File: struct_smart_holder.h

package info (click to toggle)
regina-normal 7.4.1-1.1
  • links: PTS
  • area: main
  • in suites: forky, sid
  • size: 154,244 kB
  • sloc: cpp: 295,026; xml: 9,992; sh: 1,344; python: 1,225; perl: 616; ansic: 138; makefile: 26
file content (378 lines) | stat: -rw-r--r-- 15,072 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Copyright (c) 2020-2024 The Pybind Development Team.
// All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.

/* Proof-of-Concept for smart pointer interoperability.

High-level aspects:

* Support all `unique_ptr`, `shared_ptr` interops that are feasible.

* Cleanly and clearly report all interops that are infeasible.

* Meant to fit into a `PyObject`, as a holder for C++ objects.

* Support a system design that makes it impossible to trigger
  C++ Undefined Behavior, especially from Python.

* Support a system design with clean runtime inheritance casting. From this
  it follows that the `smart_holder` needs to be type-erased (`void*`).

* Handling of RTTI for the type-erased held pointer is NOT implemented here.
  It is the responsibility of the caller to ensure that `static_cast<T *>`
  is well-formed when calling `as_*` member functions. Inheritance casting
  needs to be handled in a different layer (similar to the code organization
  in boost/python/object/inheritance.hpp).

Details:

* The "root holder" chosen here is a `shared_ptr<void>` (named `vptr` in this
  implementation). This choice is practically inevitable because `shared_ptr`
  has only very limited support for inspecting and accessing its deleter.

* If created from a raw pointer, or a `unique_ptr` without a custom deleter,
  `vptr` always uses a custom deleter, to support `unique_ptr`-like disowning.
  The custom deleters could be extended to included life-time management for
  external objects (e.g. `PyObject`).

* If created from an external `shared_ptr`, or a `unique_ptr` with a custom
  deleter, including life-time management for external objects is infeasible.

* By choice, the smart_holder is movable but not copyable, to keep the design
  simple, and to guard against accidental copying overhead.

* The `void_cast_raw_ptr` option is needed to make the `smart_holder` `vptr`
  member invisible to the `shared_from_this` mechanism, in case the lifetime
  of a `PyObject` is tied to the pointee.
*/

#pragma once

#include "pybind11_namespace_macros.h"

#include <cstring>
#include <functional>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <typeinfo>
#include <utility>

PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(memory)

// Default fallback.
static constexpr bool type_has_shared_from_this(...) { return false; }

// This overload uses SFINAE to skip enable_shared_from_this checks when the
// base is inaccessible (e.g. private inheritance).
template <typename T>
static auto type_has_shared_from_this(const T *ptr)
    -> decltype(static_cast<const std::enable_shared_from_this<T> *>(ptr), true) {
    return true;
}

// Inaccessible base → substitution failure → fallback overload selected
template <typename T>
static constexpr bool type_has_shared_from_this(const void *) {
    return false;
}

struct guarded_delete {
    // NOTE: PYBIND11_INTERNALS_VERSION needs to be bumped if changes are made to this struct.
    std::weak_ptr<void> released_ptr;    // Trick to keep the smart_holder memory footprint small.
    std::function<void(void *)> del_fun; // Rare case.
    void (*del_ptr)(void *);             // Common case.
    bool use_del_fun;
    bool armed_flag;
    guarded_delete(std::function<void(void *)> &&del_fun, bool armed_flag)
        : del_fun{std::move(del_fun)}, del_ptr{nullptr}, use_del_fun{true},
          armed_flag{armed_flag} {}
    guarded_delete(void (*del_ptr)(void *), bool armed_flag)
        : del_ptr{del_ptr}, use_del_fun{false}, armed_flag{armed_flag} {}
    void operator()(void *raw_ptr) const {
        if (armed_flag) {
            if (use_del_fun) {
                del_fun(raw_ptr);
            } else {
                del_ptr(raw_ptr);
            }
        }
    }
};

inline guarded_delete *get_guarded_delete(const std::shared_ptr<void> &ptr) {
    return std::get_deleter<guarded_delete>(ptr);
}

using get_guarded_delete_fn = guarded_delete *(*) (const std::shared_ptr<void> &);

template <typename T, typename std::enable_if<std::is_destructible<T>::value, int>::type = 0>
inline void std_default_delete_if_destructible(void *raw_ptr) {
    std::default_delete<T>{}(static_cast<T *>(raw_ptr));
}

template <typename T, typename std::enable_if<!std::is_destructible<T>::value, int>::type = 0>
inline void std_default_delete_if_destructible(void *) {
    // This noop operator is needed to avoid a compilation error (for `delete raw_ptr;`), but
    // throwing an exception from a destructor will std::terminate the process. Therefore the
    // runtime check for lifetime-management correctness is implemented elsewhere (in
    // ensure_pointee_is_destructible()).
}

template <typename T>
guarded_delete make_guarded_std_default_delete(bool armed_flag) {
    return guarded_delete(std_default_delete_if_destructible<T>, armed_flag);
}

