1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
// Copyright (c) 2020-2024 The Pybind Development Team.
// All rights reserved. Use of this source code is governed by a
// BSD-style license that can be found in the LICENSE file.
/* Proof-of-Concept for smart pointer interoperability.
High-level aspects:
* Support all `unique_ptr`, `shared_ptr` interops that are feasible.
* Cleanly and clearly report all interops that are infeasible.
* Meant to fit into a `PyObject`, as a holder for C++ objects.
* Support a system design that makes it impossible to trigger
C++ Undefined Behavior, especially from Python.
* Support a system design with clean runtime inheritance casting. From this
it follows that the `smart_holder` needs to be type-erased (`void*`).
* Handling of RTTI for the type-erased held pointer is NOT implemented here.
It is the responsibility of the caller to ensure that `static_cast<T *>`
is well-formed when calling `as_*` member functions. Inheritance casting
needs to be handled in a different layer (similar to the code organization
in boost/python/object/inheritance.hpp).
Details:
* The "root holder" chosen here is a `shared_ptr<void>` (named `vptr` in this
implementation). This choice is practically inevitable because `shared_ptr`
has only very limited support for inspecting and accessing its deleter.
* If created from a raw pointer, or a `unique_ptr` without a custom deleter,
`vptr` always uses a custom deleter, to support `unique_ptr`-like disowning.
The custom deleters could be extended to included life-time management for
external objects (e.g. `PyObject`).
* If created from an external `shared_ptr`, or a `unique_ptr` with a custom
deleter, including life-time management for external objects is infeasible.
* By choice, the smart_holder is movable but not copyable, to keep the design
simple, and to guard against accidental copying overhead.
* The `void_cast_raw_ptr` option is needed to make the `smart_holder` `vptr`
member invisible to the `shared_from_this` mechanism, in case the lifetime
of a `PyObject` is tied to the pointee.
*/
#pragma once
#include "pybind11_namespace_macros.h"
#include <cstring>
#include <functional>
#include <memory>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <typeinfo>
#include <utility>
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
PYBIND11_NAMESPACE_BEGIN(memory)
// Default fallback.
static constexpr bool type_has_shared_from_this(...) { return false; }
// This overload uses SFINAE to skip enable_shared_from_this checks when the
// base is inaccessible (e.g. private inheritance).
template <typename T>
static auto type_has_shared_from_this(const T *ptr)
-> decltype(static_cast<const std::enable_shared_from_this<T> *>(ptr), true) {
return true;
}
// Inaccessible base → substitution failure → fallback overload selected
template <typename T>
static constexpr bool type_has_shared_from_this(const void *) {
return false;
}
struct guarded_delete {
// NOTE: PYBIND11_INTERNALS_VERSION needs to be bumped if changes are made to this struct.
std::weak_ptr<void> released_ptr; // Trick to keep the smart_holder memory footprint small.
std::function<void(void *)> del_fun; // Rare case.
void (*del_ptr)(void *); // Common case.
bool use_del_fun;
bool armed_flag;
guarded_delete(std::function<void(void *)> &&del_fun, bool armed_flag)
: del_fun{std::move(del_fun)}, del_ptr{nullptr}, use_del_fun{true},
armed_flag{armed_flag} {}
guarded_delete(void (*del_ptr)(void *), bool armed_flag)
: del_ptr{del_ptr}, use_del_fun{false}, armed_flag{armed_flag} {}
void operator()(void *raw_ptr) const {
if (armed_flag) {
if (use_del_fun) {
del_fun(raw_ptr);
} else {
del_ptr(raw_ptr);
}
}
}
};
inline guarded_delete *get_guarded_delete(const std::shared_ptr<void> &ptr) {
return std::get_deleter<guarded_delete>(ptr);
}
using get_guarded_delete_fn = guarded_delete *(*) (const std::shared_ptr<void> &);
template <typename T, typename std::enable_if<std::is_destructible<T>::value, int>::type = 0>
inline void std_default_delete_if_destructible(void *raw_ptr) {
std::default_delete<T>{}(static_cast<T *>(raw_ptr));
}
template <typename T, typename std::enable_if<!std::is_destructible<T>::value, int>::type = 0>
inline void std_default_delete_if_destructible(void *) {
// This noop operator is needed to avoid a compilation error (for `delete raw_ptr;`), but
// throwing an exception from a destructor will std::terminate the process. Therefore the
// runtime check for lifetime-management correctness is implemented elsewhere (in
// ensure_pointee_is_destructible()).
}
template <typename T>
guarded_delete make_guarded_std_default_delete(bool armed_flag) {
return guarded_delete(std_default_delete_if_destructible<T>, armed_flag);
}
template <typename T, typename D>
struct custom_deleter {
// NOTE: PYBIND11_INTERNALS_VERSION needs to be bumped if changes are made to this struct.
