_& m);
void addMathsClasses(pybind11::module_& m);
void addPacketClasses(pybind11::module_& m);
void addProgressClasses(pybind11::module_& m);
void addSnapPeaClasses(pybind11::module_& m, pybind11::module_& internal);
void addSplitClasses(pybind11::module_& m);
void addSubcomplexClasses(pybind11::module_& m);
void addSurfaceClasses(pybind11::module_& m, pybind11::module_& internal);
void addTreewidthClasses(pybind11::module_& m);
void addTriangulationClasses(pybind11::module_& m, pybind11::module_& internal);
void addUtilitiesClasses(pybind11::module_& m);
void addSageHacks();
namespace {
std::string welcome() {
return std::string(PACKAGE_STRING) +
"\nSoftware for low-dimensional topology" +
"\nCopyright (c) 1999-2025, The Regina development team";
}
}
#ifndef REGINA_LINK_MODULE_INTO_EXECUTABLE
// This is the normal situation: the C++ module is built as the extension
// regina/engine.so, which is loaded at runtime from regina/__init__.py.
// All of regina's classes live in the module regina.engine, and are
// automatically imported into the module regina by regina/__init__.py.
#if REGINA_PYBIND11_VERSION == 3
PYBIND11_MODULE(engine, m,
pybind11::multiple_interpreters::per_interpreter_gil()) {
#elif REGINA_PYBIND11_VERSION == 2
PYBIND11_MODULE(engine, m) {
#else
#error "Unsupported pybind11 version"
#endif
#else
// This is a special case where the C++ module is linked into Regina's main
// executable at compile time (specifically, this happens on iOS).
// Nothing is loaded at runtime from the filesystem; there is no __init__.py,
// and all of Regina's classes live directly in the module regina.
#if REGINA_PYBIND11_VERSION == 3
PYBIND11_MODULE(regina, m
pybind11::multiple_interpreters::per_interpreter_gil()) {
#elif REGINA_PYBIND11_VERSION == 2
PYBIND11_MODULE(regina, m) {
#else
#error "Unsupported pybind11 version"
#endif
#endif
auto internal = m.def_submodule("internal",
R"doc(Implementation details for Regina.
End users should not need to explicitly refer to any of the classes
or functions within the submodule regina.internal.)doc");
// Welcome string:
m.def("welcome", welcome,
R"doc(Returns a multi-line welcome string that can be used as a banner for
a new Python session.)doc");
// Wrappers for regina::python helpers:
RDOC_SCOPE_BEGIN(python::EqualityType)
using EqualityType = regina::python::EqualityType;
#if REGINA_PYBIND11_VERSION == 3
pybind11::native_enum<EqualityType>(m, "EqualityType", "enum.Enum",
rdoc_scope)
#elif REGINA_PYBIND11_VERSION == 2
pybind11::enum_<EqualityType>(m, "EqualityType", rdoc_scope)
#endif
.value("BY_VALUE", EqualityType::BY_VALUE, rdoc::BY_VALUE)
.value("BY_REFERENCE", EqualityType::BY_REFERENCE, rdoc::BY_REFERENCE)
.value("NEVER_INSTANTIATED", EqualityType::NEVER_INSTANTIATED,
rdoc::NEVER_INSTANTIATED)
.value("DISABLED", EqualityType::DISABLED, rdoc::DISABLED)
#if REGINA_PYBIND11_VERSION == 3
.finalize()
#endif
;
// Core engine routines:
RDOC_SCOPE_SWITCH_MAIN
// From regina-core.h:
m.def("standardDim", regina::standardDim, rdoc::standardDim);
m.def("maxDim", regina::maxDim, rdoc::maxDim);
// From core/engine.h:
m.def("versionString", regina::versionString, rdoc::versionString);
m.def("versionMajor", regina::versionMajor, rdoc::versionMajor);
m.def("versionMinor", regina::versionMinor, rdoc::versionMinor);
m.def("buildInfo", regina::buildInfo, rdoc::buildInfo);
m.def("versionUsesUTF8", regina::versionUsesUTF8, rdoc::versionUsesUTF8);
m.def("versionSnapPy", regina::versionSnapPy, rdoc::versionSnapPy);
m.def("versionSnapPea", regina::versionSnapPea, rdoc::versionSnapPea);
m.def("versionPybind11Major", []() {
return REGINA_PYBIND11_VERSION;
}, rdoc::versionPybind11Major);
m.def("hasInt128", regina::hasInt128, rdoc::hasInt128);
m.def("politeThreads", regina::politeThreads, rdoc::politeThreads);
m.def("testEngine", regina::testEngine, rdoc::testEngine);
// Python-only:
m.def("timeExceptions", []() {
auto t0 = std::chrono::system_clock::now();
try {
// Use a routine that does a bit of work and throws an exception.
// We can be reasonably confident that the compiler hasn't
// optimised away the try/catch block.
regina::Perm<2>::tightDecoding("_");
} catch (const regina::InvalidArgument&) {
}
auto t1 = std::chrono::system_clock::now();
{
// A case where no exception gets thrown, for comparison.
regina::Perm<2>::tightDecoding("!"); // identity permutation
}
auto t2 = std::chrono::system_clock::now();
try {
throw regina::FailedPrecondition("Oops!");
} catch (const regina::FailedPrecondition&) {
}
auto t3 = std::chrono::system_clock::now();
try {
throw pybind11::stop_iteration();
} catch (const pybind11::stop_iteration&) {
}
auto t4 = std::chrono::system_clock::now();
using tick = std::chrono::microseconds;
return std::make_tuple(
std::chrono::duration_cast<tick>(t1 - t0).count(),
std::chrono::duration_cast<tick>(t2 - t1).count(),
std::chrono::duration_cast<tick>(t3 - t2).count(),
std::chrono::duration_cast<tick>(t4 - t3).count());
}, R"doc(Diagnostic routine to test the performance of C++ exceptions.