template <typename T, typename D>
struct custom_deleter {
    // NOTE: PYBIND11_INTERNALS_VERSION needs to be bumped if changes are made to this struct.
    D deleter;
    explicit custom_deleter(D &&deleter) : deleter{std::forward<D>(deleter)} {}
    void operator()(void *raw_ptr) { deleter(static_cast<T *>(raw_ptr)); }
};

template <typename T, typename D>
guarded_delete make_guarded_custom_deleter(D &&uqp_del, bool armed_flag) {
    return guarded_delete(
        std::function<void(void *)>(custom_deleter<T, D>(std::forward<D>(uqp_del))), armed_flag);
}

template <typename T, typename D>
constexpr bool uqp_del_is_std_default_delete() {
    return std::is_same<D, std::default_delete<T>>::value
           || std::is_same<D, std::default_delete<T const>>::value;
}

inline bool type_info_equal_across_dso_boundaries(const std::type_info &a,
                                                  const std::type_info &b) {
    // RTTI pointer comparison may fail across DSOs (e.g., macOS libc++).
    // Fallback to name comparison, which is generally safe and ABI-stable enough for our use.
    return a == b || std::strcmp(a.name(), b.name()) == 0;
}

struct smart_holder {
    // NOTE: PYBIND11_INTERNALS_VERSION needs to be bumped if changes are made to this struct.
    const std::type_info *rtti_uqp_del = nullptr;
    std::shared_ptr<void> vptr;
    bool vptr_is_using_noop_deleter : 1;
    bool vptr_is_using_std_default_delete : 1;
    bool vptr_is_external_shared_ptr : 1;
    bool is_populated : 1;
    bool is_disowned : 1;

    // Design choice: smart_holder is movable but not copyable.
    smart_holder(smart_holder &&) = default;
    smart_holder(const smart_holder &) = delete;
    smart_holder &operator=(smart_holder &&) = delete;
    smart_holder &operator=(const smart_holder &) = delete;

    smart_holder()
        : vptr_is_using_noop_deleter{false}, vptr_is_using_std_default_delete{false},
          vptr_is_external_shared_ptr{false}, is_populated{false}, is_disowned{false} {}

    bool has_pointee() const { return vptr != nullptr; }

    template <typename T>
    static void ensure_pointee_is_destructible(const char *context) {
        if (!std::is_destructible<T>::value) {
            throw std::invalid_argument(std::string("Pointee is not destructible (") + context
                                        + ").");
        }
    }

    void ensure_is_populated(const char *context) const {
        if (!is_populated) {
            throw std::runtime_error(std::string("Unpopulated holder (") + context + ").");
        }
    }
    void ensure_is_not_disowned(const char *context) const {
        if (is_disowned) {
            throw std::runtime_error(std::string("Holder was disowned already (") + context
                                     + ").");
        }
    }

    void ensure_vptr_is_using_std_default_delete(const char *context) const {
        if (vptr_is_external_shared_ptr) {
            throw std::invalid_argument(std::string("Cannot disown external shared_ptr (")
                                        + context + ").");
        }
        if (vptr_is_using_noop_deleter) {
            throw std::invalid_argument(std::string("Cannot disown non-owning holder (") + context
                                        + ").");
        }
        if (!vptr_is_using_std_default_delete) {
            throw std::invalid_argument(std::string("Cannot disown custom deleter (") + context
                                        + ").");
        }
    }

    template <typename T, typename D>
    void ensure_compatible_uqp_del(const char *context) const {
        if (!rtti_uqp_del) {
            if (!uqp_del_is_std_default_delete<T, D>()) {
                throw std::invalid_argument(std::string("Missing unique_ptr deleter (") + context
                                            + ").");
            }
            ensure_vptr_is_using_std_default_delete(context);
            return;
        }
        if (uqp_del_is_std_default_delete<T, D>() && vptr_is_using_std_default_delete) {
            return;
        }
        if (!type_info_equal_across_dso_boundaries(typeid(D), *rtti_uqp_del)) {
            throw std::invalid_argument(std::string("Incompatible unique_ptr deleter (") + context
                                        + ").");
        }
    }

    void ensure_has_pointee(const char *context) const {
        if (!has_pointee()) {
            throw std::invalid_argument(std::string("Disowned holder (") + context + ").");
        }
    }

    void ensure_use_count_1(const char *context) const {
        if (vptr == nullptr) {
            throw std::invalid_argument(std::string("Cannot disown nullptr (") + context + ").");
        }
        // In multithreaded environments accessing use_count can lead to
        // race conditions, but in the context of Python it is a bug (elsewhere)
        // if the Global Interpreter Lock (GIL) is not being held when this code
        // is reached.
        // PYBIND11:REMINDER: This may need to be protected by a mutex in free-threaded Python.
        if (vptr.use_count() != 1) {
            throw std::invalid_argument(std::string("Cannot disown use_count != 1 (") + context
                                        + ").");
        }
    }

    void reset_vptr_deleter_armed_flag(const get_guarded_delete_fn ggd_fn, bool armed_flag) const {
        auto *gd = ggd_fn(vptr);
        if (gd == nullptr) {
            throw std::runtime_error(
                "smart_holder::reset_vptr_deleter_armed_flag() called in an invalid context.");
        }
        gd->armed_flag = armed_flag;
    }