D deleter;
explicit custom_deleter(D &&deleter) : deleter{std::forward<D>(deleter)} {}
void operator()(void *raw_ptr) { deleter(static_cast<T *>(raw_ptr)); }
};
template <typename T, typename D>
guarded_delete make_guarded_custom_deleter(D &&uqp_del, bool armed_flag) {
return guarded_delete(
std::function<void(void *)>(custom_deleter<T, D>(std::forward<D>(uqp_del))), armed_flag);
}
template <typename T, typename D>
constexpr bool uqp_del_is_std_default_delete() {
return std::is_same<D, std::default_delete<T>>::value
|| std::is_same<D, std::default_delete<T const>>::value;
}
inline bool type_info_equal_across_dso_boundaries(const std::type_info &a,
const std::type_info &b) {
// RTTI pointer comparison may fail across DSOs (e.g., macOS libc++).
// Fallback to name comparison, which is generally safe and ABI-stable enough for our use.
return a == b || std::strcmp(a.name(), b.name()) == 0;
}
struct smart_holder {
// NOTE: PYBIND11_INTERNALS_VERSION needs to be bumped if changes are made to this struct.
const std::type_info *rtti_uqp_del = nullptr;
std::shared_ptr<void> vptr;
bool vptr_is_using_noop_deleter : 1;
bool vptr_is_using_std_default_delete : 1;
bool vptr_is_external_shared_ptr : 1;
bool is_populated : 1;
bool is_disowned : 1;
// Design choice: smart_holder is movable but not copyable.
smart_holder(smart_holder &&) = default;
smart_holder(const smart_holder &) = delete;
smart_holder &operator=(smart_holder &&) = delete;
smart_holder &operator=(const smart_holder &) = delete;
smart_holder()
: vptr_is_using_noop_deleter{false}, vptr_is_using_std_default_delete{false},
vptr_is_external_shared_ptr{false}, is_populated{false}, is_disowned{false} {}
bool has_pointee() const { return vptr != nullptr; }
template <typename T>
static void ensure_pointee_is_destructible(const char *context) {
if (!std::is_destructible<T>::value) {
throw std::invalid_argument(std::string("Pointee is not destructible (") + context
+ ").");
}
}
void ensure_is_populated(const char *context) const {
if (!is_populated) {
throw std::runtime_error(std::string("Unpopulated holder (") + context + ").");
}
}
void ensure_is_not_disowned(const char *context) const {
if (is_disowned) {
throw std::runtime_error(std::string("Holder was disowned already (") + context
+ ").");
}
}
void ensure_vptr_is_using_std_default_delete(const char *context) const {
if (vptr_is_external_shared_ptr) {
throw std::invalid_argument(std::string("Cannot disown external shared_ptr (")
+ context + ").");
}
if (vptr_is_using_noop_deleter) {
throw std::invalid_argument(std::string("Cannot disown non-owning holder (") + context
+ ").");
}
if (!vptr_is_using_std_default_delete) {
throw std::invalid_argument(std::string("Cannot disown custom deleter (") + context
+ ").");
}
}
template <typename T, typename D>
void ensure_compatible_uqp_del(const char *context) const {
if (!rtti_uqp_del) {
if (!uqp_del_is_std_default_delete<T, D>()) {
throw std::invalid_argument(std::string("Missing unique_ptr deleter (") + context
+ ").");
}
ensure_vptr_is_using_std_default_delete(context);
return;
}
if (uqp_del_is_std_default_delete<T, D>() && vptr_is_using_std_default_delete) {
return;
}
if (!type_info_equal_across_dso_boundaries(typeid(D), *rtti_uqp_del)) {
throw std::invalid_argument(std::string("Incompatible unique_ptr deleter (") + context
+ ").");
}
}
void ensure_has_pointee(const char *context) const {
if (!has_pointee()) {
throw std::invalid_argument(std::string("Disowned holder (") + context + ").");
}
}
void ensure_use_count_1(const char *context) const {
if (vptr == nullptr) {
throw std::invalid_argument(std::string("Cannot disown nullptr (") + context + ").");
}
// In multithreaded environments accessing use_count can lead to
// race conditions, but in the context of Python it is a bug (elsewhere)
// if the Global Interpreter Lock (GIL) is not being held when this code
// is reached.