This routine performs several C++ operations, most involving try/catch
blocks using either Regina or pybind11 exceptions, and measures their
running times.
Returns:
A tuple giving the elapsed time for each operation, measured in
microseconds. The size of this tuple, as well as the specific
operations performed, are subject to change in future versions of
Regina.)doc");
RDOC_SCOPE_SWITCH(Algorithm)
#if REGINA_PYBIND11_VERSION == 3
pybind11::native_enum<regina::Algorithm>(m, "Algorithm", "enum.Enum",
rdoc_scope)
#elif REGINA_PYBIND11_VERSION == 2
pybind11::enum_<regina::Algorithm>(m, "Algorithm", rdoc_scope)
#endif
.value("Default", regina::Algorithm::Default, rdoc::Default)
.value("Backtrack", regina::Algorithm::Backtrack, rdoc::Backtrack)
.value("Treewidth", regina::Algorithm::Treewidth, rdoc::Treewidth)
.value("Naive", regina::Algorithm::Naive, rdoc::Naive)
#if REGINA_PYBIND11_VERSION == 3
.finalize()
#endif
;
// Deprecated constants:
m.attr("ALG_DEFAULT") = regina::Algorithm::Default;
m.attr("ALG_BACKTRACK") = regina::Algorithm::Backtrack;
m.attr("ALG_TREEWIDTH") = regina::Algorithm::Treewidth;
m.attr("ALG_NAIVE") = regina::Algorithm::Naive;
RDOC_SCOPE_SWITCH(Language)
#if REGINA_PYBIND11_VERSION == 3
pybind11::native_enum<regina::Language>(m, "Language", "enum.Enum",
rdoc_scope)
#elif REGINA_PYBIND11_VERSION == 2
pybind11::enum_<regina::Language>(m, "Language", rdoc_scope)
#endif
.value("Cxx", regina::Language::Cxx, rdoc::Cxx)
.value("Python", regina::Language::Python, rdoc::Python)
.value("Current",
// In Python this should evaluate to Language::Python, but when
// writing C++ code (as we are here) it evaluates to Language::Cxx.
// We therefore hard-code its value as Language::Python below.
regina::Language::Python,
rdoc::Current)
#if REGINA_PYBIND11_VERSION == 3
.finalize()
#endif
;
RDOC_SCOPE_SWITCH(TriangleType)
#if REGINA_PYBIND11_VERSION == 3
pybind11::native_enum<regina::TriangleType>(m, "TriangleType",
"enum.Enum", rdoc_scope)
#elif REGINA_PYBIND11_VERSION == 2
pybind11::enum_<regina::TriangleType>(m, "TriangleType", rdoc_scope)
#endif
.value("Unknown", regina::TriangleType::Unknown, rdoc::Unknown)
.value("Triangle", regina::TriangleType::Triangle, rdoc::Triangle)
.value("Scarf", regina::TriangleType::Scarf, rdoc::Scarf)
.value("Parachute", regina::TriangleType::Parachute, rdoc::Parachute)
.value("Cone", regina::TriangleType::Cone, rdoc::Cone)
.value("Mobius", regina::TriangleType::Mobius, rdoc::Mobius)
.value("Horn", regina::TriangleType::Horn, rdoc::Horn)
.value("DunceHat", regina::TriangleType::DunceHat, rdoc::DunceHat)
.value("L31", regina::TriangleType::L31, rdoc::L31)
#if REGINA_PYBIND11_VERSION == 3
.finalize()
#endif
;
RDOC_SCOPE_END
// Components from subdirectories, which appear in order of dependency:
//
// - In some cases the bindings require this; in particular, when a value
// has to be converted to Python immediately. This can happen (for
// instance) when setting default arguments or class constants, in
// which case the type of the value being set must already be available.
// A failure here will mean the Python module cannot load (and so will
// be picked up by the test suite).
//
// - For docstrings with abbreviated type names (e.g., Integer instead of
// IntegerBase<false>), the type should be already available in order
// for the docstrings to use them in the function signatures.
// A failure here will simply lead to less-readable docstrints (and so
// will not be picked up automatically by our tests).
addFileClasses(m); // Provides FileFormat, which is used later
addMathsClasses(m);
addUtilitiesClasses(m);
addProgressClasses(m);
addAlgebraClasses(m);
addPacketClasses(m);
addDim2Classes(m, internal);
addTriangulationClasses(m, internal);
addLinkClasses(m, internal); // Needs to come _before_ dim4 classes
addDim4Classes(m, internal);
addGenericClasses(m, internal);
addCensusClasses(m);
addForeignClasses(m);
addSplitClasses(m);
addSnapPeaClasses(m, internal);
addSubcomplexClasses(m);
addManifoldClasses(m);
addAngleClasses(m);
addSurfaceClasses(m, internal);
addHypersurfaceClasses(m);
addTreewidthClasses(m);
addEnumerateClasses(m);
// This routine allows the user to import sage-related hacks, which
// are not included by default in regina's python module.
m.def("_addSageHacks", &addSageHacks,
R"doc(Modifies Regina's Python module to be suitable for use within SageMath.
Since Regina 5.96, this routine does nothing at all. The future of
this function is uncertain: it may be given a purpose again in some
future release of Regina, or it may eventually be removed completely.)doc");
}
|