    // Caller is responsible for precondition: ensure_compatible_uqp_del<T, D>() must succeed.
    template <typename T, typename D>
    std::unique_ptr<D> extract_deleter(const char *context,
                                       const get_guarded_delete_fn ggd_fn) const {
        auto *gd = ggd_fn(vptr);
        if (gd && gd->use_del_fun) {
            const auto &custom_deleter_ptr = gd->del_fun.template target<custom_deleter<T, D>>();
            if (custom_deleter_ptr == nullptr) {
                throw std::runtime_error(
                    std::string("smart_holder::extract_deleter() precondition failure (") + context
                    + ").");
            }
            static_assert(std::is_copy_constructible<D>::value,
                          "Required for compatibility with smart_holder functionality.");
            return std::unique_ptr<D>(new D(custom_deleter_ptr->deleter));
        }
        return nullptr;
    }

    static smart_holder from_raw_ptr_unowned(void *raw_ptr) {
        smart_holder hld;
        hld.vptr.reset(raw_ptr, [](void *) {});
        hld.vptr_is_using_noop_deleter = true;
        hld.is_populated = true;
        return hld;
    }

    template <typename T>
    T *as_raw_ptr_unowned() const {
        return static_cast<T *>(vptr.get());
    }

    template <typename T>
    static smart_holder from_raw_ptr_take_ownership(T *raw_ptr, bool void_cast_raw_ptr = false) {
        ensure_pointee_is_destructible<T>("from_raw_ptr_take_ownership");
        smart_holder hld;
        auto gd = make_guarded_std_default_delete<T>(true);
        if (void_cast_raw_ptr) {
            hld.vptr.reset(static_cast<void *>(raw_ptr), std::move(gd));
        } else {
            hld.vptr.reset(raw_ptr, std::move(gd));
        }
        hld.vptr_is_using_std_default_delete = true;
        hld.is_populated = true;
        return hld;
    }

    // Caller is responsible for ensuring the complex preconditions
    // (see `smart_holder_type_caster_support::load_helper`).
    void disown(const get_guarded_delete_fn ggd_fn) {
        reset_vptr_deleter_armed_flag(ggd_fn, false);
        is_disowned = true;
    }

    // Caller is responsible for ensuring the complex preconditions
    // (see `smart_holder_type_caster_support::load_helper`).
    void reclaim_disowned(const get_guarded_delete_fn ggd_fn) {
        reset_vptr_deleter_armed_flag(ggd_fn, true);
        is_disowned = false;
    }

    // Caller is responsible for ensuring the complex preconditions
    // (see `smart_holder_type_caster_support::load_helper`).
    void release_disowned() { vptr.reset(); }

    void ensure_can_release_ownership(const char *context = "ensure_can_release_ownership") const {
        ensure_is_not_disowned(context);
        ensure_vptr_is_using_std_default_delete(context);
        ensure_use_count_1(context);
    }

    // Caller is responsible for ensuring the complex preconditions
    // (see `smart_holder_type_caster_support::load_helper`).
    void release_ownership(const get_guarded_delete_fn ggd_fn) {
        reset_vptr_deleter_armed_flag(ggd_fn, false);
        release_disowned();
    }

    template <typename T, typename D>
    static smart_holder from_unique_ptr(std::unique_ptr<T, D> &&unq_ptr,
                                        void *void_ptr = nullptr) {
        smart_holder hld;
        hld.rtti_uqp_del = &typeid(D);
        hld.vptr_is_using_std_default_delete = uqp_del_is_std_default_delete<T, D>();
        guarded_delete gd{nullptr, false};
        if (hld.vptr_is_using_std_default_delete) {
            gd = make_guarded_std_default_delete<T>(true);
        } else {
            gd = make_guarded_custom_deleter<T, D>(std::move(unq_ptr.get_deleter()), true);
        }
        if (void_ptr != nullptr) {
            hld.vptr.reset(void_ptr, std::move(gd));
        } else {
            hld.vptr.reset(unq_ptr.get(), std::move(gd));
        }
        (void) unq_ptr.release();
        hld.is_populated = true;
        return hld;
    }

    template <typename T>
    static smart_holder from_shared_ptr(const std::shared_ptr<T> &shd_ptr) {
        smart_holder hld;
        hld.vptr = std::static_pointer_cast<void>(shd_ptr);
        hld.vptr_is_external_shared_ptr = true;
        hld.is_populated = true;
        return hld;
    }

    template <typename T>
    std::shared_ptr<T> as_shared_ptr() const {
        return std::static_pointer_cast<T>(vptr);
    }
};

PYBIND11_NAMESPACE_END(memory)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)