// PYBIND11:REMINDER: This may need to be protected by a mutex in free-threaded Python.
if (vptr.use_count() != 1) {
throw std::invalid_argument(std::string("Cannot disown use_count != 1 (") + context
+ ").");
}
}
void reset_vptr_deleter_armed_flag(const get_guarded_delete_fn ggd_fn, bool armed_flag) const {
auto *gd = ggd_fn(vptr);
if (gd == nullptr) {
throw std::runtime_error(
"smart_holder::reset_vptr_deleter_armed_flag() called in an invalid context.");
}
gd->armed_flag = armed_flag;
}
// Caller is responsible for precondition: ensure_compatible_uqp_del<T, D>() must succeed.
template <typename T, typename D>
std::unique_ptr<D> extract_deleter(const char *context,
const get_guarded_delete_fn ggd_fn) const {
auto *gd = ggd_fn(vptr);
if (gd && gd->use_del_fun) {
const auto &custom_deleter_ptr = gd->del_fun.template target<custom_deleter<T, D>>();
if (custom_deleter_ptr == nullptr) {
throw std::runtime_error(
std::string("smart_holder::extract_deleter() precondition failure (") + context
+ ").");
}
static_assert(std::is_copy_constructible<D>::value,
"Required for compatibility with smart_holder functionality.");
return std::unique_ptr<D>(new D(custom_deleter_ptr->deleter));
}
return nullptr;
}
static smart_holder from_raw_ptr_unowned(void *raw_ptr) {
smart_holder hld;
hld.vptr.reset(raw_ptr, [](void *) {});
hld.vptr_is_using_noop_deleter = true;
hld.is_populated = true;
return hld;
}
template <typename T>
T *as_raw_ptr_unowned() const {
return static_cast<T *>(vptr.get());
}
template <typename T>
static smart_holder from_raw_ptr_take_ownership(T *raw_ptr, bool void_cast_raw_ptr = false) {
ensure_pointee_is_destructible<T>("from_raw_ptr_take_ownership");
smart_holder hld;
auto gd = make_guarded_std_default_delete<T>(true);
if (void_cast_raw_ptr) {
hld.vptr.reset(static_cast<void *>(raw_ptr), std::move(gd));
} else {
hld.vptr.reset(raw_ptr, std::move(gd));
}
hld.vptr_is_using_std_default_delete = true;
hld.is_populated = true;
return hld;
}
// Caller is responsible for ensuring the complex preconditions
// (see `smart_holder_type_caster_support::load_helper`).
void disown(const get_guarded_delete_fn ggd_fn) {
reset_vptr_deleter_armed_flag(ggd_fn, false);
is_disowned = true;
}
// Caller is responsible for ensuring the complex preconditions
// (see `smart_holder_type_caster_support::load_helper`).
void reclaim_disowned(const get_guarded_delete_fn ggd_fn) {
reset_vptr_deleter_armed_flag(ggd_fn, true);
is_disowned = false;
}
// Caller is responsible for ensuring the complex preconditions
// (see `smart_holder_type_caster_support::load_helper`).
void release_disowned() { vptr.reset(); }
void ensure_can_release_ownership(const char *context = "ensure_can_release_ownership") const {
ensure_is_not_disowned(context);
ensure_vptr_is_using_std_default_delete(context);
ensure_use_count_1(context);
}
// Caller is responsible for ensuring the complex preconditions
// (see `smart_holder_type_caster_support::load_helper`).
void release_ownership(const get_guarded_delete_fn ggd_fn) {
reset_vptr_deleter_armed_flag(ggd_fn, false);
release_disowned();
}
template <typename T, typename D>
static smart_holder from_unique_ptr(std::unique_ptr<T, D> &&unq_ptr,
void *void_ptr = nullptr) {
smart_holder hld;
hld.rtti_uqp_del = &typeid(D);
hld.vptr_is_using_std_default_delete = uqp_del_is_std_default_delete<T, D>();
guarded_delete gd{nullptr, false};
if (hld.vptr_is_using_std_default_delete) {
gd = make_guarded_std_default_delete<T>(true);
} else {
gd = make_guarded_custom_deleter<T, D>(std::move(unq_ptr.get_deleter()), true);
}
if (void_ptr != nullptr) {
hld.vptr.reset(void_ptr, std::move(gd));
} else {
hld.vptr.reset(unq_ptr.get(), std::move(gd));
}
(void) unq_ptr.release();
hld.is_populated = true;
return hld;
}
template <typename T>
static smart_holder from_shared_ptr(const std::shared_ptr<T> &shd_ptr) {
smart_holder hld;
hld.vptr = std::static_pointer_cast<void>(shd_ptr);
hld.vptr_is_external_shared_ptr = true;
hld.is_populated = true;
return hld;
}
template <typename T>
std::shared_ptr<T> as_shared_ptr() const {
return std::static_pointer_cast<T>(vptr);
}
};
PYBIND11_NAMESPACE_END(memory)
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)
|